SOFIA, 1988

DESCARTES SYSTEMS IN HAAR

SUBSPACES

Manfred Sommer and Hans Strauss

1. Introduction. Let M be a subset of IR which contains at least n points $(n \ge 1)$ and let $F(M) = \{f: M \to IR\}$. Moreover, let U denote an n-dimensional subspace of F(M). We say that U has a <u>Descartes basis</u>, if there exists a basis $\{u_1, \ldots, u_n\}$ of U such that for any integers $1 \le i_1 < \ldots < i_m \le n$ and any points $t_1 < \ldots < t_m$ in M,

$$D\begin{pmatrix} u_{i_1} & \cdots & u_{i_m} \\ t_1 & \cdots & t_m \end{pmatrix} = \det(u_{i_j}(t_k))^m \xrightarrow{m} t_{k=1} * 0,$$

 $\begin{array}{l} \text{1} \leq \text{m} \leq \text{n}. \text{ The system } \{u_1, \ldots, u_n\} \text{ is called a } \underline{\text{Descartes system in U on}} \\ \text{M. Moreover, a system } \{u_1, \ldots, u_n\} \text{ in U is called a } \underline{\text{sign-regular}} \\ \underline{\text{Descartes system if for any integers }} 1 \leq i_1 < \ldots < i_m \leq \text{n there exists}} \\ \text{an } \epsilon_m \in \{-1, 1\} \text{ such that for any points }} t_1 < \ldots < t_m \text{ in M,} \end{array}$

$$\varepsilon_{\mathbf{m}}^{\mathsf{D}} \begin{bmatrix} \mathbf{u}_{\mathbf{1}} & \cdots & \mathbf{u}_{\mathbf{1}} \\ \mathbf{t}_{1} & \cdots & \mathbf{t}_{\mathbf{m}} \end{bmatrix} > 0,$$

 $1 \le m \le n$.

If M is an interval, then obviously every Descartes system is sign-regular and therefore, the terminology is consistent with that used by Karlin and Studden [1, p. 25].

It is wellknown that U is called a <u>Haar subspace</u> of F(M), if for any basis $\{u_1,\ldots,u_n\}$ of U and any points $t_1<\ldots< t_n$ in M,

$$D\begin{pmatrix} u_1 & \cdots & u_n \\ t_1 & \cdots & t_n \end{pmatrix} \neq 0.$$

Hence, if $\{u_1,\ldots,u_n\}$ is a Descartes system in U on M, then every subsystem $\{u_{i_1},\ldots,u_{i_m}\}$ of $\{u_1,\ldots,u_n\}$ spans a Haar subspace of U.

In the following we are interested in such Haar spaces which admit Descartes systems. We first give a sufficient condition ensuring the existence of Descartes systems. Under some weak additional hypotheses we are able to verify the more difficult converse result. In particular it follows that if M is a closed interval, then there exists a Descartes system in a subspace U of C(M) if and only if for every interval $\widetilde{\mathbb{M}} \supset \mathbb{M}$ there exists a Haar subspace $\widetilde{\mathbb{U}}$ of C($\widetilde{\mathbb{M}}$) such that $\widetilde{\mathbb{U}}|_{\widetilde{\mathbb{M}}} = \mathbb{U}$. Moreover we show by an example that not every Haar space on M can be continuously extended to a Haar space defined on a set $\widetilde{\mathbb{M}} \supset \mathbb{M}$. Finally we show that Descartes systems play an important role for existence of special bases in generalized spline spaces.

Independently and simultaneously Zalik and Zwick [4] studied the problem of existence of sign-regular Descartes systems in Haar spaces and obtained statements similar to our results, but using different methods.

2. The main results. We begin by giving a sufficient condition ensuring the existence of Descartes systems.

Theorem 1. Let U denote an n-dimensional Haar subspace of F(M). Assume that there exist distinct points $z_1, \ldots, z_n \in \mathbb{R} \setminus M$ and an n-dimensional Haar subspace \widetilde{U} of $F(\widetilde{M})$ where $\widetilde{M} = M \cup \{z_1, \ldots, z_n\}$ such that $\widetilde{U} \mid_{M} = U$. Then there exists a Descartes system $\{u_1, \ldots, u_n\}$ in U on M.

The simple proof of this statement can be found in [2]. Under some weak additional hypotheses the more difficult converse of the above result is obtained.

