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MODULI OF SMOOTHNESS ASSOCIATED WITH CHEBYSHEV SYSTEMS
AND APPROXIMATION BY L-SPLINES

Zygmunt Wronicz

1. Introduction. The following property of the modulus: of smooth-
ness of order n wn(f,h) is known: (,,)n(PB_1 ,h) = 0 for any polynomial
Pn-1 of degree at most n-1. Let U = {ui}i;o be an extended complete
Chebyshev system (ECT-system) in the interval I = [0,1] and let L =
=D 4+ g a; (t)D* be a linear differential operator with the null
space NL which is a linear span over the system U. The purpose of this
paper is to generalize the modulus of smoothness of order n to a modu-—
lus of smoothness w.r.t. the operator L (the system U) (,.)L(f,h) such
that (.)L(u,h) = 0 for any uéNL- It appears that the majority of pro-
perties. of the moduli wn(f.,h) hold for the moduli wL(f,h). Further
we: shall generalize the H.Whitney theorem [11], the Freud - Popov
lemma [3] and then we shall obtain theorems of Jackson type for the

approximation by L-splines.

2, Extended complete Chebyshev éxstems and divided differences
(c£.[4,12]).

n-1 - — .
The system U = {ui}i=o' u; € C?(1) is called an ECT-system in I

if for any points 06t06t1<--°<tk‘1' k = Oyeee,n=1

Ugyeeesly [d ]k
D(tzo--"tk) = det [P jui(tj) i,Jj=0 >0

where d; = max {1:t3= by q= eee = tj_l}, j=0,...,k, and D is the
differentiation operator.
An ECT-system U admits the representation
uo(t) = v, (t)
(1) t Ty Tiny
u, (t) = wo(t)ojw1 (t1)‘§'~2('t2)... 05 wi(T)dT...dT,
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1=1,...,n-1, where wiecn'i(I), w;>0 for t€I, i = 0,...yn=1.
The adjoint system V = {vi ?;; is defined as follows:

v (t) =1
(2) t T 1&1
v, (t) = éwn_1(23) Swh_z(Tz)... S'wn-iltﬁ)dti"'d1a'
o °

i - 1,.¢o,n-1-

: d t) 1 d
Define D £(t) = 3% % ; D’;f(t) = 7y TEE(E)s 3 = Openipnet,
Lf = L M ) i S
b Dn__1.-oD°f a.n.d L f = DoocoDn_.]fo
The systems (1) and (2) span the null spaces of the differential ope=-
rators L and L* respectively.
Let A= {0 = t &ty ... Sty = 1} = {o = 8,48, < .5y = 1},
L) oy
where Coseeesty = B e ee 8 pecesSysees,8y and o is the multiplicity

of the point Sy J= 0geeeyM, qj = N+1.
A function s is called anai-spline w.r.t. the partition Aif
()  Ls = 0 in the intervals (55.1985)s 3 = 1,000,H,
n-1-o
(b) Jes 5onn €0 J(sj-e 185+ €), J = 1yen,M-1s
We denote the set of these functions by Sf(I).
We define the divided difference of a function f at the points
tosel g, t <t  w.r.t. the operator L (the system U) by
st
0?2’ -nal? n

ftiode ook if]; = :
s et D(“o"""’n-v"n)

to’-oo'tn-1,tn

where W 1is any function satisfying the equation Lu = 1.

We may put w = 1 and define u by (1) (see{7,8,12]). It follows
from the definition that the divided difference does not depend on the
choice of a basis of the space Np.

Zet M; be the i™M [*B-spline (basic spline w.r.t. the system V
and the partitiop A) i.e. the function satisfying, the following condi-
E;?Z?:ZJ;.M%}::A(I), 2° supp My = [t;,000sty s 3M1(t)dt = 1 (see

t,

(3 A
) [topou-,tn'f]L = t{ Lf(t)Mo(t)dtO
Applying this equality we may prove the following
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Theorem 1 (spe[”]) et A={0¢ o<"' <t 1}and A =
= {o N P (t &1} and 1let £€:"(1). Then there exists

t‘}'lg‘: [t ,eeestist]y = [t ,o.., n;f]L .
L=5;..‘,n

3, Interpolation by generalized volynomials. Let f € C(I) and
0 ‘t°<t1 Ceeo <tn-1 ‘1. Then there exists a unique polynomial Pn-1
wer.t. the system U interpolating the function f at the points ti,
i = 0ye0eyn=1, We may write this polynomial as follows:

