ON THE PRECISION OF THE POLYGONAL INTERPOLATION

$$
\text { IN } \quad H_{\omega}^{s}(s \geqq 2)
$$

George A. Totkov and Michael St. Bazelkov

1. Introduction. Let Ω be a given domain in $R^{s}(s \geqslant 2)$, the knot sequence $x=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \subset \Omega \quad$ and $T_{i}(i=1,2, \ldots, n)$ is a $(s+1)$ - simplex which is formed from $(s+i)$ points of X such that $\Omega=\bigcup_{i=1}^{n} T_{i}$, int $\left(T_{i} \cap T_{j}\right)=\varnothing(i \neq j)$. Let us denote by $T(\Omega)$ the set of all such divisions $\left\{T_{i}\right\}$ of Ω. We shall write $(\Sigma \subset T(\Omega))$:

$$
d_{\Sigma}=\max \left\{d_{T}: T \in \Sigma\right\}
$$

where $(K(0, R)$ is the circumsphere of T with center 0 and radius $R)$
(1) $\quad d_{T}=\left\{\begin{array}{l}2 R, \quad 0 \in T, \\ \operatorname{diam}(T), \quad O \mathbb{E} .\end{array}\right.$

For any bounded function f on Ω and $\Sigma \in T(\Omega)$ we introduce the linear interpolant $L(f, \Sigma ; x), x \in \Omega$ as the compemented graphic [3] of $\tilde{L}(f, \Sigma ; x)$:

$$
\begin{aligned}
& \tilde{L}(f, \Sigma ; X)=\alpha_{1}^{i} x_{1}+\alpha_{2}^{i} x_{2}+\ldots+\alpha_{s}^{i} x_{s}+\alpha_{s+1}^{i} \quad(T \in \Sigma) \\
& \widetilde{L}\left(f, \Sigma ; x_{j}\right)=f\left(x_{j}\right), \quad x_{j} \in \quad x .
\end{aligned}
$$

For any modulus of continuity $\omega(\delta), 0 \leq \delta \leq \operatorname{diam}(\Omega)$, $\left(\omega(0)=0 ; \omega\left(\delta_{1}\right) \leq \omega\left(\delta_{2}\right)\right.$ if $\delta_{1} \leqslant \delta_{2} ; \omega\left(\delta_{1}+\delta_{2}\right)$ $\left.\leqslant \omega\left(\delta_{1}\right)+\omega\left(\delta_{2}\right)\right)$ let us denote by $H_{\omega}^{s}(\Omega)$ the class of all functions f defined on Ω, for which (ρ-Eucleadean distance in R^{s}) :
$\omega(f, \delta)=\sup \{|f(x)-F(Y)|: \rho(X, Y) \leq \delta ; X, Y \in \Omega\} \leqslant \omega(\delta)$, We shall briefly write (when Σ is fixed) d (instead d_{Σ}), $L(f ; x)($ instead $L(f, \Sigma ; x)$), etc.

Let

$$
\begin{aligned}
& c_{k, s}(\omega, \Sigma)=\sup \left\{\|f(.)-L(.)\| \mathrm{c}(\Omega) / \omega\left(f ; \frac{d}{k}\right): f \in H_{\omega}^{s}(\Omega)\right\}, \\
& c_{k, s}=\sup \left\{c_{k, s}(\omega, \Sigma): \omega(\delta) \not \equiv 0 ; \Sigma\right\} \quad, s=1,2, \ldots,
\end{aligned}
$$ $k=1,2, \ldots$,

where as usual $\|f\| c(\Omega)=\sup \{|f(x)|: x \in \Omega\}$. In the case ω - a convex modulus of continuity we shall write $c_{k, s}^{*}(\omega, \Sigma)$ and $c_{k, s}^{*}$.

The following results are known:
Theorem A. For $s=1,2$ we have $(k=2, s=1[1], k=2, s=2[4,5], s=1,2$, $k=1,2, \ldots .[6])$:
(2) $\mathrm{C}_{\mathrm{k}, 1}^{*}=\frac{\mathrm{k}}{2}$,
(3) $c_{2 k, 2}^{*}(\omega, \Sigma)=k$.

Theorem B [2]. For $s=1,2$ and $k=1,2, \ldots$
(4) $C_{k, 1}(\omega, \Sigma) \leq \frac{k+1}{2}$,
(5) $C_{k, 1}=\frac{k+1}{2}$.

