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L1-APPR0XIMATION WITH BLENDING FUNCTIONS

Bernd Steinhaus

1. Introduction. A recent survey by Cheney [1] gives us an intro-
duction to 'approximation of multivariate functions by combinations of

univariate ones'. We discuss L1-approximation with blending functions:

Let C?(I) denote the space of p times continuously differentiable
functions, whose p-th derivatives are integrable (we always use Lebes-
gue measure in this paper) on the finite interval I CIR. Let U<:C$(I),
V(IC?(J) be subspaces. We denote by

BP'9(u,v) := Uoc?(J) + c?(I) eV

the space of blending functions. We want to use ECT-systems (cf. Karlin-
Studden [5]) to define the subspaces U and V. To this end, we recall
some fundamental results on ECT-systems:

Let {u1,...,um}<ICT(I) be an ECT-system. We denote the Wronskian of
u1,...,ui, 1<i<m, by Wi = w(u1,...,ui) and (by a proper choice of

signs and wo := 1) the positive generating functions by 0y 3= U, = w1
2
and ay = wi_1wi+1/wi, 2<i<m. Then we get for every XOGEI by
b, (x,x_ ) = a,(x) ,
(1) L 9 LA £2 E3-1
o (x,x ) == a1(x)ja2(gz)j AR | a; (£,)dE ... dE, , 2<ism,
*o *o *o

a fundamental solution of the differential equation (fGECT(I))

W(u1,...,um,f)/wm : (W_/W 1) Amf =0

m’ “m-
with U := span{u,,...,u } = ker A (cf. Coppel [2], Karlin-Studden [51,
Pblya [7]). The above differential equation possesses the decomposition

Aif(x) = DiODi_1o...oD1f(x) , 1<i<m,

with the first order differential operators Dif(x) = é%(f(x)/ai(x)).
Note, that for &y the mean-value theorem by Pdlya [7] holds true.

Using this notation and g id we get the Taylor series at xo€ I
for £€C(I) by
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m A 1f(xc)) X
(2) f(x) = 121 W— ¢, (x,x) + x{)Amf(s)ci»m(x,s)ds ;

: 'rm(f,xo) (x) + Rm(f,xo) (x) ,

where Tm(f,xo) EUm.

There is a general characterisation for L1-proxima in the following
framework (cf. Singer [9]):

Let MCR" be measurable, u* €UCL, (M) and £ €L, (M)U. Then If - u*l
S If-ul, for all ueU, iff there exists a oEL_(M) ~L, (M)* with the

1
following properties:

3

(3) ligh = -1,

(4) fuo = 0 for all uevu ,
M
(5) o(x) = sign(f(x) - u*(x)) for all x EM~Z(f - u¥*) ,

where Z(g) := {XE€M | g(x) 0} and signg(x) = g(x)/lg(x)| for g(x) *0
and sign g(x) = O for g(x) = O. We call functions o €L_(M) satisfying
(3) and (4) orthogonal sign functions.

Laasonen [6] showed that a Tschebyscheff system (u1,...,um] on: a

finite interval I possesses a unique partition Xq <eeo <xp such that
m
om(x) := sign wm(x) = <.=.j.gnj-_l’11 (x—x )
is aminimal (with smallest number of sign changes) orthogonal sign func-
tion of span {u1 7 e¥ere ,um} . Therefore one can achieve a unique L1 —-proximum
of a function fEC1 (I) by the Lagrange interpolant me at the points Xy

1f sign(f-me) = €0, on I\Z(f-me), €€ {~-1,1}.

2. Unique L,-approximation by blending interpolation. Given two
ECT-systems UmCCT(I) i VnCC?(J) we define the blending grid Gm,n by

c;m'n = {(x,y) €EG := IxJ | om(x)on(y) =: om'n(x,y) = 0}

and the blending interpolation operator by the Boolean sum (cf. Gordon [3])

.= X Y T Y _ 1Xo1Y
Lm,n s LmOLn H Lm + Ln Lm Ln ’
where L; and LK denote the parametric Lagrange interpolation operators

at the zeros of o and Ont respectively.

