STABILITY RESULTS FOR A CLASS OF MONLINEAR DIFFERENTIAL INCLUSIONS IN BANACH SPACES

Tzanko D. Donchev

1. Introduction. We consider differential inclusions in nonseparable Banach spaces with dissipative type conditions on the right-hand side. Such type of differential inclusions is considered in [5]. Where the existence of solutions has been proved, adapting the Euler-Caushy method, presented in [1]. In this work the Kamke function $g: R \times R^+ \longrightarrow R^+$ is used, where $g(\cdot, s)$ is measurable, $g(t, \cdot)$ - continuous. The differential equation $\dot{s}(t) = g(t, s(t))$ has a solution on the whole interval $[to, t_1]$ for every initial condition s(to) = solution, and s(t) = solution is the unique solution of the equation with the initial condition s(to) = solution

Our results are new even in R^n . We prove a theorem corresponding to theorem 2.4.1. in [1].

Theorem ([1]). Assume that $R_0:=[a,b]\times E$ (i) $f \in C[R_0,E]$, $|f(t,x)| \leq M$ on R_0 and $\alpha = \min(a,b/(M+1))$ (ii) $\min_{v \in J(x-y)} \langle v, f(t,x) - f(t,y) \rangle \leq g(t,|x-y|).|x-y|$ where g is the Kamke function. Then:

- 1) There exists an unique solution of $\dot{x} = f(t,x)$ for each initial condition x_0 on $[t_0, t_4]$
- 2) This solution depends continuously on f and χ_o .

- 2. Notations. Let B and B^* be a Banach space and its conjucate. We denote by \mathcal{Cl}_B and by $\mathcal{Cl}_{\mathcal{C}_B}B$ the set of all closed bounded subsets of B and the set of all convex sets in \mathcal{Cl}_B . The duality product between B and B^* will be denoted as $\langle \cdot, \cdot \rangle$. By $\mathcal{SC}_{\mathcal{C}_B}U$) we mean the support function of the set \mathcal{U} . For the set \mathcal{C} denote by \mathcal{Cl}_A and \mathcal{CC}_A the closed, respectively the convex hull of \mathcal{C}_A . The function \mathcal{Cl}_AB is the Hausdorff distance between the closed sets \mathcal{Cl}_AB and \mathcal{Cl}_AB is the Hausdorff distance between the closed sets \mathcal{Cl}_AB and \mathcal{Cl}_AB is the duality mapping, i.e. for each \mathcal{Cl}_AB , \mathcal{Cl}_AB then \mathcal{Cl}_AB is the duality mapping, i.e. for each \mathcal{Cl}_AB , \mathcal{Cl}_AB then \mathcal{Cl}_AB then \mathcal{Cl}_AB denote the space of all continuous functions on \mathcal{Cl}_AB then \mathcal{Cl}_AB denote the space of all continuous functions on \mathcal{Cl}_AB in \mathcal{Cl}_AB denote the space of all Bochner integrable functions from \mathcal{Cl}_AB , equipped with the norm \mathcal{Cl}_AB . \mathcal{Cl}_AB is the functions from \mathcal{Cl}_AB denote the space of all Bochner integrable functions from \mathcal{Cl}_AB , equipped with the norm \mathcal{Cl}_AB .
- 3. The system description and the main result. Here we consider the system:
- (1) $\lambda(t) \in F(t, x(t)), \chi(0) = x_0, t \in I$, under the assumptions:

 A1. The function $F(\cdot, \cdot)$ from $I \times B$ to $\mathcal{L}_{i} B$ is strongly measurable in f for each χ and satisfies Scorza-Dragony condition on the bounded subsets of $I \times B$. ([3])

A2. The space B is such that j is upper semicontinuous with respect to the strong topologies of B and B^* .

A3. If x,y belong to B and $x \in F(t,x)$, then for every $\varepsilon > 0$ and $J \in j(x-y)$ there exists $y \in F(t,y)$ such that:

a) (1, x-ge) < g(t, 1x-y1) 1x-y1 + E

B) $|\hat{x} - Q_{\mathcal{E}}| \le \mathcal{E} + f(|x-y|)$, where $f: R^+ \to R^+$ is continuous and f(0) = 0.

Now we present our main result:

Theorem 1. Let $\{F_n(t,x)\}_{n=1}^{\infty}$ be a sequence of maps with closed values in B, which satisfy A1-A3 (with the same g) and $h(F_n(t,x),F(t,x)) \xrightarrow{n\to\infty} 0$ uniformly on each closed bounded subset of $I \times B$. Then:

- 1) Each solution $y(\cdot)$ of (1) is an uniform limit of the corresponding solutions of
 - (2) x(t) & Fn(t,x(t)), x(0)=x0.
- ii) For every uniformly converging sequence $\{y_n(\cdot)\}_{n=1}^{\infty}$ of the corresponding solutions of (2) with limit $y(\cdot)$ there exists an uniformly convergent sequence of solutions of (1) with the same limit.

Further the set of solutions of (2) depends continuously on the initial condition χ_{ρ} .

