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NETWORK-NORM ERROR ESTIMATION USING INTERPOLATION OF SPACES
AND APPLICATION TO DIFFERENTIAL EQUATIONS

Lyubomir T. Dechevski

In order to illustrate the main results of this paper (theorems 1
and 2), the following Cauchy boundary problem for evolutionary equa-

tions is considered:
u(x,t) - H(Z,x,t)u(x,t) = 0
2t ’ OX Zan2 ’

(1 X (-00,00) =R, 0<t =T
u(x,0) = f(x), xe€R, fe€ LP(R) (1

WA~
A

00,

P

Here L_(R) is defined as usually. The differential operator H is
supposed to allow an unique representation of the solution by a solu-
tion operator denoted by G: u(x,t) = [G(t)f] (x).

Problem (1) is being solved numerically by means of problem (2):

ruh(x,wd) =¢ZGI c, uy (x+ah,t), I-finite, h S 1 without l.0.g.,

uh(x,O) = f(x)
(2){ x and t belong to the uniform networks :Eh and Ilh, resp.:

xeth {xu : x, = ph, yu = 0,:1, -2,...},

Lteﬂh = {tv :t, =vd; ¥=0,1,..., N, Nd = T},

[}

¢y and I may depend on x and t. The solution operator of (2) is
Gp(t) = up(x,t) = [Gh(t)f] (x). The error operator is then E, = G, -G.
All these operators may depend on x, as well as on t.
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Many works deal with obtaining estimates of the error u, - u.
These are of two types: i) discrete (network) - norm estimates requir-
ing: a) stability, b) approximation and c) f has derivatives of some
order (v.[6]); ii) integral L_ - norm error estimates using a) and b)
only (these require information about the initial value f a.e. on R
instead of Eih only - v. [1], [2]).

The purpose of the present work is to derive discrete-norm error
estimates which, like the integral-norm ones, require conditions a)and
b) only, i.e. without the assumption of additional smoothness of f. In
order to obtain these estimates, a method is developed (v.also [5]),
which is quite general and can be applied to a wide variety of error
estimation problems not necessarily related to differential equations.
Here applications are restricted to the model evolutionary problem (1)
(2) with concrete simple differential operators H only. The technique
of estimation includes:

A. Average moduli of smoothness: 'rk(f S)L = nﬂJk(f X3 S)" where

Lp
W, (f,x; ) = Ak pE(8)] : t,tekhe | x- -k87/ ,x+k§'/ , where
K B 8 2
Afs(t) - Z k+‘“(k) £(t+nh), £l (R), bounded, §>0, 0¢h 554
m:

(For history, properties and applications of these moduli v. e.g. [ﬂ,
[71). Here and henceforth every function f € L_ is distinguished from
its class of equivalence and considered defined by a concrete value in
every point of R. The following space is to be dealt with:

A(R)={f=||f|l 3 : }

p Ay p - llflle +’U1(f,h)Lp<vo , h>0[.

For every h1,h2>'0 the norms | . Il ’ Il.ll are equivalent on
Apr Ap) 2

A (with constants dependent on h,,h,).

B. Besov spaces B> , interpolation and embedding results.
C. A-spaces (v. [4]), defined by (1 € p,q o0, 0<s 1)

A 9 4t L
S S ! 12
- : = s -—_— < 0o
Aq () {f I £ “A;q I £ Ile + (So(t T.(f i }

<
Note that for%(sgr AS = B® and for 0<s<l AS #BS

Pa  Pq P.. 3Dg utbpgs
D. Spaces Mp of Fourier multipliers on Lp(v. e.g. [1D.

The discrete-norm spaces to be used are the following:

p - .
1h( zh) - {f t R R, £ "1§(Zh)<°°}, where
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o p_]_ <
" .3 Illg(zh) i (uz=_~h If(Xu)' J)p XUEZh, 1 =p =%
~p _ X
1h(zh) '{f‘R—’R’"fulg(Z) , where
. ) ) p
|l £ lllﬁ(zh) = (Z h sup{lf(x)l - xe[ X" 2-, }) .

It can be proved that for every ‘gGR 1§(Zh+p = lh(zh)= Ap h(R)

(equivalence of norms with constants independent of h). With respect to
the applications it should be mentioned here that for some important
classes of operators, stability in L_ implies stability : Ap - 1§(Zh)
(Such as, for instance, all difference operators Gh appearing in (2) or
convolution operators Ef = g*f with @ - Fourier multiplier on L s 9
(g) - inverse Fourier transform of ¢, and ¢€ S(Schwartz' space) -

v.Appl. 1).