Definition 1. Let fec1 (G) and Lm nf as above.
’ 0,0
(i) f is said to be weakly adjoined to B(U,,V,) :=B "0,V ) . A

(6) O (x,y) = esign(f(x,y) - Lm'nf(x,y))

for all (x,y)GG\z(f Lo nf)r €€ =1,1}.
l
(ii) f is strongly adjoined to B(U .,V ), if (6) holds true in G.
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Theorem 1. If fEEC1(G) is weakly adjoined to B(Um’vn)’ then the unique
L1—proximum of £ in B(Um'vn) is given by the blending interpolanth nf.

’
The approximation constant is

1

E
B(Um'vn)

(£) = Iéfom'nl A

Proof. The fact, that L nf isanL -proximum is obvious and the approxi-
mation constant follows from (4),(5) and (6). If f is strongly adjoined
to B(Um,Vn), the uniqueness follows from the fact, that for another L1-
proximum b of f the inequality (f-Lm'nf)(f-b) 20 holds true (cf. Rice
[8]) and from the uniqueness of the blending interpolant on Gm,n' If £
is weakly adjoined, we use a method by HauBmann-Zeller [4]:

ge(x,y) := f(x,y) + smm(x)wn(y) , € as in Definition 1 ,
is strongly adjoined to B(Um,vn) and

Ve =Ly, nflq + Yooty =g Ly f1, < lg -bl,

< lf--bl1 + lwmwnl1 - If--Lm’nfl1 + Iwmmn|1

for all L1-proxima b of f. To complete the proof, we get b = L f by
the uniqueness of the L1-proximum of g.- O

Let A; and AK be the differential operators defined by Um and Vn,

. o X Yy _ /N
respectively. Then we use Am,n : Am oAn with ker Am,n B (Um,Vn).

Let c]'™(6) := (£ec™ () If(i’j)€L1(G), O<is<m, 0<j<n}.

Theorem 2. Let fecm'n(G) and A fzo. Then f is weakly adjoined to
I
(U ,V ) andwmaget the unique L -proximum by blending interpolation.

Proof. By taking A1 T 1 we construct by (1) an adjoined function (in

the normal sense of Tschebyscheff systems) S t1 (x,xo) to U and with
Bn+1 := 1 the function wn+1(y,y ) adjoinedtxav , analogously. Then there
exist functionstxespan{¢1,...,¢m+1},\r€span{w1,...,w +1] with signlx—

O signv = o, Let w(x,y) := u(x)v(y). For arbitrary (x WY )GG\G

we choose k := k(x )EIlsuch that h := £ - L nf+kw vanishes in

Gm nU{(xo,yo)}. By the mean-value theorem by Pblya [7] we get n€ I and
’

then £ € J such that A h(n,g) = O. Then, by construction, A w * 0
m,n m,n

m,n

and constant, and we obtain

Am nf(n,E)
£lxy0yy) - Lm,nf(xo'yo) = A, win,g wix,i¥y) o
’
such that
sign(f-Lm'nf) = esignw= wm,n

on 8\2(f-Lm nf) with €€ {-1,1}. This is the weak adjoinedness of f to

’

n(Um,Vn) and Theorem 1 completes the proof. O
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3. Estimates for the L,-approximation constants. The parametric

Taylor operators T;, Tz defined by (2) commute, such that we get for
€ CT’n(G) and (x ,yo) € G the blending Taylor series by the Boolean sum

f(x,y) n(EeXoryo) (oY) + Ry (£,x5,v,) (X,Y)

m

X - y A
Tm(f,xo)(x,y) + Tn(f,yo)(X.y) Tm(Tn(f.yo).xo)(x,y)
+ RURY(£,70) %) (x,¥)

m,n ; 3 5
where Tm,n(f'xo'yo) €B (Um'vn)' Using the Tschebyscheff s_pl:me func

tions (1 <i<m)

