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1. Introduction, Ve consider differential inclusions in

nonseparable Banach spaces with dissipative type conditions on
the right-hand side. Such type of differential inclusions is
considered in [5)., Where the existence of solutions has been
proved, adapting the Euler-Caushy method, presented in {1]. In
this work the Kamke function g: RxR*—> R* i3 used, where
9(-,3) is measurable, g{f,o) - continuous, The differential
equation S$(f)= ?(f:fﬂ") has a solution on the whole interval
Lto,¢1] for every initial condition JS(fe)=S%, g(4,0)=0, and
S(8)zC is the unique solution of the equation with the initi-
al condition §7éo)=0

Our results are new even in R” We prove a theorem corresponding
to theorem 2,4.1., in [17.

| Theorem ([1]). Assume that Rp:=la, fJxE

(i) £€ CLRo,E], I£(tyx)] $M on Ro and a=min (ay £/ (a141))

(ii) minn To-y) <V, fléx)- f((,g,, < 3{(, Ix—y/).;x-g/
where 9 is the Kamke function, Then?

1) There exists an unique solution of X= f(l,)c) for each initi-
al condition Xg on [¥,, ¢,J

2) This solution depends continuously on { and X, .
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2, Notations, Let B and B*.be 2. Banach space and its conju-

cate. Ve denote by c[gd and by 6&'053 the set of 2ll closed boun-
icd subzets of B and the sbt of all convex sets ih &8, The dua-
litr product between £ and B8¥ yiireve denoted ad <oy o 3y JC,U)
ve mean the survort function of the set Y. Tor the set € denote
by b € and €0 the closed, respectivelr the convex hull of C.
The function AihsB) is the Hausdorf: distence between the closed
sets A and B, Turther J'.'B-ecft‘éj, 8% i5 the duality mapping, i,
e. for each X&B, g€J1x) <y,X):IXI‘Z' , where [X| is the norm
of X. Vhen a¢B, Aecly B tnen dia,A) infge 4164/, The inter-

val [:=[0,T] is closed in K. Through €(7>B) denote the space of
all continuous functions on,I with values in B, provided with the

norm JIX(JIf:=max, ., Ix(€)] , Through [, [[,8] denote the space of

all Bochner integrable functions from i to B, equipped with the
norm X€)iy, iz fi jrzyide

3o The system description and the main result, Here we con=-

sider the system:
(1) A(é)E Pré, x(€))s X(o)zXe, tél , under the assumptions:

A1, The function F(-,+) from IxB to elgB is strongly measurable

in ¢ for each X and satisfies Sgorza-Dragony condition on the bo=-

unded subsets of [x8 .(I3])
A2, The space B is such that { is upper semicontinuous with'res-

pect to the strong topologies of B and B
A3, It X,4 bvelong to B and X€F(€;X) , then for every £>0 and

Jej(x-g) there exists ig ¢ F(¢)y) such that:

@) T, X-Y¢y < §(ts1x-g1)ix-Yl +§

8 IP-Q£I\<£' FIx-y1) , wnere F:R*9SRY is continuous and
f(a)zo. :
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Now we present our main result:

Theorem 1. Let {£, (t,x)§p:y; e a sequencc of maps with clo-
ged values in B, which satisfy A1-A3 (with the same g¢) and
A(ﬁ:;/l,X), F(¢,x)) = © uniformly on each closed bounded subset

h4 00

of Ix8. Then:
1) sach solution YL) of (1) is an uniform limit of the correspon-

ding solutions of
(1) X&) € R (€;X(8)), X(0)=Xo.

oo
ii) For every uniformly converzing sequence {yn('l}.._" of the cor=-

responding solutions of (2) with limit y(-) there exists an unifo=-
rmly convergent sequence of solutions of (1) with the same limit,
Further the set of solutions of (2) depends continuously on the

initial condition YX,. ®

4, Proof of the main result,

We essentialy use theorem 2 from [2], which says:

Theorem ([2]). Let F and § mapping I into 0[‘8 be strongly
measurable, and £(») be strongly measurable selection of F(-) ,
Then for each positive £ and each strongly measurable essentially
bounded function el-= B* there exists a strongly measurable se=
lection §/) of & () such that:
¢sit), £18)-9it)> ¢ L(sct), Frér)— Irscd), Grd)) + ¢,

One can choose such that:

Sy, $(8)-300)> > dU5(4), FlE)- J1506),GE)) -,

Definition 1, Let g§>0., The function y(-} is said to be F=-solution

of (1) if g(') is differentiable a, e. in [ and satisfies the fol=-

lowing conditions:

Z,.,
i) y/ﬁ-‘h-f.‘: yirvdr ; nere Y denotes the derivative of#.

ii) dly'/U, l'/t,y/())(]t a, e. in [, here f¢ is a positive fanc-
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tion with 111 norm less than §,.

