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1. Introduction. Let M be a subset of IR which contains at least
n points (n21) and let F(M) = {f:M->1IR}. Moreover, let U denote an
n-dimensional subspace of F(M). We say that U has a Descartes basis,
if there exists a basis {u1, ...,un} of U such that for any integers

(IRSEY

IEEE <Jh15n and any points t1 <EVere <tm in M,

Ui «os U
+1 im

Pl e

= det(u, (£ ))5 . T . + 0,
g sea £ 170K =1 k=1
1 <ms<n. The system {u1, ...,un} is called a Descartes system in U on

M. Moreover, a system {u1, ...,un} in U is called a sign-regular
Descartes system if for any integers 1 511 <lelele <inlSn there exists
an €n1€{—1'1} such that for any points t, <... <t in M,

Ui ... Uy
eD[ H lm] > 0

’
m t1 erale tm

1sSmsn.

If M is an interval, then obviously every Descartes system is
sign-reqular and therefore, the terminology is consistent with that
used by Karlin and Studden [1, p. 25].

It is wellknown that U is called a Haar subspace of F(M), if for
any basis {u,, ...,un} of U and any points t1 CFotote <tn in M,

u elale Y.
D[t1 t"] + 0.
N
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Hence, if {u1, ...,un} is a Descartes system in U on M, then every
subsystem {ui P oees Uy } of {u1, ...,un} spans a Haar subspace of U.
1 m

In the fcllowing we are interested in such Haar spaces which
admit Descartes systems. We first give a sufficient condition ensuring
the existence of Descartes systems. Under some weak additional hypo-
theses we are able to verify the more difficult converse result. In
particular it follows that if M is a closed interval, then there
exists a Descartes system in a subspace U of C(M) if and only if for
every interval MoM there exists a Haar subspace U of C(M) such that
U M= U. Moreover we show by an example that not every Haar space on
M can be continuously extended to a Haar space defined on a set Mo M.
Finally we show that Descartes systems play an important role for
existence of special bases in generalized spline spaces:

Independently and simulténeously Zalik and 2Zwick [4] studied
the problem of existence of sign-regular Descartes systems in Haar
spaces and obtained statements similar to our results, but using

different methods.

2. The main results. We begin by giving a sufficient condition

ensuring the existence of Descartes systems.

Theorem 1. Let U denote an n-dimensional Haar subspace of F(M).
Assume that there exist distinct points 21,...,zn€2m\ M and an
n-dimensional Haar subspace U of F(M) where i==MIJ{z1, ...,zn} such
that U w = U. Then there exists a Descartes system {u1, ""“n} in U
on M.

The simple proof of this statement can be found in [2]. Under
some weak additional hypotheses the more difficult converse of the

above result is obtained.

Theorem 2. Let infM ¢ M, supM¢M, a =infM > -« and assume that
for any points x,y €M with x <y there exists a point z €M with
X<z<y, Set M=MU {a}. Assume that U is an n-dimensional subspace of
F (M) which contains a sign-regular Descartes system on M.
Then for every d >0 U can be continuously extended to an n-dimensional
Haar space Uq on (a-d,a) UM, i.e.

(i ~ = Us
) UdM U;

(i1) every ue€u, is ﬁPntinuous on (a-d,al.

d
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The proof of this statement which can be found in [2] is long
and complicated. Using many results on Haar spaces we show in that
proof that if U = span {u1, ...,un}, then there exists a subspace
DU = span {Du1, ...,Dun}of F (M) where Du1 =0 and Dui denotes a certain
"generalized derivative" of Ui, 2 <1is<n. Moreover, it turns out that
DU has the same properties as U. Then, since dim DU = n -1, we proceed
by induction on n. This implies that DU can be continuously extended
to an (n-1)-dimensional Haar space DUd on (a-d,a) UM, Finally,
integrating DUy we obtain the desired Haar space Ud.

For the most important case when M is an interval, the following
equivalent statements are an immediate consequence of the above

theorems.