(g,uo,...,un_1
D
t,to,...,tn-1 n-
() Byt = - —— SRy,
’...,
D o n-1
to,ooo,tn_1
where g is any function such that g(t) = 0, g(tj) = f(tj), J = Openey

n-1 and Wj is a polynomial w.r.t. the system U satisfying the fol-
lowin: conditions: wj(ti) = 6&3’ 2.1 = 0,001

further
; (f,uo,...,un_1
t,to,...,tn_1

N

[y
]
o

()

" (F,uo,...,un_1 I)(un’uo""’un-1
tat peenst, 4 toatosesest,

= u ; = . y = = [t’to"”’tn-‘];f:ll"w“)
D ( n’“o?°*"*? n-1) D ( Qo n-1)
yr ,to'c..,tn-1 to,ono,tn_1
where W is a polynomial w.r.t. the system {uo,...,un} equal to 0 at
the moints tj' J =0,00eyn=1 such that Li = 1 and u, is any function
satisfying the equation Lu = 1.
Hence by (3)
£(@) -2 1(t) = W(t) st(x)h(x)dx .
where M is the L¥B-soline deflned for the points t,t ,..., 1"
Let W be a polynomial w.r.t. the system {ti}n such that D'W = 1
and .l(‘cj) =0, j=0,..00,n=1, Put {xo,...,xn} B {t,to,..., ty 4}
y - - n
Xo€ Xq€ eo0 X o Henze by (5) W(t) =<4 and L det[ui(xj)]i’J .
dea may assume that W, = 1. Further
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X T Tig
ui(xj) = §w1r(l'c1) ‘S,wz('t'z) ces g wy (T)4T;...47, .
Substracting the ;]t column from its successor, afterward expanding
about the first yow and applying properties of determinants we obtain

L= ‘é 1(y1) fw (y\det[aiJ i-; 14¥4+..dy, , where ayy = (

a5 = i Wy (T,) $w3(fc)... SwiL'ri)d ...d‘l:z s 1 =2,0004n, J =

~

=1,...,n. Let L = det[ti]i juo and V= ﬁ For the system {t'}7__

~
W, =1, wi = i, i>»1. Because wj_ec(I) a.nd w; >0 then there exist

Positive constants ¢y and di such that ciwi\ 16 di i* Applying this

lne(hlallty we prove by induction that 'Y €L <£ad'¥, where c¢' =

= .ﬂ' cr1+1 I, a' = ﬂ: dg” J, Estimating M analogously, we obtain
it

Lemma 1, There exist positive constants ¢ and d depending only
on the system U such that
(6) i)l < W)l € dfif ).
Hence we obtain -

Theorem 2, Let P be a polynomial w.r.t. the system U interpo-
lating a given function £ €C?(I) at the points ty €ty Keee <Y 40
Then

l£() - B,_ ()] & onell It - t1*ce. ot = 41, tEI,
where CU is a constant depending only on the system U.

We may write (4) in the following form:

D (uo'-on’u -1'u’)
to,oao' 1 1'

n-
Proq(t) = a u (t) + ﬁa
0O 0 3:4 j (uo,.no,uj-1)
D

Put to'...’tj-1
D(uo,...,uj_1,f)
t LR t t
[uo’...'ujlf] = 2 o y J = ) P <
T geee,t
o!? ’ J o uo,...,uj)
toresesty
HenCe
ol U g sinepl u ,...,u ]=
[ o'-c-ptjl] [t ,ooa.tjl n-] 2 aj[t p-.-,t J %

and we obtain
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> UgseoesUy 4oy
to"..’tj-1’t

D(uo,...,uj_1)
) to , L ' tj-1
For the system {ti}‘i.];o we obtain the Newton interpolation formula and

because of this, we shall call the formula (7) the Newton interpolation

formula.
We may also calculate the coefficients aj with the help of the

following

Theorem 3. (Nithlbach [SJ) . Let {uo, e ,%} - {uo, eosu 4} and
{uo,...,un_z} be Chebyshev systems over I. Consider n+1 different
points tiGI, i =0,cee09n. Then

u '.o.,u — u '.ll’u -
[to tn 1|{' _ [to tn 1'f]

1,0.., n 0"..' n-1
k¢ u u u

O'ooo' n-1 0,...’ -1

u - u

[t.l,...,tn l n] [to""'tn-1| n]
Let now to(t1 eoo <tn-1 and let 1i be the fundamental Lagrange

polynomials of degree n-1 defined for the points t;j i.e. li(tj)= 813,
i,j = Oy...yn=-1. Analogously as Lemma 1 we can prove

f£(t.)) =i nli L S erers
() 7oy () = ey uok®) + g{:[tz,_..,t;l[f]

)=

uo'.‘.,unlf] _
topeessty

Lemma 2, There exist positive constants O and p depending only on
the system U such that
(8) o1 ()] < U ()] € pligodl, ter,
where the functions W; are defined by (1).

