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ON COEFFICIENT PROPERTIES OF POWER SERIES

P. Oswald

Summary. In this paper we consider some applications of the function spaces
B; . and Fy . (0<p, g=co, —co<s<co), recently investigated by the “author [9] to
coefficient esnmates of power series and obtain various known and new results in a straight-
forward manner.

Section 1 contains the definition of the spaces under consideration and a short sum-
mary of their basic properties. In Section 2 we deal with coefficients and lacunary coeffi-
cients of power series.

L. Let f=f(e"*)=2Zr (c,e”€¢D", te(—m, n], be a periodic distribution
of power series type and f(z)=ZXZ;> c,Z" the corresponding analytic function
in the unit disc (|2z|<1). By definition f belongs to the Hardy space H,
(O<p< o), if

I f Hup=sgll) {2r)~1 [ | f(re")Pdt}P < co..

For any given sequence A={ AU}, j=0, of coefficient multipliers A)={A)},
n=0, with the properties '

{2/_1+11-°-02j+1}y j>0’

upp AN ={n=0: AV30 {
supp { Y0} 0, 1,2, j=0,

(1)

)‘ }\(1)21 n=0,
J=0

we define a variety of quasi-norms of Littlewood-Paley type by
IIfII sA =|{2s "X(/)f}llzq(Lp)

pq»+
1—0
and

' = ({075 \U) — 1 B 9sa.| AU gint |
g!filF;',l;\'+ {275 <A f}ll/.p(zq) Il { ’502 'Ini:ox" ceinh|9l e,
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(with obvious modifications if p=co or g=c0), respectively. Now we set

Boqn=U€D : Wfllge = infifllpan <oof;

()

F;'q'_*_:l{feD;_: ”f”F;‘q'_*-:inf ”f”F;:Iq\'_'_< OO},

where the infimum is taken over all A, satisfying (1), and

3) ' I Allg=sup|AD|,, <oo for some a>a,.
i a+1

The sequence spaces bvq41, =0, of generalized bounded variation are de-
fined by

oo k+
0var1={{M}: 1l = 2 ("

) | A¢HIA, [+ lim | A, |< oo},
for further information see [11]. In (2), (3) and in the following, we con-
sider 0<p, g=o0, —c0<s< 0, @y=max(0, 1/p—1) in the case of By .
spaces and O0<p< oo, 0<g=<c0, —c0<Ls< 0, ay=max (0, 1/p—1, 1/g—1)
in the case of F; ... spaces.

In [9] we proved the following properties of the spaces (2).

Theorem 1. Let X be any of the spaces, defined in (2). Then X
is a quasi Banach space with quasi-norm |-|x (Banach space, if p, g=1)
and for every A, satisfying (1), (3), the related |-lyn is an equivalent
quasi-norm on X.

Theorem 2. Let X be any of the spaces, defined in (2). Then v
sequence n={n;} of complex numbers is a coefficient multiplier for X, if

(4) N€bvas1 for some real a>ay, or
oJ+1
(5) Inll, +sup2m/ . I |Am+ly;|<co for some integer m> 0.
®  j>0 =2/

These are multiplier criteria of Mihlin-Hormander-Marcinkiewicz type. The
next theorem describes various equivalent quasi-norms.

Theorem 3. The following representations hold with equivalent
quasi-norms :

(6) F'{)'2'+=Hp’ 0<p<0°,

p

(7 F;'q'+={f€D'+; I fil={ f(j(]._r)—q(ﬁ+s)-—-l|jBf(,-eit)lqa’r)P/th}l/P< o},

B+5<0, 0<p<<oo, 0Kg=co, where JBf(e"‘)=n3=30(n+1)—Bc,,e""’,
®) B . =HA(s, p, qM={feD, : I fl
={ j (1 —r)—9B+s=Y( _z | JBf(reit) |Pdt)?iPdr}iia < o},
B+5<0, 0<p, g= 0,
*) See Flett [5]
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(9) By ={feH i fi=1flla,+{[ 77" -0,(f, O)idt}1< o},
0
O<s<m, 0<p, g= o0, m>0,

(LA By, ={f€H,: IfI=1fln,+{ 2 257 Ex(fig}r< oo},
0<s< oo, 0<p, g< o0,

(with obvious modifications, if p=co or g=c0), where o,(f, t), and E,(}),
denote moduli of smoothness and best approximations by polynomials of
f in H, respectively.

Furthermore, the operator JP of fractional integration with real B yields
an isomorphism of X* onto Xs+P for arbitrary p,gq,s, and X= B, or
X=F . (lift property). Duality and interpolation properties of the spaces
(2) can be studied in analogy to the case of R" (cf. [12]).

