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Introduction: The Bernstein [l] and Erdos [7] conjectures dealt with the nodes
which produce Lagrange interpolation of minimal norm. These conjectures are
apparently applicable to interpolation into almost any reasonable space. Indeed, the
conditions laid down by Bernstein and Erdos in their conjectures do characterize
optimal interpolation into various spaces of polynomials, rational functions, and
trigonometric functions, as will be described ila our further discussion. Even a step
has been made toward showing that the conjectures apply with validity to range spaces
spanned by extended complete Tchebycheff systems, (spanned by functions Ugr seey U,
such that the Wronskian of Ugs weey Uy is nonvanishing in [a, b] for k = 0, ..., n).
However, the remainder of the pr?of under such generality remains elusive. We wish
tq review here the methods used in some extensions of the Bernstein and Erdos
conjectures and to highlight some of the problems encountered in these and perhaps
future attempts to generalize their application. A discussion of the problems
encountered in dealing with certain spaces spanned by polynomials, especially
lacunary or incomplete polynomials, should suffice for purposes of such a survey.
Before doing so, however, we will give some attention to notation and terminology and
also restate the conjectures of Bernstein and Erdos.

Terminology and Notation: Although we wish to deal with polynomial spaces,
Ccertain basic definitions are most easily given in a general context. Therefore, let
Y be an n+ 1 dimensional subspace of C[a, b] spanned by an extended complete
Tchebycheff system. Let points (nodes) tys +++» L be given such that

n
Q= to SR R CRT RS tn = b, and let Yoo o0 Yy be a fundamental basis for Y,

1

such that yi(tj) = Gij (Kronecker delta). Then the linear projection

n
P: Cla, b] + Y defined for f € Cla, b] by Pf = ] f(ti) ¥y 1s the interpolat-
i=0
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ing projection based on the nodes to, seey cn’ and it may be seen that

)

1en =\ y. |

Lo Pl

(we are using the sup norm). The function defined by the sum on the right is called

the Lebesgue function of P and is customarily denoted by A(t). Its value is 1 at

each node, and it has a maximum Tl with value A(Ti) = Xi on each subinterval
(t1 - ti-l) of Bla bl IE=R 1 2 e A 0

The conjecture of Bernstein and Erdos on Lagrange interpolation:

A clarifying modification of the conjecture of Bernstein [l] is that Pl {s

minimal when xl
which we can add that this occurs at a unique set of nodes. Erdos [7] conjectured

= ,,, = An (a phenomenon sometimes called "equioscillation”), to

that moreover there exists a value C associated with Y, such that, if for some 1,
xi > C, then there is a j such that AJ < C.

As stated, these two conjectures applied specifically to Lagrange
interpolation. The methods by which they were proved were announced in Kilgore (8]
and employed in Kilgore |9] to prove the Bernstein conjecture and to show that tne
norm of optimal Lagrange interpolation increases strictly as n increases. De Boor
and Pinkus employed the method of proof outlined in [8} to give proofs of the
Bernstein and Erdos conjectures, their article [2] appearing simultaneously with [9].
In [2], de Boor and Pinkus also adapted slightly the arguments used, establishing a
similar characterization of optimal trigonometric interpolation of continuous 2 -
periodic functions. This rather natural extension of the original problem had also
been investigated by Kilgore, who did not publish his efforts after the appearance of
[2]. Since the appearance of these three papers, the criteria conjectured by
Bernstein and Erdos have been shown to characterize optimal interpolation for several
other choices of the range space (see References)..

Historical comments:
The solutions of the Bernstein and Erdos conjectures have begun to appear in the

literature of approximation theory. One book [16, p. 318] contains a brief mention
of the problem, in which it is stated "The solution ... was conjectured by Bernstein
in 1931, but the conjecture was not proved until 1977, by de Boor and Pinkus and by
Kilgore independently.” A second book [4, Appendix] contains a more exhaustive
treatment of the solution, and states the following historical account:

In 1976, Kilgore and Cheney found that, for each n > 1 there is a set of
knots with an equioscillating Lebesgue function. Finally, in 1978 Kilgore
showed that the equioscillation property is a necessary condition. On the basis
of this local result and by applying topological arguments, de Boor and Pinkus
(1978) completed the proof of the conjectures. Notes on the interesting history
«+o are found in the cited literature.

This account is incomplete, and, in the interests of historical completeness, 1 would
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like to make the following observations, which can be checked by a perusal of the
“cited literature."

1) This account omits mention of Kilgore [8], which appeared in September,
1977 and was a source for both [9] and [2].