4. Proof of the main result.

We essentialy use theorem 2 from [2], which says:

Theorem ([2]). Let F and G mapping I into $d_{g}B$ be strongly measurable, and $f(\cdot)$ be strongly measurable selection of $F(\cdot)$.

Then for each positive E and each strongly measurable essentially bounded function $f:I \to B^*$ there exists a strongly measurable selection $g(\cdot)$ of $G(\cdot)$ such that:

$$\langle S(t), f(t)-g(t) \rangle \langle S(S(t), F(t)) - S(S(t), G(t)) + \varepsilon;$$
One can choose g such that:
 $\langle S(t), f(t)-g(t) \rangle \rangle S(S(t), F(t)) - S(S(t), G(t)) - \varepsilon;$

Definition 1. Let $\xi>0$. The function $\mathcal{G}(\cdot)$ is said to be ξ -solution of (1) if $\mathcal{G}(\cdot)$ is differentiable a. e. in f and satisfies the following conditions:

- i) yll)=x.+ \$ \forall \forall i \forall i \forall derivative of \forall .
- ii) $d(\dot{g}(t), R(t, y(t))) < f_{\xi}$ a. e. in 1, here f_{ξ} is a positive func-

tion with \mathcal{L}_1 norm less than \mathcal{E} .

The Euler brocken are defined only for continuous functions. We shall give a proper definition also in case $R(\cdot,x)$ is strongly measurable. Let $\{0=T_0<\tau_1<\dots<\tau_n=T\}$ be subdivision of I.

Definition 2. Euler brocken is called any function Z(t) such that $Z(t)=Z(\tau_i)+\int_{\tau_i}^t f(s)ds$. Here $f(\cdot)$ is strongly measurable selection of $R(t,Z(\tau_i))$ for $t\in [T_i,\tau_{i+1})$, which existence is proved in [2]. We determine $Z(\tau_{i+1})$ as $\lim_{t\to T_{i+1}} Z(t)$, $Z(t)=X_0$

Following [1] and [5] one can prove that under the assumptions A1-A3 for each $\mathcal{E}>0$ there exists an \mathcal{E} -solution and that this \mathcal{E} -solution is extendable on the whole interval \mathcal{E} .

Lemma 1. Let \mathcal{E}_1 , \mathcal{E}_2 be positive numbers and $\mathcal{X}(\cdot)$ be \mathcal{E}_1 -solution of (1). Then there exists \mathcal{E}_2 -solution $\mathcal{Y}(\cdot)$ of (1) such that: $|\mathcal{X}(t)-\mathcal{Y}(t)| \leq V(t)$, where $\dot{\mathcal{Y}}(t) = g(t, |\mathcal{X}(t)-\mathcal{Y}(t)|) + \mathcal{E}_1 + 2\mathcal{E}_2 + \mathcal{E}_1^2/2$, V(0) = 0.

Proof: It is known (see [6]) that the left derivative of the norm

d.1x(t)-y(t) exists a. e. in I and:

 $d_{-1}x(t)-y(t)) \leq 1/13(t)1-(3(t), \dot{x}(t)-\dot{y}(t))$, where

If $f(x(t)-y(t)) \leq \pi/f(t)$. Using theorem 2 from [2] and assumptions A2 and A3, we can construct y(t) such that $y(\cdot)$ satisfies the conditions of the lemma. More precisely: let $\{x_1, \dots, x_n\}$ be the partition of I corresponding to x. We set $y(t) \equiv x(t)$ on f(t) = x(t), where x_t is the maximal number such that y(t) is an x_t -solution $(x_t) = x_t$. In accordance with theorem 2 in [2] and A3 we choose $y(\cdot)$ as a selection of f(t) = x(t) such that:

 $\begin{aligned} d_{-1}x(t) - y(t) &| \leq 1/|J(\mathcal{F}_{L}), \langle J(\mathcal{F}_{L}), \dot{x}(t) - \dot{y}(t) \rangle + d(\dot{x}, f(t, x)) + \\ &+ d(\dot{y}, f(t, y)) + \mathcal{E}_{L}^{2}/2 < \\ &< 1/|J(\mathcal{F}_{L})|, \langle J(\mathcal{F}_{L}), \dot{x}(t) - \dot{y}(t) \rangle + \mathcal{E}_{L} + \mathcal{E}_{L}^{2}/2, \end{aligned}$

(because $d(\dot{x}, F/t, x) < \varepsilon_1$ and $d(\dot{y}, F/t, \dot{y}) < \varepsilon_2$). Since $j(\cdot)$ is upper semicontinuous, there exists χ such that the conditions of lemma 1 are fulfilled also on (χ_1, χ_2) . Proceeding in the same manner we determine χ_3 such that the lemma is true also on (χ_1, χ_3) and so on. We shall prove that $\dot{y}(\cdot)$ is extendable on the whole interval $\dot{y}(\cdot)$. Suppose the contrary, that is $\dot{\chi}_1 < \dot{\chi}_2 < \dots < \dot{\chi}_n < \dots < \dot$

 $|x(t)-y(t)| \le v(t)$, where $\dot{v}(t) = g(t)|x(t)-\dot{y}(t)|) + \varepsilon_1 + 2\varepsilon_2 + \varepsilon_2^2 k$ and v(t)=0. The proof is complete.