Remark, Applying Theorem 1 we may extend the facts given above
to partitions with multiple points as well.

4, Moduli of smoothness associated with an ECT-system, Let f€ C(I)
and let U and the operator L be defined as in the point 2. Put
Apf(t) = (n-1)t1n"[t,t+h,..., tenh;£] . Let q be a polynomial w.r.t.
the system U interpolating the function f at the points t+jh, j =
= 1,...,n. Then by (5) and (6) we obtain

dlalee) € e(t) - ale)l € plafs],
where the constants «' and (5' depend only on the system U.

We define the modulus of smoothness of the function f w.r.t. the

gsystem U (operator L) by the formula
w (f,d) = sup{lAﬁf(t)l, 0{h<§, t, t+nh eI}.
If féLp(I) for 1€ p<os, we put

910



™ 4-nh L /P
p P )
w?P (1, 8) m“(g laye) | Pat) ",
For the operator L = D" we obtain the modulus of smoothness. of order n.
We shall prove the following properties of the moduli of smooth-
ness:

(p.1) o € w(r,8) € w(r,§") ror 56§,

(P.2) Wy (1, S) °3 cllfll,,

where the constant ¢ depends only on the system U.
(2.3) w; (f+g, §) < wy (£,8) + w; (s,

(.2) wL(f n§) £ m° w (s, 8).

(.5) W (£,A8) < (1+A)nwL(f §).
(.6) w(f,8,) < on AR , for 0 <8<,

n o sn
&1 B
(2.7) If fEC(I) and wi(f,8) = o(8") by §0+, then £ is a poly-
nomial w.r.t. the system U.
(».8) Siim @ (£,8) = 0, for fe ().
To prove these properties, we need the following

M Let A={0<t, <ty <...<ty£1} be a given partition
of I, ¢ \ k <tk Ceoters tk <t . Then there exist numbers °‘;j’ O(o(J<1

Such that S:q = 1 and for any function f defined on I
ku-n

(9) [tko""’tkn;f]L = %djrtj""’tj+n;f]L’

Proof. (9) is obvious for n = N. Let us assume that it holds for

@ partition A' obtained from A by omission a point x of it. Put xj =
tkj' X ¢ Xj, J- =00 SR, xo<:c<xn. Applying Theorem 3 we obtain

[‘uo,...,un._1 ] uo,...,un_1’f]
1’0.‘,x ’ xo,.'.’x -1 L

Ugyes s5u . :
[xo,...,xZIf] i [uo,...,un_1| ] 2 [:0’””%-1 un] :

o'oo.’xn-1

1,...,)(

i Ugs oo, e uo""'un-Z'un-1If}
Xypeoe,X , XqseeesXy 40X
+ uC""’un—2'un-1lf X .uo""’un-1,f
X1,...,xn_1,x xo,...,x -
= ([uop-.-yun_.‘,u - uo,...,un_z,un_1’u uop-oo, n- 1,11 lf] 5
X1’o-.'xn n x1,...'xn‘1'x n x1,...,xn ’x
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. ([uo""’un-2’un-1l o,...,un_1 . o""’un-1’“
XypeoorX 15X XgseeonXy 4ln XypeeosX 1,x
sevesUp 45Uy or e el _qaly
o - R 2 ‘ £ = d-
( p)[ 1,...,xn ’x ] * (P x)[x ,...,X 1,X ‘ 2 K
Hence
Ujgeeer Uy [uo,...,un_1,u I ] i [uo,...,un_1,un p
0,...,x l 1,...,xn 5 o xo,...,xn_1,x | Y
This formula holds for any function defined on I. Let us assume that
£(x,) = 0 for j = O,...,n-1, £(x) = 0 and £(x_ ) = 1. Then [xo,...,xn;Il
> o, [x seeesX ,X;£] >0 and [x seeesXy_19X;f]y = O whence we obtain
o
F_?— >o. Analogously H > 0 whence by induction we obtain (9).
Remark, Applying the definition of LB-splines (see [7,8,12]) we
obtain Kn-n

M(tk ,...,tk jt) = .Z_Eo( M(tj,...,tjm;t) s
where M(x beeesXy ;t) is the LB-spline defined ‘w.r.t. the partition
A= {x <x <...<x } and the operator L.