2) Kilgore [9] was received for publication on March 12, 1977 and appeared
in December, 1978.

3) De Boor & Pinkus [2] was received for publication on April 1, 1977,
also appearing December 1978.

4) As noted by de Boor and Pinkus [2] and later by de Boor [3), Kilgore
[8] contained a proof of the "necessity" referred to, and Kilgore [9] contained a
complete proof of the Bernstein conjecture. The casual reader of |4] might be left
with a contrary impression. :
Methods of proof of the Bernstein and Erdos conjectures, applied to various rangé

8paces:

As stated in the introduction, our object here is to describe applications of

the Bernstein and Erdos characterization of optimal interpolation to various choices
of Y showing an evolution in the arguments employed. In a very wide context, which
certainly includes polynomials or other anmalytic functions, the location of the
points Tl’ eeey Tn varies in continuously differentiable fashion if the nodes
€y eeep t are moved, and we have the formula
1 n-1
= - L

axi/acj yj(Ti) Xy (tj) (1)
for 1i=1, ..., n and j=1, ..., o-l. The function X1 is defined in this connec-
tion to be that function in Y given by »

xi(:) = 9% yo(t) +o, yl(t) et yn(c)

for' t in [a, b], where oij
Xj(e) = A(t) for e, ety
[15), Its proof is too long to be reproduced here, but the reader who desires to

= ggn yj(Tl); we note that xi(Ti) - Xi; more generally
; and xi'(Ti) = 0, Formula (1) derives from

reconstruct it should note merely that, by the chain rule for partial derivatives,

d(coefficients of XL)
= ]
axilacj = + x1 (Ti) 3T1/acj,
j

and the second term vanishes because xi'(Ti) = 0. The derivation of (1) may now be

Completed by noting that, if Ygr oo b A interpolate on the nodes
Eyr +ees tj_l, tj, tj+1, ceey
and Zgr cees zn interpolate on to, veey tj-l’ s, tj+l’ ceey tn'
and P (t) = Ay yo(t) + .o+ A] yo(t)s
Pz(t) = Ao zo(t) + see -+ An zn(t)
then P,(¢) - P,(t) 1s a multiple of yj(t) (or zj(t)).
Now, the Bernstein and Erdos conditiong for optimal interpolation will follow by
8tandard topological arguments if the matrix of partial derivatives
DY n=ln _ r_ ' n-1 n
(F473e)) 4oy g = (g (T X0 Ce)) ) ) (2)
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satisfies (1) and (i1):
n-1l n
(1) for k=1, ..., n, J j=l =1

ik

= det (axi/atj) is got zero.

k

(11) for ke 1, ooy m (-3 J <O

Condition (i1i) may be seen in the context of the interpolation problem to follow from
(1). Our proof therefore hinges on the establishment of (1).

The case of Lagrange interpolation:

The portion of the proof which has been presented up to this point is obviously
very general in nature. A divergence now appears between different choices of the
range space Y in the establishing of the crucial condition (i). We will begin by
recapitulating what happens in the classical case of Lagrange Interpolation.

If Y 1s the spacelof polynomials of degree n or less, we have the formula

2 -1
yj(t) = I (t- ‘z)(t -t) (3)

2=0 3
243
Using this formula to express the yj(Ti) portion of the ijth entry of (2), we may

cancel from the jth row of (2), for j=1, ..., o1, tne denominator of y,. We may
: J
thea,. for i=1, ..., n, divide each entry in the ith column by
(T1 - to) K (T1 - tn). The resulting matrix, equivalent with (2), is
' -
X1 (tj)) n-l n

(4)
tJ - '1'1 j=1 i=1
and we note that
X, '(e)
qi(t): = (4a)
t~- T1

is a polynomial of degree n=-2 or less. Thus, condition (i) follows immediately if
{ql. covy qn} - {qk} is linearly independent for k=1, ..., n. These functions
Qs veen Q4 in turn satisfy certain sign properties on the points Tl, ceey Tn,
which properties do not depend on the particular choice of nodes:

(a) Por all applicable i and £, the function q  must change siga (exactly
once) on the interval th-l' Tll, except that

(b) The function a does not change sign (and is not zero) on lTl—l’ Til
[Ty Tyyyls and

(c) ql(Tl) # 0 for all {1 and for all 2.

The proof of the Bernstein and Erdos conjectures for Lagrange interpolation 1is
then completed by proving the following general statement:
Proposition 1: Let Qs eoes q, be polynomials of degree n-2 or less, satisfying
sign conditions (a) - (c) on an ordered set of points Tl’ coey Tn' Then for any
ke {1, ..., 0}, the set {ql, 0oy qn} - {qk} is linearly Independent.
Proof: For details, the interested reader may consult [10]. We provide an outline.