Theorem 2. Let $\inf M \notin M$, $\sup M \notin M$, $a = \inf M > -\infty$ and assume that for any points $x,y \in M$ with x < y there exists a point $z \in M$ with x < z < y. Set $\widetilde{M} = M \cup \{a\}$. Assume that U is an n-dimensional subspace of $F(\widetilde{M})$ which contains a sign-regular Descartes system on \widetilde{M} . Then for every d > 0 U can be continuously extended to an n-dimensional Haar space $U_{\mathcal{A}}$ on $(a-d,a) \cup \widetilde{M}$, i.e.

(i)
$$U_{d}|_{M} = U;$$

(ii) every $u \in U_d$ is continuous on (a-d,a].

The proof of this statement which can be found in [2] is long and complicated. Using many results on Haar spaces we show in that proof that if U = span $\{u_1, \ldots, u_n\}$, then there exists a subspace DU = span $\{Du_1, \ldots, Du_n\}$ of $F(\tilde{M})$ where $Du_1 \equiv 0$ and Du_i denotes a certain "generalized derivative" of u_i , $2 \leq i \leq n$. Moreover, it turns out that DU has the same properties as U. Then, since dim DU = n - 1, we proceed by induction on n. This implies that DU can be continuously extended to an (n-1)-dimensional Haar space DU_d on $(a-d,a) \cup \tilde{M}$. Finally, integrating DU_d we obtain the desired Haar space \tilde{U}_d .

For the most important case when M is an interval, the following equivalent statements are an immediate consequence of the above theorems.

Corollary 3. Let M = [a,b), a real interval, and assume that U denotes an n-dimensional subspace of C(M). Then the following conditions are equivalent:

- (i) There exists a Descartes system in U on M;
- (ii) For every d > 0 there exists an n-dimensional Haar subspace U_d of
- $C(\tilde{M})$ where $\tilde{M} = (a-d,b)$ such that $U_{d|M} = U$.

Analogous statements hold if M = [a,b] and M = (a,b], respectively. Obviously every Descartes system spans a Haar space. Now we show that the converse is not true in general. It was verified by Krein (see Zielke [5, Theorem 7.7]) that if M = (a,b) and U is an n-dimensional Haar subspace of C(M), then there exists a basis $\{u_1, \ldots, u_n\}$ of U such that span $\{u_1, \ldots, u_i\}$ is a Haar subspace of U, $1 \le i \le n$. (Such a basis is called a Markoff basis.) Zielke showed (see [5, Section 10]) that this statement fails, if M = [a,b) or M = [a,b]. In particular this implies that there exist Haar spaces which do not contain Descartes systems. Therefore by Corollary 3, not every Haar space is extensible.

Example 4. Let M = [-1,1] and let U = span $\{u_1,u_2,u_3\}$ where $u_1(x) = 1$, $u_2(x) = x(1-x)$ and $u_3(x) = (1-x^2)(1-x)$ for every $x \in [1,1]$. It was verified by Zielke (see [5, Section 10]) that U is a Haar space on [-1,1]. Moreover he showed that U does not contain a two-dimensional Haar subspace. This implies that U has no Descartes basis on [-1,1]. We have even shown in [2] that U has no Descartes basis on (-1,1) and therefore, U cannot be extended to a Haar space on (-1-d,1) or on (-1,1+d), respectively, for any d>0.

3. An application to generalized spline spaces. We show that Descartes systems play an important role for existence of special bases in generalized spline spaces. In [3] we introduced a class of such spaces as follows: Let $a=x_0 < x_1 < \dots < x_{k+1} = b$ denote a partition of [a,b] $(k \geq 0)$ and let $V_i = \text{span} \ \{v_{i,1}, \dots, v_{i,n_i}\}$ be a subspace of $C[x_i,x_{i+1}]$ with dimension $n_i \geq 0$ where $\{v_{i,1}, \dots, v_{i,n_i}\}$ forms a Descartes system on $[x_i,x_{i+1}]$, $0 \leq i \leq k$. Suppose that p_i and r_i are nonnegative integers, $0 \leq i \leq k$ where $r_0 = 0$ and $r_i \leq \min \ \{p_{i-1},p_i\}$, $1 \leq i \leq k$. Moreover, let $r_{k+1} = 0$ and $p = \max \ \{p_i: 0 \leq i \leq k\}$ and suppose that $w_i \in C^{p-i}[a,b]$ are positive on [a,b], $1 \leq i \leq p$. If for some $i \in \{0,\dots,k\}$, $p_i = 0$, we define $U_i = V_i$. If for some $i \in \{0,\dots,k\}$, $p_i > 0$, we define

