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EXPANSIONS OF DETERMINANT QUOTIENTS
WITH APPLICATION TO APPROXIMATION

R. Smarzewski

Summary. A unified method of dealing with some interpolation and approximation
problems, connected with expanding of determinant quotients, is presented. In particular,
a determinant extension of de La Vallee-Pousin, Remes and Meinardus-Taylor estimations
for the error of the best Chebyshev approximation from below is given.

1. Introduction. Let A=[a;|? be a non-singular square matrix of or-
der n. Throughout this paper we assume that the matrix B=[b,]" is de-
fined by

bik:aik' bin=bi (i=],...,ﬂ, k=],...,)2—1),

where b,,..., b, are arbitrary scalars. In a few fields of numerical analysis
some quantities are defined as determinant quotients of the form |B|/| A|.
For instance, the error of the best discrete Chebyshev approximation, gene-
ralized divided differences and elements of sequences, occurring in the ac-
celeration of convergence of scalarsequences,can be expressed in this way.
The purpose of this paper is to present a simple and unified approach to
expanding of | B|/|A| in terms of determinant quotients of the same type,
but of lower order and to give some applications of the obtained expansions.
In particular, a determinant inequality, which can be regarded as an exten-
sion of de La Vallee-Pousin [6], Remes [I1] and Meinardus,
Taylor [7] estimations for the error of the best Chebyshev approximations
from below, is given.

2. Main Results. We begin by proving an auxiliary lemma, which
provides us with an expansion of a determinant.

Lemma 1. Let a matrix A=[ay|t and an integer m=n—r (1=r<n)
be given. Assume that

(1) A<v+l,...,m+v—l):‘t0 (v=0,...,7).

I, ..., m—1

Then there exist uniquely determined coefficients a,, (v=0,...,r) inde-
pendent of a;, (i=1,...., n) such that
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r o
(2) |A|= X arvA(v+l....,rrz+v I,m+v) .

220 1, ..., m-—1, n

Proof. Let us consider the following lower-triangular system of r+-1
linear equations for r+1 unknowns «,,

r
Y (L 1\V—p v+1,..., k-1, R4+1,..., m—i—v)
3) 3 (~1y 0, A" L
s anng k—1,k+1,...,
- (] N ””_1) (k‘:”!n_l)-' .,III),

where it is assumed that the minors on the left side are replaced by zero
if k<v+1 or k>m+wv. By (1) all elements of the main diagonal of system’
(3) are nonzero, and so (3) has the unique solution «,, (v=0,...,7r). Now,
let us suppose for a moment that A satisfies

(4) a;,=0 (i=1,...,m—1).

Then, multiplying the k-th equation of (3) by (—1)"**a,, and next sum-
ming up the obtained equations, we conclude by the Laplacian determin-
ant expansion formula that formula (2) holds in this case. Otherwise, if A
does not satisfy (4), then it canbe reduced to a matrix D=[d,,]}, satisfying

(4) (i. e. such that d,,=0 for i=1,...,m—1) by m—1 steps of the Gauss
elimination method [4], applied to its first m—1 columns (possibly, after
their permutations). Note, that minors of A, which occur in (1) and (2),
are equal to corresponding minors of the matrix (—1)°D (ci. [4, p. 25]),
where o is a number of permutations of the first m—1 columns of A in
Gauss’ elimination. Hence, we can apply (2) to |D|=(—1)°| A| and obtain
also formula (2) for A in this general case. ]

If r=n—1, then the system of equations (3) reduces to a diagonal
system and

L...,0,042,...,
(5) an_n.v=(—1)"_”_l‘4(1. vv+ ,nﬁl) (=0,...,n—1).

Thus, in this case the expansion . of | A|, given in Lemma 1, coincides with
the determinant Laplacian expansion of | A| with respect to the last column.
Moreover, by using expansion (2) to the matrices A such that a;,=0,
(8;; — Kronecker’s delta) and «;,=39;, (i=1,...,n), we obtain

(6) tyo=(—1) N m
’1(1, m—l)
and
A( 1t n—1 )
— 1, , n—1
(/) L r+1,..., A1y
A( i oabe m——l)

Lemma 2. The coefficients «,, and a,,, satisfy the following
recurrent formulae :
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(v,..., v+m—2) A<v+2,..., v+m)

. I, m—1 S | S R m—1
Ort+1.0= 0,01 v+1,..., v+m—2) ’”A v+2,...,v+m——l)
"( {5, m—2 o 850 m—2
(v=0 ,r+1)
where o, _,=a,,,+;=0.