Theorem 4. Let —co<s<co. Then we have (with the correspond-
ing quasi-norm estimates) the imbeddings

(]1) B;‘(]—f- Bs~—l/pmH/Pr ()<p0<plf_; oo, 0<q§a;&;

42 Fy i Pt e, 0 pp<py <o, 0<gp q1=c0;
(13) Fs o Bslietle, 0 py<py<oo, 0<g=o9;
(14) By o Eneln, 0< po<py<oo, 0<g=co.

The proof of these imbeddings is standard (see, for instance, [12,
p. 100-104] and [4, 5, 8]), we omit it here.

2. In order to obtain coefficient estimates for f, belonging to some of
the spaces described above, we shall use Theorem 4 and the obvious rela-
tion (here X’ means that for j=0 we should set Z! )

oJ/+1_

o0
{S o0 (% |¢, Py, 0<g<oo,
J=0 ”___2/'
| =4 | ~
(15) fl B e
sup 2°( X' e, ), g=ce.
=0 n=2/

From (11) and (15) we immediately get
Proposition 1. Let 0<g<co, —co<Ls< 0.

a) If feB;  , for some 0<p=<2, then

2/ +1_y
(16) { V qls—1/p+1/2) ( >3 | g, |3)q/2}1/¢7\c |[f || < o,
J=0 uzzf P‘l»‘f‘

b) If for the coefficients of f¢D’ the term in the left-hand side of (16)
is finite for some 2=p=cc, so we have f¢Bj ., and the inverse
inequality in (16) is valid. With obvious modifications the statement also
holds for g=co.
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Quasi-norms of the type used in Proposition 1 for coefficient sequences
are of some interest in connection with multiplier criteria in /4, spaces (see
[7]) and other problems.

We define the quasi-normed sequence spaces /3 by

l(s,:{{"n} HC,,|I;~{ “ (n+1yc, | < 0}, 0<g< oo
n=0

(modification if g= ), —co<s< .
Proposition 2. Let 0<g<co, —co<s< 0.

a) If feB;  , with 0<p=<2 then {c,}¢ls-"P—1a"+1, |, e.

(17) ”C,,Hls—l/p—l/q'—i-l'éc‘ ||f||Bs ,» - ¢'=min(2, g).
+

b) If {c,} ef5—1p=1a"+! with 2<p=<co then j¢B; and

g+

(18) Ifllgs =C-lic,ll;s—1p—1/g"+1, ¢q''=max(2, g).
q

P.q+
These inequalities are a direct consequence of Proposition 1 and

oJ+1_y 2/+11
C- 220" { 3 |, PPR<{ Z' |c,|0}W
n=2/ n=y

o/ +1. 1
.;\ZC{ ¥ e, ,2}1/2.21'(1#7’—1/2), j=0,
n=2/
0<g< oo (modification if g=co).
In the case of F;  weuse (13), (14) instead of (11).
Proposition 3. Let 0<g<co, —co<<s< 0.
a) If 0<p<?2 or p=2, 0<g=2, then

2j+|___l

(19) [ €nll 1oy SC{ E 20etiptiR( X e, PyRyp
p J=0 n=2/
=C. nfn;H, Fel e
b) If 2<p<co or p=2, 2<g<oo, then
o )j+l
(20) Hfd X <C{ ¥ Qip(s—-l/p+l/2)( Y lc |2)p/2}1/p
' Fpg.+ J=0 n=2
=C-lic, | s+l-—2/p

and feF; . under the assumption that one of the coefficient quasi-norms
in (20) 1s fxmte, in particular if {c,,}elsp+‘—2/P
The proof is obvious (e. g, to obtain (19) take po=p, py=2 in (13)

and apply (15)).
Propositions 1-3 are certain generalizations of classical Hardy-Little-

wood results on Fourier coefficients of trigonometric and power series

471



(cf. [6, 13]). To see this we consider some special cases. If we put s=0, ¢=2,
it follows from (19), (20) and the representation (6) that
( S |eylP(n+1yP=2 <C-11 iy, 0<p=2;
(21)
Hfll =C-: { Ic |P(n+1)P2}p, 2<p< co.