$$\begin{array}{l} \textbf{U}_{\mathbf{i}} = \text{span } \{\{\textbf{w}_{1}(\textbf{x}) \int\limits_{\textbf{x}_{\mathbf{i}}}^{\textbf{x}} \textbf{w}_{2}(\textbf{y}_{2}) \int\limits_{\textbf{x}_{\mathbf{i}}}^{\textbf{y}_{2}} \dots \textbf{w}_{\textbf{p}_{\mathbf{i}}} (\textbf{y}_{\textbf{p}_{\mathbf{i}}}) \int\limits_{\textbf{x}_{\mathbf{i}}}^{\textbf{y}_{\textbf{p}_{\mathbf{i}}}} \textbf{v}(\textbf{y}_{\textbf{p}_{\mathbf{i}}+1}) \\ \\ \textbf{dy}_{\textbf{p}_{\mathbf{i}}+1} \dots \textbf{dy}_{2} \colon \textbf{v} \in \textbf{V}_{\mathbf{i}}\} \ \textbf{U} \ \{\phi_{\mathbf{j}}\}_{\mathbf{j}=1}^{\textbf{p}_{\mathbf{i}}}\}, \end{array}$$

where
$$\varphi_{1}(x) = w_{1}(x)$$
,

$$\varphi_{2}(x) = w_{1}(x) \int_{a}^{x} w_{2}(y_{2}) dy_{2},$$

$$\vdots$$

$$\varphi_{p_{i}}(x) = w_{1}(x) \int_{a}^{x} w_{2}(y_{2}) \dots \int_{a}^{y_{p_{i}}-1} w_{p_{i}}(y_{p_{i}}) dy_{p_{i}} \dots dy_{2}.$$

Then the associated generalized spline space S is defined by

$$S = \{s:[a,b] \rightarrow \mathbb{R}: s | I_i \in U_i, s_-^{(j)}(x_i) = s_+^{(j)}(x_i), 0 \le j \le r_i - 1, 1 \le i \le k\}$$

Where $I_i = [x_i, x_{i+1}), 0 \le i \le k-1 \text{ and } I_k = [x_k, x_{k+1}].$

Theorem 5. S has a basis $\{B_1, \dots, B_n\}$ satisfying the following conditions:

(i) $\{B_1, \dots, B_n\}$ forms a weak Descartes system, i.e. for any integers $1 \le j_1 < \dots < j_m \le n$ and any points $a \le t_1 < \dots < t_m \le b$,

$$D\begin{pmatrix} B_{j_1} & \cdots & B_{j_m} \\ t_1 & \cdots & t_m \end{pmatrix} \geq 0;$$

(ii)
$$D \begin{pmatrix} B_{j_1} & \cdots & B_{j_m} \\ t_1 & \cdots & t_m \end{pmatrix} > 0$$
 if and only if

 $\begin{array}{l} \textbf{t_i} \in \textbf{T_j}, \quad 1 \leq i \leq m \text{ where } \textbf{T_j} = \{\textbf{x} \in [\textbf{a,b}] : \textbf{B_j}(\textbf{x}) \neq \textbf{0}\}, \quad 1 \leq j \leq n; \\ \\ \textbf{(iii)} \quad \textbf{T_j} \quad \text{is a subinterval of } [\textbf{a,b}], \quad 1 \leq j \leq n, \quad \text{and} \\ \\ \textbf{inf } \textbf{T_j} \leq \textbf{inf } \textbf{T_{j+1}}, \quad \textbf{sup } \textbf{T_j} \leq \textbf{sup } \textbf{T_{j+1}}, \quad 1 \leq j \leq n-1. \end{array}$

This statement which was proved in [3] shows the existence of basis functions of S with relatively small support. Moreover it was shown in [3] that these functions can be computed by a recursion relation. Therefore, they retain most of the features of the polynomial B-splines.

References

- 1. S. Karlin and W.J. Studden. <u>Tchebycheff Systems: with Applications in Analysis and Statistics</u>. <u>Interscience</u>, New York, 1966.
- 2. M. Sommer and H. Strauss. A characterization of Descartes systems in Haar subspaces. Preprint, 1986.
- M. Sommer and H. Strauss. Weak Descartes systems in generalized spline spaces. Preprint, 1986.
- R.A. Zalik and D. Zwick. On extending the domain of definition of Čebyšev and weak Čebyšev systems. Preprint, 1987.
- 5. R. Zielke, <u>Discontinuous Čebyšev Systems</u>. Lecture Notes in Mathematics 707. Springer, Berlin-Heidelberg-New York, 1979.

Mathematisch-Geographische Fakultät Katholische Universität Eichstätt 8078 Eichstätt Federal Republic of Germany

Institut für Angewandte Mathematik Universität Erlangen-Nürnberg 8078 Erlangen Federal Republic of Germany