Corollary 3. Let M = [a,b), a real interval, and assume that U
denotes an n-dimensional subspace of C(M). Then the following conditions

are equivalent:

(i) There exists a Descartes system in U on M;
(ii) For every d >0 there exists an n-dimensional Haar subspace Uyg of
C(M) where M = (a=d,b) such that Ud M e

Analogous statements hold if M = [a,b] and M = (a,b], respectively.
Obviously every LCescartes system spans a Haar space. Now we show
that the converse is not true in general. It was verified by Krein
(see Zielke [5, Theorem 7.7]) that if M = (a,b) and U is an n-dimensional
Haar subspace of C(M), then there exists a basis {u1, ...,un} of U
such that span {u1, ...,ui} is a Haar subspace of U, 1$is<n. (Such a
basis is called a Markoff basis.) Zielke showed (see [5, Section 10])
that this statement fails, if M = [a,b) or M = [a,b]. In particular
this implies that there exist Haar spaces which do not contain Des-
cartes systems. Therefore by Corollary 3, not every EHaar space is

extensible.

Example 4. Let M = [-1,1] and let U = span {u1,u2,u3} where
u1(x) = 1, u2(x) =x(1-x) and u3(x) = (1=-x?) (1-x) for every x€[1,1].
It was verified by Zielke (see [5, Section 10]) that U is a Haar space
on [-1,1]. Moreover he showed that U does not contain a two-dimensional
Haar subspace. This implies that U has no Descartes basis on [-1,11.
We have even shown in [2] that U has no Descartes basis on (-1,1) and
therefore, U cannot be extended to a Haar space on (-1-d,1) or on
(-1,1+d), respectively, for any d >0.
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3. An application to generalized spline spaces. We show that

Descartes systems play an important role for existence of special
bases in generalized spline spaces. In [3] we introduced a class of
such spaces as follows: Let a =Xy <Xy <ees $Xp g = b denote a partition

of [a,b] (k20) and let Vi = span {vi L Vg o } be a subspace of
’ ’ 3

C[xi,xi”] with dimension ng > 0 where {vi,1, '6i,ni} forms a

Descartes system on [xi,xi+1], 0s1ic<k. Suppose that Py and ry

nonnegative integers, O £1i £k where R 0 and r, < min {pi_1 ,pi} }

are

1<isgk. Moreover, let r = 0 and p = max {pizo <i <k} and suppose

- k+1
that w, €cP™'[a,b] are positive on [a,b], 151i<p.
If for some i€ {0, ... ,k}, pi=0, we define Ui=vi'

If for some i€ {0, ... ,k}, Py >0, we define

X Y3 yp-
U, = s Jw,(y,) | vo (v ) frviyea)
. = span {{w,(x) Jw
4 1 Xy 2 52 Xy P;j "Py Xy pi+1

P,
i
dypi+1 coo dy,: VEVIH U {"j}j=1}'

where ©, (x) W, (x),

X
W1 (x) i w2 (yZ)dy2l

@, (x)
yp. -1

X
o, (x) = w1(x) a{wz(yz) } w (ypi)dy

e AV
Pj a Pj .

Py
Then the associated generalized spline space S is defined by

€U s(j)(xi) B s:j)(xi),OSj sry-1,

S = {s:[a,b] » IR: s 24
i

I
1<1isgk}

Where I, = [xi,x ), 0sisk-1 and L= [xk,ka].

i+1

Theorem 5. S has a basis {By, ... 'Bn} satisfying the following
Conditions:

(1) {31. ,Bn} forms a weak Descartes system, i.e. for any in-
tegers 1 $3q <. <J,$n and any points ast, <... <t sb,
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(ii) B eielel B
3, g
D > 0 if and only if
L t1 olsle tm
t ETj , 151ism where Tj = {x €[a,b]:Bj(x) #0}, 15$j8n;
i

(iii) T. is a subinterval of [a,b], 1<3j<n, and
inf Tj < inf Tj+1' sup Tj < sup Tj+1' IRSE)ESINE=110

This statement which was proved in [3] shows the existence of
basis functions of S with relatively small support. Moreover it was
shown in [3] that these functions can be computed by a recursion
relation. Therefore, they retain most of the features of the poly-

nomial B-splines.
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