This is a theorem of Hardy-Littlewood. A certain generalization of (21)
due to H. R. Pitt

(22) e llp—tip—1/g—s=C- I (1=2)f(D)1I , O0<p=g=co,
q p

where s=max (0, 1—1/p—1/g), can be obtained in a similar way, at least
if 0<p=¢g=2. Of course, denoting g(z)=(1-2)*f(2), from (13) and (6) we
have

— 1/r—1 1/r—1
g(z)E HP o F2.2.+mBr{;.+/mer{:].+/p’ pgqv

where r is an appropriate chosen real (p<r<2). Thus, using (8), we get
/i € B2 1P=s (see [3, p. 751]) with corresponding quasi-norm estimates and

Proposition 2 gives the required estimate
e, l—l/p—l/q—s_§;c' ”f“ 1/r—1/p—s <C-I g, 0<])éq§2
‘q Brq,+ Hy

Another application of Proposition 2 yields some results of [1, 2], con-
cerning the Banach spaces BF=HA(1—1/p, 1, 1)~H,, 0<p<1, which coin-
cide with B! (see (8)). E. g., the inequality

1,1,+
(23) leall —ip={ 3 [yl - (1+ 1)V }<C- 11 fll g, fEBP,
i n=0

stated in [2], follows from (17).
Finally, it should be added that the relations

) B O(n—s+max(1/p—-l. U))' 0<q< fo%e)
(24) | L,,| —{ O(n—s+max(l/p-—l, 0))’ g=co C ”f” By gt . p—s+max(l/p—1, 0)
n=0, 0<<p=co, —co<8s< oo, can easily be obtained from

25)  ley|=C-| [AD f(reit) - (reit)="dt|<C - pmaxtiio=1, 0 NSl

(to verify the latter inequality for -p<1 take r=r,=1—1/n and use the
Hardy-Littlewood inequality || f(re’)ll,, =C - (1—r)'="7 Hfll,,, feH,) and the
definition (2) of the spaces B; .. The corresponding restilt for the spaces
il is a consequence of (24) and the imbeddings

P+
Ete cBE

X 4
(26) Bp min(p,q),+ gt pymax(p,g),+"
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In the concluding part of this paper we briefly deal with lacunary pow-
er series and lacunary coefficients. An increasing sequence {n,} of inte-
gers is said to be lacunary, if n,4,/n,=06>1, £k=0.

Proposition 4. Let 0<p,g<c (p<co in the case of F; ,..) and

—co<§< 0. Then for lacunary {n,} the power series f=2% ¢, e™*  be-
longs to B; . (F5,.) if and only if {njc, }¢l, more precisely, we have

97 S nstle, |~ fll s (~Iflls ).
(@7) (E el Pomifl e 11 )

Proof. If >4, then for any f under consideration we have n,¢ {2/,
..., 27+1} for at most one k£=(. Thus,

Jj—1 J+1
e NS )={ NACEh A, T R
. nk-c,,k.e WD L VAR SR s

Jj=0, and (27) fmmediately follows from the Definition (2). Observing that
every lacunary sequence {n,} can be decomposed into a finite collection of
lacunary sequences with 8>4, this yields Proposition 4 in complete gene-
rality.

Proposition 5. Let 0<p, g=o0, —co<Ls< 0, y=max(0, 1/p—1).
Then we have for any lacunary sequence {n,}

(28) o {ngr e }e=<Ce I f ”Bfr.q.+
The proof of (28) is a consequence of (25) and (2).
According to (6), (28) and the imbeddings (13) (0<p<1) or (26)(p=1)
as a corollary for f¢ H, we obtain the estimates

I{nitec, . 0<p<1,
I €yl p=1.

The case p=1 represents the well-known Paley theorem on lacunary coeffi-
cients in Ay (cf. [13, v. 2, p. 133]), while 0<p<1 was considered in [2].

Finally, it should be mentioned that most of the estimates, obtained
in this section, are the best ones in the corresponding scales of quasi-norms.

On the other hand, using the definitions of the spaces Bj  and F; .

(together with Theorem 3), some inequalities, inverse to those considered
above, can also be established. For instance, if f=2= c,e¢D’ and 0<p,

g=2, —co<s< o, then we obtain from (2), (15)

(29) I f HH,,;C{

oo o/+1_
= C{ Z 2% ( 3" Je,l*yre.

HfllBs

<IIfll s
29, + Baq

Now, supposing {c,}¢/5 or |c,|=0(n"), n— o, for some a<—s—1/2, this
yields feB; . (for the special case BP=Bl-1p, 0<p<l, see [2, p. 260]).

1, 1,+’
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Note added in proof. As it was pointed out to us by H. Trie-
some results analogous to Proposition 2 have been obtained by A.
tsch in the more general framework of approximation spaces. (cf. A.
tsch. Approximation spaces. [Analogies between spaces of sequences,
tions and operators]. /. Approx. Theory, 32, 1981, No 2. 115-134.)
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