Proof. If D—-[d,k] is the adjugate matrix of a matrix C=[c;,]?, then
by using the Jacobi theorem [1, p. 98], we obtain

1 R
D( -1, ”)—ICI C( ..... n—2)'
In view of the definition of the adjugate matrix it follows
2, e au =1\ g 2. .45 n=1,n 1,..., n—1
ICl C(l,..., n—?)—c(l ..... n—2, n)C(l ..... n—l)

1,..., n—2, n—1 2 JE ey
*C(l,..., n—2, n )C(l,..., n—l)

Hence

v+1,..., m+4v

A( 1,..., m—1, n)
A<v+2,..., m+v v+l,..., mtv—1\_ 4v+1,..., m+v—-1) ' v+2.....m+v)

_ ey m—2 )N\ 1,..., m—1 1 ,0..,m=2,n)"\ 1,...,m—1
I v+2,..., m+v—1

A( I wm=2 )
Finally, setting this expression in (2) and arranging the obtained sum with
respect to A(v'H """ '";;3;2’ m+v-l), we derive the required recurrent

formulae. ]

Now, let us suppose that the matrix A is non-singular. Then the follow-
ing corollary follows easily from the Lemma 1.

Corollary 1. Let m=n—r (1=r<n) and

A(v+l,...,m+v—l)A<‘v+l,..., m+v—1, m+v):%:0 (=055 »3ir);

1,..., m-—1 1t 2 sonn m—1, n
Then
B(v+l,..., m—+v—1, m+v
(8) 1Bl _ A R m—1, n_,
(AT ~ 2o ‘-v—f-l,..., m+v—1, m+v)’
A ety m—1, n

where coefficients \,, are independent of by, ...,b, and equal to

L $4] e
A, =0 A(vﬁ '";fl m+v)/|A|. Moreover

(9) Wy 14

=0
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Proof. By applying Lemma 1 to the matrix B we get the desired
expansion for | B|/|A|. Formula (9) follows immediately from (8) after sect-
ting b,=a, (i=1,..., n) in (8). O

In the next theorem we establish an inequality for determinant quoti-
ents. We shall see in the following that this inequality can be regarded asa de-
terminant generalization of de La Vallee-Pousin [6, p. 82], Remes [11,
p. 40] and Meinardus, Taylor [7] estimations from below for the
error of the best Chebyshev approximation. For this purpose denote

v+1,..., m+v—1, m+v

T __B( 1o, m—1, n )
o v+, .., mtv—1, m+v '
"1( 1,..., m—1, n )

Theorem 1. Under the assumptions of Cozollary ! and the addi-
tional assumption that there exist o,, oy¢{—1, 1} such that sxgn (A 5) =04
and sign(7T,,)=o0, (v=0,...,r), we have IIBI/I All=zmin{|T,,|: 0=v<r}.

Proof. From Corollary 1 and the asqumplion% of the theorem it

follows that || B|/| A||= ; OX,,,?,,,I—_ ol | Tl EL_o | A | ming| Ty, |2
Osv=ri=|2r_A,|min{|T,|: 0<v<r}. Hence by (Q) the proof is com-
pleted. []

We note, that from Lemma 1 we obtain immediately the following
determinant extension of expansions for generalized divided differences
[8, 9, 10] of order n by divided differences of order m and for elements
of sequences, occurring in the process of acceleration of convergence of
scalar sequences [2, 5]

Corollary 2. Let m=n—r (l=r<n) and A<v+11 """ "';:3?1)
><A(U4;l’ ::: "j:v):f:() (v=0,..., r). Then ‘
! e v+1,..., m4+v—1, m+v v+1,..., m+v
(10) | BI/1A|= :‘f“B ”B( IR m—1, n >/A( e )’

where coeflicients f,, are independent of 6,,..., b, and

B,.=a A(v+l ..... m+v)/|/H

1, ., m

Moreover
(11) 3 B,,=0.