The next theorem is an useful generalization of a theorem of V.
Popov (v. [3], [4]1, [7]).
Theorem 1.(valso {[5]). Let E be a Lipschitz operator: A, > lﬁ(zh) with:

L0

(A) For every f,geAp || Ef - Eg lllﬂ(zh) =c, If -g uAp }Y/r

(B) For every fewr (Sobolev space, i.e.f,f(r)é Lp’ f(r_”GAC - the
space of all absolutely continuous functions) it is fulfilled that

4 (r)
W EEN,p =c,h (e, + £ r>0,
EADIDERE Ly p
where 0<6 < r; Cqs €y do not depend on h; h 1 (without 1.0.g.).

Then, for every f GAp, 0<s < T,

L
b

o

o
Nee by 5= e e ep@ el 'y P e,

= c(r, s CZ)h T “f“
pﬂ

A

When applied to some error operator E (usually linear bounded) ,
this theorem yields a network-norm interpolation estimate. It may hap-
pen, however, that the 1P-norm estimate of condition (B) is not availa-

h
ble, while there is an analogous one in L _-norm. In this case the next
-

theorem may prove useful:
Theorem 2. Let E be a Lipschitz operator: Ap - lg(zh), with:

(A) For every f,g€A, | Ef-Eg ulﬁ(ih) = cy gl A, % ’

’
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(B) For every few;, r 2 1%
M}
Neel, =cnllel, + 0 £P§ .
P P p
(C) For every f‘w;-1 :
[ g =
Neslh, Scon ™ Tclell, + BN, ), where:
P P P
0<°'r, Gr-1 s Gr ; €45 €5, C do not depend on h; h £ 1 (without

Tosg.9..
1 : d
(D) For every f ewp » Ef€AC and E commut.es with o

Then, for every feAp, 0<s = e
su(r)

lE£ll o S E (T Cy, ContaCad = Lt s
l IeCo 12 28253 A

where p(r) = min {0'1,, (3’1__1 + 1}.

Both these theorems hold also for a bounded interval instead of
R and can be modified for a non-uniform network as well. They are the
main technique (especially Theorem 2) in the following applications:
Application 1. Parabolic equation of arbitrary order (see [1]).For
et

Zm
dx

denotations, see (1), (2). In this case H(%_x’ b 25 e

m>0 integer. (We may consider H(}) = ?zm).
The operators G and Gh are defined on the network by theqmvolut—

ions with Fourier multipliers:

-1

G(vd)f = F ' (exp(- vdH(.)))4 £

ey
(3) G 0df =F

Hh(‘g) = - IL%B—)— , where

e(h'g) =Z c“ei“h? ; C4» I - constants (see (2)) and
L€E]

(exp(- vdHh(.)))* f, where

F(Gh(vd)f)(}) = [e(h} )]v ? (}) s F(f) = T - Fourier transform of f.

The next theorem is an integral-norm estimate for this problem:

Theorem A. (v. [1] ). Let the following be fulfilled:
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(A) Gh(t) - stable in Lp (this contains the case of ZE |c¢| <
€]

$1+cd, c>0),

(B) Hh(§ ) approximates H(; ) of the order r>0 (for the definit-

ion of this approximation, see [1]).(d = khzm),

Then, | E, (£)f | S cn® )£l s .
h Lp(R) B oo (R)

t =vyd =vykh™, =0, 1, 2, ..., N; 0<s S r.
Thence, Theorem 2 and some lemmas imply:

Theorem 3. Let the assumptions of theorem A hold, with fe€ Ap:

< s
Then, | E, (£)f || 1P(3) ch® || f||As (”)

peo

Corollary 1,; If for this problem f(s)eLp (R), 1 € ss T, then,

B s (s) . T
I B, ()£ l'lf.(zh) = 0(hw _ (f ; h)Lp(R) + h")

Here the integral modulus of smoothness wk(f;h)L is defined as

usually. P

A

Corollary 2. If Vf(s'-1]<°° (the variation of f) , 1 s = r, then

"Eh(t)fulg (Z) = 0¥ MPy S pSe

Application 2. Hyperbolic equation of the first order (v. [2]).

Using denotations (1), (2), (3), we have H(—g—x, x, ) = &, ..
H(}) =3} . For this problem the following Lp-norm estimate holds:

Theorem B. (v. [2]). Let conditions (A) and (B) of Theorem A be ful-
filled for G(t) with H(}) =}, d = kh, and a corresponding Gh(t).

_S_I'_
Then, | E,(t)€ "Lp(R) St g | 0<s<r+l.

8 ’
Blgy (R)

Our corresponding discrete-norm estimate is given by:

Theorem 4. Let the assumptions of theorem B. hold, with feAp:
ST

Then, || E, ()€ llls(zh) = ch™ [ £l s () *

poo
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Corollary 3. If £'7’¢ LP(R), 1 £ s< r+l1, then

ST X:
T+ (s),, T+1 r
|| & of | = 0™ w A Rl + hh)
h P r+l-s 2 L_(R)
1.(Xy) 13
Corollary 4. If Vf(s)<co , 0 Ss< r, then
(s+1)r_1+_i_
I Eh(t)f" 1Ty = 0 T+ Py, 15 pSe,
h h
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