Proof of theorem 1: Let $\chi(\cdot)$ be a solution of (1). From the conditions of the theorem it follows that there exists a neighbourhood \mathcal{U} of χ such that $\lim_{t \to \infty} (F_i(t,2), F(t,2)) = 0$ uniformly in $[\chi(\cdot)]$. Hence for every $\{\cdot\}$ 0 there exists $M(\xi)$ such that $\chi_{M(\cdot)}$ is $\{\cdot\}$ -solution of (2) when $M \geq M(\xi)$. The function $F_i(\cdot)$.) satisfies the assumptions A1-A3, where the function $\{(\cdot,\cdot)\}$ is the same as one for $\{(\cdot,\cdot)\}$. Then since $\{\cdot\}$ is continuous with respect to the second argument, following $\{\cdot\}$ we obtain that for each fixed $\{\cdot\}$ 0 it is possible to determine a sequence of $\{\cdot\}$ 4-solutions $\{\cdot\}$ 6) of $\{\cdot\}$ 6 (where

 $||X(\cdot)-X_n(\cdot)|| \le \sum_{i=1}^{\infty} |V_i(t)|$. Here

 $V_i(0) = 0$ $V_i(t) = g(t, V_i(t)) + \mathcal{E}_i + \mathcal{E}_{i+1} + \mathcal{E}_i^2/2$ (we set $\mathcal{E}_i = \mathcal{E}$). The difficulty is to choose $\{X_i(t)\}_{i=1}^{\infty}$, so that it would be a Cauchy sequence. Since $g(t, \cdot)$ is continuous, after determining $X_i(t)$ one can choose $X_{i+1}(t)$ on each interval: $\{X_i^{(i+1)}, X_{j+1}^{(i+1)}\}$ as $\mathcal{E}_{i+1}^{(i+1)}$, projection of $X_i(t)$ on the set $\mathcal{F}(t, X_{i+1}(X_i))$. Such a choice is possible thanks to proposition 1 in [2]. Here $\{X_j^{(i)}\}_{i=1}^{\infty}$ is the corresponding to X_i partition of the interval I. Now using assumption A3 one can prove that:

11 X; (6) - X;+1 (6) 11 & V; (6) + E2;+1 /2.

Moreover following [5] one can prove that $\{\dot{x}_i(\cdot)\dot{f}_{iz},$ is indeed a Cauchy sequence in $L_i(l,B)$. It follows from the properties of g (see [1]) that the first part is proved. The proof of the second part is similar.

Remark. If we use the generalised Euler brocken and assume that $F(\cdot,\cdot)$ is continuous we can prove such a result for arbitrary Banach space B(without assumption A2). The generalised Euler brocken are constructed as the standart Euler brocken, but we permit points of density for the subdivision $\{T_i\}_{i=1}^{\infty}$. Assuming that F has convex and (strongly) compact values one can prove rheorem 1 when A3 is relaxed by:

A3'For every X, Y from B and each $J \in j(X-Y)$ $S(J, F(t, X)) - S(J, F(t, Y)) \leq g(t, |X-Y|) |X-Y|.$ (see [7]).

Example. Let C_0 be the space of all bounded sequences such that $\lim_{i\to\infty}|X_i|=0$, provided with the norm $|X_i|=\max_i|X_i|$. Then the following system satisfies all the assumptions of theorem 1:

 $X_n \ge sign(-X_n) \cdot |X_n|^{\eta_2}, |X_{n+1}|^{\eta_3} + \eta_n - (X_n)^{\eta_3},$ $X_n \le sign(-X_n) \cdot |X_n|^{\eta_2}, |X_{n+1}|^{\eta_3} + \eta_n + |X_n| + 1, \quad n=1 \div \infty.$

References

- 1. Lakshmikantham V., Leela S. "Nonlinear differential equations in abstract spaces" 1981 Pergamon.
- 2. Donchev T. "Strongly measurable relations, differential inclusions via the measure of weak noncompactness" Preprint.
- 3. Tolstonogov A. "Differential inclusions in a Banach space"
 Novosibirsk 1986 (Russian).
- 4. Goncharov T. "Properties of solutions of differential inclusions with noncompact right-hand stde Banach space" in "Lapunov functions and applications" Novosibirsk 1986 (Russian).
- 5. Donchev T. "Differential inclusions with dissipative conditions on the right-hand side" Preprint.
- 6. Browder F. "Nonlinear operators and nonlinear equations of evolution in Banach spaces" Proc. Symp. Pure Math. v XVIII p. 2

 AMS Providence 1976.
- 7. Tolstonogov A. "Differential inclusions in Banach spaces with nonconvex right-hand side. Existence of solutions" Syb. Math. Journal, 1981 v 22 n 4 (Russian).

Institute of Mathematics with Computer Center Bulgarian Academy of Sciances
P.O. Box 373, 1090 Sofia, Bulgaria