First of all, we normalize the functions Qys +++s G by assuming them positive

at Tl' We then consider a linear combination equal to zero!
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: Q=a g Fesew w0
in whlqp, for some Kk, a = 0. If k=1, we renumber the system from the right, so
we assume Kk +# 1, and we also assume that a, 2 0. We now partition the index set
{1, «.., 0} into two nonvoid, disjoint subsets
&= {3 aJZO and j > 2}, and
R = {1, ..., 0} <.
and we define
R'jga 1145 g U
We heave Q = R + S,
Now, the properties (a) - (c) imply that, at each of the points Tys eees Tn’

(-1)1 ql(Ti) > 0, and moreover for i, j € {2, ..., 0}

q, (1) qj(ri) <0 Af 3. ik
while ql(Ti) qi(Ti) > 0.  From these facts, we derive that both R =0 and S =0
separately. But then S(Tl) = 0 4implies that aj =0 for j e, and R(Tk) =0
implies that aj =0 for j e, and the proof is completed.

A corollary of Proposition 1 was used also in Kilgore [9]. We state this
corollary in the generalized form which appears in [10]. It will be used below in
the proof of Proposition 2.
Corollngz: Let Qps eees Q) be polynomials of degree n-~2 or less satisfying sign
conditions (a) = (c) on points Tl' o Tn' Let k, t € {l, ...y n}, k#2, Then no
linear combination of {q,, «.., q } = {q,, q,} may have zeroes between points
Tj’ Tj+1 in the same fashion as the zeroes of q or qp.
More general problems — the matrix reduction problem:

In the above proof, the matrix (2) may be reduced to the form (4), and thus the

matrix of partial derivatives may be viewed as a matrix in which functions

ql, eeey qn are evaluated at points tl’ eoey :n-l‘ It is not always so easy to
perform such a reduction, although a general method for doing so has been laid down
in [13], which is valid so long as the space Y under consideration is spanned by
some extended Tchebycheff system. In such an eventuality, we may write for

l= 0. seey N

u,(t) n 5
yg(t) ® — I (t-~ tj)(:1 o tj) (5)
Ul(ti) j*1
i=0
Where the expression Ui(t) depends upon t and tg» ++es t,, excepting t;, and
1s a gymmetric function in the indicated variables. Futhermore, we have
U ) i i Uj(t) o mg® (6)

i
This fdentity enables us to reduce the matrix (2) to a matrix of evaluation as

follows:
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Carrying out the same cancellations as previously described, we do not end with

(4), but rather with
xl'(tj) n-1 n

(“3“1) ) (7)
ty =T, 3=l =l
We now divide the {ith column by the product Ul(ti) 0G Un—l(Ti)’ ending with
n-1 =L Xi'(tj) n-1 a
(m (Uz(Ti)) (8)
2=1 £y =T, 3=l 1=
2#3

which is a matrix of evaluation, by (6). In the case that the space Y 1is spanned
by polynomials, the functions Ul’ cesy Un—l are also polynomials, and (8) consists
of an evaluation matrix of rational functions. However, the entries of (8) can be
replaced by polynomials, using appropriate row multiplicatioans. This method employed
in solving the problem has been used successfully in the problem of optimal
interpolation with incomplete polynomials lacking the linear term [l4]. For reasons
to be explained below, however, other problems of incomplete or lacunary polynomial

interpolation are more complicated and still await solution.

More general problems — the nonsingularity problem:

For some choices of the range space Y, the problem described above may or may,
not occur, but a second problem does arise. The matrix corresponding to (2) may
indeed be reducible to the form (4), but condition (i) might not be implied by the
linear independence of the functions Qps eeer 9 defined in (4a). This situation
will occur if for example Qps == q are polynomials of degree greater than n-2.