+ ¢i(x,x°) for x_<x ,
¢, (xX,x ) ==
(o] for x>,

= =% (37 ) fOor X &>ix.
o5 (x,%x_) =={ ity O 2

(0] for x . <X ,
we define the kernel
X
0 -
[ ¢ (s,x)o (s)ds  for xs<x_ ,

m o b +
){q»m(s,x)om(s)ds for x 2x
fe)
with a (= inf I, b := sup I and X € I. Using the adjoined differential
operators DI := (1/a, (X))3§ and A* = DI°°1+1°"‘°DE one can see, that
AItbm(xo,x) = B =0 form21i22, ¢m(xo,a) = <bm(x°,b) = 0 and ¢m(xo,x)

o
# O for all x€1I.

In a similar way we define w;, [V

j (1<j<n) and \l'n(yo,y) withyOEJ,

c := infJ and d := supJ . Let Qm,n = ®m~‘l’n
Lemma 1. For fGCT’n(G) and any (xo,yo) € G we have
éfom,n - éAm,nf Qm,n(xo’yo) 5

Proof. By the blending Taylor series of f we get

IR (flxoryo)om'n

éfom,n

G

Xy
11T a8, (£(s,t)op (x,8) ¥ (y,t)dtds o | (x,y)dydx .
IJdxy

Using the above definitions an easy calculation yields the result. O

Corollary 1. Let feCT'n(G) . Then for any (xo,yo) € G we have
1

. (£) = IJ'Am'nf Qm,n(xo,yo)l
(U s V) G

with equality if Am,nf 20. 0O
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There is a monotonicity in the L1-approximation constants:

m,n
Lemma 2. Let f,gEC1 (G) and 'Am,nfl sAm'ng. Then
1 1
(f) < E (g) .
m,n m,n
B (Um,Vn) B (Um,Vn)
Proof. We have Am ng;zo and Am n(g + f) 20, such that g and g+ f fulfill
’ ’
the assumptions of Corollary 1 and we get for any (xo,yo)ets
1
m,n
B (Um,Vn)
1
E
m,n
B (Um,Vn)

(9) eégo = eCI;Am,ng Qm,n(xo'yo) 4

m,n

(g £ f) eé(g £ f)oy o eéAm'n(g ££) Qo (xo.y,)
with the same € € {-1,1} in each of these cases. From these inequalities

we get (the L1-proxima are the blending interpolants)
0O < Ecm,n(g-Lm,ng) ’

0 < ecm’n(g-Lm’ng) + eom'n(f-Lm,nf) h

such that If-Lm'an < Ig-Lm'ngl yields
1
If - |
8™ (u_,v )(f) =1 tmnh
m’ 'n

=Ii:1 (g) . O

< lg-L
Bm'“(um,vn)

m,ngl1
Corollary 2. Let fGC’:"n(G) and (xo,yo) € G. Then
1
m,n
B (Um,Vn)

(f) < IéIAm'nf|Qm'n(xo,yo)l ~

’

X
Proof. Let g(x,y) := i z IAm’nf(s,t)|¢m(x,s)wn(y,t)dtds, then A g =
IAm nfl. Lemma 2 and Corollary 1 yield the desired result. O
'
As Qm,n(xo'yo) € C(3B) CLq(G) for 1 <qg<«, we get
Corollary 3. Let fECT'n(G) and Am nfELp(G), 1 <p <e, then we have for
’
any (xo,yo) €G
1
m,n
B (Um,Vn)

(£) < IAm'nflpIQm’n(xopyo)|q

= IAm'nflplQm(xo)lqlwn(yo)|q
with 1/p + 1/q = 1 for p+1,», gq=« for p=1 and q=1 for p=w«. O
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