The above theorem was proved for the system {ti ?:o by T.Popo-

viciu in [6] (see also [1,21).
Proof of the properties of the moduli of smoothness. (P.2)fol=-

n
lows from the equality Lf(t) = f(t+3jh)M.(t) analogously as (6).
JSO j

Applying Theorem 4 we prove the remaining properties reasoning analo=-

gously as for the modulus w, (f,h) (qee[2,10]).

These properties hold for integral moduli of smoothness as well.
To prove them we reason analogously. We have only to apply the Min-
kowski inequality and some properties of functions from LP(I).

5. An extension of the H,Whitney theorem. We shall prove the

following

Theorem 5, Let £€C(I) and let P, be a polynomial w.r.t. the
system U interpolating f at the points ti = HéT s 1 = 0,...,n=1,
Then

If(t) - Pf(t)' ‘ CL“’L(f’leT) ’
where CL is a constant depending only on the operator L.

To prove it we need the following lemmas:

Lemma 3, Let O = mo(m1< ...(lzxn_1 (mn_1)n) be given integers.
Then for any integer s €(m,,m _,), y €I and h (y,y+mn_1h‘1) there
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exist constants a; and ¢y, i = Oyeeuym _4=n =1, j=0,...,n=1
such that for any function fé& C(I) A3

L -
(10) f(y+sh) = \’ a; L;Lf(y+ih) + gcjﬂy‘”ﬂ h).

lioreover, if Q is a polynomial w.r.t. the system U such that Q(Y+m h) =
= f(y+m h), gis Oyese,n=1, then

L
(1) f(y+shy = zai hf(yuh\ + Q(y+sh) ‘
) 2,
and il L a, 7]cj| £ c, where the constants a and c depend
only on the system U and the integer s.

~ Eroof. Applying (5) and Theorem 4 we obtain
f(y+sh) = Qy+sh) + [y+msh,J = 0,...,n=155] - W(y+sh) = Q(y+sh) +
W(yv+sh)
+ .x AL ni(y+3n)

J‘° n-1

L
- where 37ol5 = 1 and & > 0. Putting ay =
><C

i

Oij'-'/(y+sh)/(n-1)!hn we obtain (11). Hence by ( 6)

|aj| < dls-m |~... (8= m ajo= ag

driting 4 in the form Q(y+sh') = Z f(y+m h)wj(y+sh) and putting
3=

cj = Wj(y-o-sh) we obtain (10).
Further by (8) we obtain

2_? }cj| (52 ]lj(y-rsh)l

This comnlptes the proof.
Let nowm,_ = k¥, k = Oyeespyn=1,V 22, s = 1. Applying Lemmail we

obtain

k

(n-4)¥-n

n-4
(12) L(y+h) = - >3 aiA}Il'f(y+ih\ + ijf(y-fj\'h).
(P )=0

Since y = = U (y+h), we have 0<Y, < 1.
Lemma 4, For every ¢ »O there exists ¥ such that
€ =¥l + oo + gl S E
: Proof. Let P be a polynomial w.r.t. the system U satisfying the
tollowing conditions: P(y) = 0, P(y+jvyh) = 1 for ¥320 and P(y+jvh) =
= <1 for XJ &% Applying (12) we obtain

P(V+h) = lejl
"riting the polynomial P in the form (4) and applying (8) we obtain
IP(Y"-h)I Z lﬂj(y*'h)‘ szllj(y+h)\ (1 - '} R i F —:l') <&

< AD + ln(n-1)] . Putting v > %[1 + ln(n-ﬂ] we obtain the lemma.
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Proof of Theorem 5. We may assume that wL(f —1—-—) = 1 and f(ﬁ =

‘n-1
=O’ i=o’-o-,n"1o Put S]‘c={.x:x=2—12-(_i-T)-, i=o’0u0’2k(n-1)}’
Ne

1
So = so' k
s <1 and u and m such that m = 2M(n-1) » 2(n-1)¥. Putting y = 0,
mjh = 32-1— we conclude from (10) that there exists a constant M such
thatJf(t)l £ M for tes;. We shall prove that |f(t)]| £ ?—f—g}- for
t eysk. This inequality holds for tGS,.. Assume that it holds for

0
t€S,, k). We shall prove it for t€S, ,. Let t€S, ,, 0<t<E .
for some i. Put y = max{xesl,.: x(t} and h = t - y.