The Euler brocken are defined only for continuous functions. Ve
shall give a proper definition also in case "/',l') is strongly me=-
asurable., Let {0=Tp<Z;<+4s. <Ty=T§ be subdivision of [,
Defiﬁition 2. Euler brocken is called any function Z/¢) suech that

¢
Z(€)sz2(zg)+ -g‘. J15)ds , Here f(-) is strongly measurable selec-

tion of R(é,Z(Z;) for ¢€lZi,Zs,), which existence is proved in
[2]. Ve determine

Z(Ttsy) as LtmesTer, 2(€), z(0)= xo

Following [1) and [ 5) one can prove that under the assumptions A1-
A3 for each £>0 there exists an £-solution and that this £-solutie
on is extendable on the whole interval [,

Lemma 1, Let £¢, £ be positive numbers and X&) be & =-solution of

(1) . Then there exists & -solution y(-/ of (7) such that:
lxte)-yet)is v-(€é) , vhere :

i) = gré, VAl€)-Y(d)1) + &4 +2 6 ¢ /2, vro)=o0.

Proof: It is known (see [6]) that the left derivative of the norm

d.lxﬂ)—y(l)l exists a. e, in J and:
dolxit)-9()) < 1/T3(¢)1-<TIlt)y X1é)-Y (€)> , vnere

Jf‘)fﬂ*’”‘ylﬂ) . Using theorem 2 from [2] and assunntions A2 and
43, we can construct j/[l such that §¢) satisfies the conditions

of the lemma, lMore precisely: let (.- .., %,¥ be the partition of
7 corresponding to X. Ve set Y#IZX() on [&,),), where X, is

the maximal number such that ‘y/e’) is an § -solution (& >&). In

accordance with theorem 2 in [2] and A3 we choose é(-) as a selec-

tion of (¢, 4(2y)) such that:

d-1x(6)-Y(EIV € /1T ()< TA) 5 RG> + AR, Fltx)) ¢
+d1gs Fl&yn+ & /2 <

< 1/1 30K < T(Fy)s X(E)- GU>tE+16 16
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( because d(,i’,F/é,xkg‘, and d/g', Fltg)es;) . Since j/-) is upper
semicontinuous, there exists ,1 such that the conditions of lemma
1 are fulfilled also on [71,7:1) . Proceeding in the same manner we

determine X3 such that the lemma is true also on I Xz,%) and so
on, We shall prove that 5(.) is extendable .on the wnole interval

[. Suppose the contrary, that is Ae<Ay <+ . <A <--- <X <7,
Using the continuity of X(-), $£), F(%.) and the usc of 7()
one can continue aw in [‘IJ p. 39, and obtain contradiction. Then
finally:

IX{{.)"y{f)/! v(t) , where f:((): g/{j'/\’(f)f’y/f)l)+£,f1& fﬁ%
and V' (0)=0, The proof is complete. &

Proof of theorem 1: Let X{'} be a solution of {1} . from the condi=-

tions of the theorem it follows that there exists a neighbourhood
Wot x such that &'M(Fr’/fJZ)J Flb2))=0 uniformly in ¥ . Hence
for every €)0 there exists M/§) such that. Xyf-) is €-solution of
(2) when M2z W(E), The function Fyl).) satisfies the assumptions
A1-A3, where the function g('/‘) is the same as one for HF(*s.),
Then since g is continuous with respect to the second argument,
following [5] we obtain that for each fixed E>0 it is possible to
determine a sequence of {‘,-solutions Anl) of (2] (vhere '
€56+ >6y>.-=» 0 ) such that:

oo
HX(.)- Xnlon1 € &, VilE) . Here
viloize  Vill)= GlEAEN?t Ect €t + EX/2 (ve set £=F). The
difficulty is to choose (X,'(J},: , so that it would be a ‘Cauchy

sequence, Since g{l,.) is continuous, after determining /\;1'{-) one

. ‘+ .
can choose Xgsr () on each interval: [}_;-'” 1), 71-",'”)} as {1.*2,

projection of Xj (') on the set Fle, X}‘,,f’,‘)}. Such a choice is
P
possible thanks to proposition 1 in [2]. Here {7]'")]:..., is the

corresponding to Xi partition of the interval I, Now using assump=-

tion A3 one can prove that:
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WX (6= Kiwg (€)1 Vi (E)H ELyy 12

Moreover following [5] one can prove that {X,/)j,: is indeed a
Cauchy sequence in lq ([)B). It follows from the properties of ’

(see [1]) that the first part is proved, The proof of the segond
part is similar, &

Remark, If we use the generalised Euler brocken and assume that

F(')-) is continuous we can prove such a result for arbitrary Bam .
nach space B(Wi.thout agsumption A2), The generalised Euler bro-
cken are constructee as the standart Euler Brocken, but we permit
points of density for the subdivision {l’,‘j;-:. Assuming.that # has
convex and (strongly) compact values one can prove rheorem 1 when
A3 is relaxed by:
A3°For every X, Y from B and each T€ ]'/X-y)
P(1, Ftb0)- (3, F64))< §(¢51x-§1) |x-§1,
(see [71). ‘

Example., Let ¢, be the space of all bounded sequences such that

&im,, ., 1%l=0, provided with the norm [/.=maty (X[ . Then the follo-

wing system satisfies all the assumptions of theorem 1:

) a“z’?iz[*l,. JotXul e, | Xups 134 Yy = th0) 93,
X & S g l-An). it L tid Bt et LAnltt,  m=1:.
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