Proof. Analogously as in Corollary 1, we must only prove (11). But

this equality follows directly from formula (10) after setting b,=a,,; (i=1
., n) there. [}

3. Applications. Now, we discuss briefly some earlier mentioned appli-
cations of results, obtained in the preceding section. Suppose that
G;=span{gy, ..., g) (i=1,...,n—1) are given i-dimensional subspaces of
the space C(/), /=[a, b], of real-valued continuous functions, defined on /,
and that G,_, is n—1 dimensional Haar space on /, i.e. that functions

g+ & form the Chebyshev system on /. If the sets X={x}! (a=x,

532



<o Zx,=0) and YV (XcYcl), feC() and g¢G,_, are chosen arbitrarily,
then by the Alternation Theorem [3, p. 75] we have

(12) o(f, Y)=p(fs X)=ple. X)=||BIIAll

where p(#, Z) denotes the error of the best Chebyshev approximation of
h by elements of G,_, on a subset Z of /, e=f—g and matrices A=[a,];

and B=[b;]t of the same type as in Section 2 are defined by
(13) A= b= gi(x)y A;y=(—1) and b;,=e(x,)
(i=1,...,n and k=1,..., n—1).

°
Since sign| A |=(—1)" and determinants in formula (5) for @,_,, are posi-
tive, we conclude from Corollary 1 that sign(A,_;,)=1 and 7,,=(—1)7*!
Xe(xy,+y) (v=0,..., n—1). Hence the assumptions

(14 e(x,)e(Xy+1)<0 (v=0,...5n-1)..

are sufficient for the ecxistence of oy, defined in Theorem 1. By (12) the
determinant inequality, given in this theorem for r=n—1, provides us with
the well-known de La Vallee Pousin estimation from below for the error
p(f, Y). Similarly, if additionally G, o, ...,G,_; (m=n—r, 1=r<n—1)
are Haar spaces on /, then using (6), (7) and Lemma 2 we obtain by an
easy induction with respect to r that signa,,=(—1)—% Since

: v+1, S M o—1mTo Y e
SlgnA( | (R m—1, n )_( D :

then by Corollary 1 we have sign(d,,)=1. Moreover, there exists o, de-
fined in Theorem 1 if and only if the signs of elements in the following
sequence of minors

B(U+l ..... m+v—1, ”1+7’)) (U= o s r)~ o

L, ..., m—1, n

oscillate. If we apply the Laplacian expansion formula to these minors with
respect to their last columns, then we deduce that conditions (14) are suffi-
cient for the existence of o, from Theorem 1. In this case the estimations
of the error p(f, Y)from below are reduced to the estimations of Remes[l1]
and Meinardus, Taylor [7).Since T,,=p(f, X,), where X,={Xp41:.-,
Xpm+yp then from Theorem 1 it follows that the estimation of the error
p(f, Y) for r, is not worse than the estimation for r,, while r;<r,. In par-
ticular, if G,_, is equal to the set of all polynomials of degree less than or
equal to n—2, then under the assumption (14) we have

p(f‘ Y)E%"min{(kvlevl-}_lev*ll—*—(]—)'v)lev'fi."): létv‘—\:n'—Q}

1
TZ‘ _____

where )\1,=(x1,+2’_xv‘f‘l)/(x*u*|2""sz) and e,,=e(x.,0).

We note that we are going in a forthcoming paper to obtain analo-
gous estimations of the error of the best Chebyshev approximation [12]
with Hermite constrains. By Theorem 1 this problem requires only deter-
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mining of signs of the minors occurring in A,, and T7,, Finally, if
G,=span{(g,,.... &g, is the Haar space on X and the elements of matrices
A and B are defined as in (13), except of elements a,, equal to g,(x,)
(i=1,...,n), then determinant quotient |B|[/| A| is the generalized divided
difference [8] at points x; and with respect to G,. Hence we can apply
Corollary 2 and obtain expansion of them according to generalized divided
differences of a lower order (cf, e. g. [8, 9, 10]).
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