The simplest example in which the functions Qys +eer 4, are of too high degreé
is that of interpolation into a space Y of polynomials of degree n+m on an
interval [a, b], with each y 4in Y having a common factor of

(t - ‘nﬂ) el tE= tnﬂn)’
are points outside of [a, b]. For convenience, we may locate

o s
e Thi

where Carl? ***0 Covn

these points to the right of b, in such fashion that b < cn+1 <eee <L
case is handled in [11].
The functions Yor ==+s Yq used in interpolation are defined for 1=0, ..., 0

by
nt+m
y(t) =11 (c=-t¢
1 yo1 j
3=0
and so the "cancellation” steps which reduce the matrix (2) to the form (4) are

-1
) (ti‘ tj) ’

handled just as in the classical case. The functions Qs eeer 9 defined as in
(4a) are of degree ntm - 2 or less, which means that Proposition 1 cannot be
applied. Neverthess, the functions Qpr eeer 9, defined in this case do obey the
sign properties (a), (b), and (c) described above, and it can be shown that they obeY
an additional sign property on certain points T
Ceee <t

akl? tter Tn+m. 80 situated that

ta & Tn+1 . o+l n+n-1 < Tarn Damely
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(d) For k=n+l, ..., om, qj(Tk) ql(Tk) £ 0 for J=2, ..., n.
The proof of this case is now completed by employment of Proposition 2:

and Tl’ 0ooey . T be so ordered that

n+m=-2 o+m’

Proposition 2: Let tl, eoey t
T1 < tl < Tz SR e R & tn+m—2 < Tn+m-1 < tn+m-1 < Tn+m and let polynomials

Qs eees Q) be given which satisfy the sign conditions (a) - (d). Then for each
ke {1, oo, O} det‘.(ql(tj))n"1 G # 0.

j=1 i=1
i#k
Proof: We again sketch the proof of this proposition, which proceeds by induction on

m, reducing to Proposition 1 if m=0 and to its Corollary if m=l, If m>0, it is
possible to decrease m and tne degree of the functions Qps eoer 9 without chang-
ing their values at Lys eeen ) and without changing properties {a) = (d). One
simply defines the polynomial r(t) of degree atm=2 to be zero at Cps e G
and 1 at T, , and it may be seen that for ie {I, ..., a}, q. () = q.(T ) r (¢)

preserves the sign properties (a) - (d) on Tl’ es oyl , 1s equal to q at the

points tl' esey tn-l' and is zero at Tn' Thus the d:;:ei of the polynomials
Qps oo q, can be reduced by one.

In the case that Y 1s a space of incomplete polynomials lacking the linear
term [14), the reduction of the derivative matrix (2) to the form (8) can be
performed, after which an argument similar to Proposition 2 suffices to complete the
proof.

The present situation of optimal interpolation:

The author envisions a development of more general proofs tending in the
direction of combined use of component parts resembling the reduction (8) and
Proposition 2. Another possibility is, of course, that an entirely new way of
establishing the non-singularity property (i) may be found. In the absence of such a
new discovery, however, the problemk.invoived in generalization may be seen by
considering three examples. All of them involve a departure from the real line into
the complex plane, even though we presume that interpolation is occurring on an
interval [a, b], where 0 < a < b: .

Example 1: Let Y be the space consisting of all multiples of p(t) = t2 +1 by a
polynomial of degree n or less. Then the cancellation steps carried out in
Proposition 2 lead to uncertain results because, while the functions Qs oo Q)
have zeroes on [Tl’ Tn] which obey conditions (a) = (c), it is not certain where

the other zeroes might be.

Example 2: Let Y consist of all polynomials of degree n+l or less lacking a term
with exponent k, where k#0, 1, or ntl, and n>2. Then, just as in the solved case
k=1, we can carry out the reduction steps which end in (8). However, Proposition 2
or its like ‘cannot be applied. Some of the'zeroea of Xl', eces Xn' could in the
first place have been complex.
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Example 3: For n>3, let Y be the space of polynomials of degree n+2 or less
which lack the linear and quadratic terms.

The. functions Ul’ eeey U are polynomials with complex zeroes, whence the

entries of (8) have compllezeroes.

In view of these three examples, it would seem that the next step in extending
the conjectures of Bernsteia and Erdos to new range spaces might be facilitated (4if
possible) by some sort of extenslon of results like Proposition 2 to the complex
plane, unless, alternatively, there appears some method of bypassing such an
extension.

We conclude this communication on a positive nmote. FProposition 2 implies a
previously unknown result about Lagrange Interpolation:

Theorem: On the interval [a, b], let all of the nodes tys eees T~ remain fixed

except for some consecutive set of nocdes for some applicable m.

Clepsioxan biagss

Then
?tn . } max {Ai, coey A1+m}
1+1’ °°°? “{4m-l
occurs 1if Cigl? *o* ti+m—1 are so situated that
Ag By = mee =gy

which condition occurs at a unique positioning of the nodes tt+1’ eeey t1+m-1'
Moreover,
min max {Ai, esey A,. } 1s not less than the norm of optimal

(E41s oo Ciygay?
Lagrange interpolation with polynomials of degree < m.

i+m
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