S, = 512\312-1 (x»0). Choose ¥ = 2r from Lemma 4 such that

e —
Then t = 2k+1(n-1) 1 1 '
Since Y is even, y(§ and h<5’ then y+jvh€SK for j = 1,...,n=1.
Hence by (12) and the inductive assumption
a + M a + M
EIREE N A o

Por t ) % we put y = min {x€S,: x>t} and h = t-y, and we obtain the

/t
same inequality analogously. Since a < d(n-1\!vn'1(Lemma 1) and fé C(I)
then [f(t)] £ Cy = %—%&ﬂ and the proof is completed.

Theorem 5 was proved by H.Whitney in [11] for the system {tl Ij;o
and it's new proof was given by B.Sendov in [9].

6. An extension of the Freud - Popov lemma. Let now A = {O =

=t-n+1 = ooo=to<t1< ...<tN= n‘.=tN+n_1=1}, tj=%, j=
= 0,...,N, L and I* be the operators defined in the point 2. We have

the following

Theorem 6. (see [4,7,8]) For any f €C”(I) there exists a spline s
w.r.t. the operator i*L and the partition A such that s(tj) = f(tj),
J = 0,...,N, Dis(ty) = D*f(t ), k = O,N, i = 1,...,n=1 and |Ls i, £

:}lLfMu’, where C is a constant depending only on the operator L.
4applyingz (')') and reasoning analogously as in the proof of 7Theo-
rem o we can prove the lollowing

Lemma 5. ior any f € C(I) there exists a spline S Wer.t. the
operator L¥L and the partition A such that [tj""’tj+n;s“]L =
- [tj,...,tj+n;fJL for j = 0,e¢e,N=n, [ti,...,ti+n;sf]L -
= [to'o..,tn;f]L fOI‘ 1 = —n+1,...,-1 a-rld [ti'...’ti+n;sf]L =
= [tN-n"“’tN;fJL for i = Nen+1,...,N=1 and

Il Lsp Il € C max {lftj,...,tjm;f]Ll, L TR Y

where the constant C depends only on the operator L.
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Hence for h = %

(13) lLsclly, £ c[(n-ﬂ!h]'nwL(f,h).
Let t €(t ’tj+n-1) and let Pf be a polynomial w.r.t. the operator L
(the system U) interpolating the function f at the points ti’ is=
= Jyeeeyjtn=-1, We have
[£(t) = sp(8)] € 1£(8) = Po(¥) + | Bp(t) = sp(t)].
Applying Theorem 5 we obtain
[£(t) = Po(t)] € ¢y (£,n).
To estimate the second factor, we remark that the polynomial Pf inter-
polates the spline Sp at the points ti’ i= jyesey,j+n=-1, Hence by
Theorem 2 and (13) we obtain
lpf(t) - 5.(t)| < ccywy (f,h).
Putting these inequalities together and & = ﬁv we obtain
Theorem 7. For any £>0 and f € C(I) there exists a function
fg €C™(I) such that
e - fell, € Cqop(£,€)
and

loggll, < Co€ " (£, 6), E
where the constants C1 and 02 depend only on the operator L.

This theorem was first proved by G.Freud and V.A.Popov in [3]
for the operator L = D" in the space Lp(I), 1€ pgoo.

n=4 i
. Best approximation by L-splines. Let L = i) i }’:’a, ay (t)D" be

a linear differential operator defined on I with the null space N;.
We can reduce the investigation of L-splines to the investigation of
Chebyshev splines by means of the following

Theorem 8, (see [4]). For every operator L of the above form
there exists § » 0 such that, for every subinterval J CI, with the
length |J] < § the space Ny has a basis {ui}?;l, which is an ECT-
-system in the subinterval J.

Applying theorems 6 - 8 and reasoning analogously as for polyno-
mial splines (see[1,2,7,8]) we can prove the following

Theorem 9, For any partition A with sufficiently small NAl and
any function fé€ C(I) there exists an L-spline Sp w.r.t. A such that

Nt - sell, € Cpw (£, 1AN),

where CL is a constant depending only on the operator L.
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