The inequality (4) is strict for even k and ($s=2, k=1,2, \ldots$ [6])
(6) $\mathrm{C}_{2 \mathrm{k}, 2}(\omega, \Sigma)<\mathrm{k}+1$,
(7) $\mathrm{C}_{2 \mathrm{k}, 2}=\mathrm{k}+1$.

Theorem C. For any $\alpha \in[k, k+1 j, k=1,2, \ldots$, there is a moddulus of continuity $\omega(\delta) \neq 0$ and a partition $\Sigma \in T(\Omega)$ such that [6]
(8) $\mathrm{C}_{\mathrm{k}, 1}(\omega, \Sigma)=\frac{\alpha}{2}$,
(9) $c_{2 k, 2}(\omega, \Sigma)=\alpha$.

If in addition k is odd, then Theorem C holds for $\alpha=k+1$, as well. The case $k=2\left(\alpha \in\left[1, \frac{3}{2}\right)\right.$ is established in [2].

2. Main Results.

Theorem 1. For $s=2,3, \ldots, k=1,2, \ldots$ we have $(10) \mathrm{C}_{2 \mathrm{k}, \mathrm{s}}^{*}(\omega, \Sigma)=\mathrm{k}$.

Theorem 2. For $s=2,3, \ldots, k=1,2, \ldots$ we have
(11) $\mathrm{C}_{2 \mathrm{k}, \mathrm{s}}(\omega, \Sigma)<\mathrm{k}+1$,
(12) $\mathrm{C}_{2 \mathrm{k}, \mathrm{s}}=\mathrm{k}+1$.

Theorem 3. For any $\alpha \in[k, k+1), s=2,3, \ldots, \ldots, k=1,2, \ldots$ there is a modulus of continuity $\omega(\delta)$, domain Ω and a partition $\Sigma \in T(\Omega)$ such that

$$
\text { (IB) } \mathrm{c}_{2 \mathrm{k}, \mathrm{~s}}(\omega, \Sigma)=\alpha
$$

3.The Proofs of Theorem 1 and Theorem 2 follow the scheme in [6] For the proof of Theorem 3 let us fix $R>0$ and k. Let $a \in\left(0, \frac{R}{k}\right)$ and

$$
\omega(x)= \begin{cases}\frac{x}{a} & , x \in[0, a), \\ 1 & , x \in\left[a, \frac{R}{k}\right], \\ {\left[\frac{x k}{R}\right]+\omega\left(x-\frac{R}{k}\left[\frac{x k}{R}\right]\right), x>\frac{R}{k},}\end{cases}
$$

where $[x]$ is the integer part of x. Now, let $T=A_{1} A_{2} \ldots A_{s+1}$ be a $s+1$ - simplex for which $A_{2} A_{3} \ldots A_{B+1}$ is a regular s-simplex
with centrum $O(0,0, \ldots, 0)$ of the circumsphere and radius R, and $O A_{1} \perp A_{2} A_{3} \cdots A_{s+1}, \quad O A_{1}=R$.

So, $A_{i}\left(0, a_{2}^{(i)}, a_{3}^{(i)}, \ldots, a_{s+1}^{(i)}\right), i=1,2, \ldots, s+1, A_{1}(R, 0, \ldots, 0)$.
Finally we define the point p by
$P=\left\{\begin{array}{l}\left(\sqrt{2 R a+a^{2}}, 0,0, \ldots, 0\right), a \in\left(0, \frac{R}{2 k(k+1)}\right] \equiv I, \\ \left(\frac{R}{k}-a, 0,0, \ldots, 0\right), a \in\left[\frac{R}{\left.3 k\left(\frac{R}{k}-\frac{1}{i}\right), \frac{R}{k}\right]} \equiv J .\right.\end{array}\right.$
For the function $f(x)=\omega\left(\rho\left(P, A_{1}\right)-\rho(P, X)\right)$ we have
a) if $a \in I$, then
$\left\|_{f(\cdot)-L}(f ; \cdot)\right\|_{C(T)}=\left|(f-L)\left(\sqrt{2 R a+a^{2}}, 0,0, \ldots, 0\right)\right|$
$=k+1-\frac{\sqrt{2 R a+a^{2}}}{R}=\varphi(a)$
b) if $a \in J$, then
$\|f(\cdot)-L(f ; \cdot)\|_{C(T)}=\left|(f-L)\left(\frac{R}{k}-a, 0,0, \ldots, 0\right)\right|$
$=k+\frac{\left(\sqrt{R^{2}\left(\frac{R}{k}-a\right)^{2}}-R\right)(R k-R+k a)}{a k R}=\psi(a)$.
Let
$\|f(\cdot)-L(f ; \cdot)\|_{C(T)} \equiv \xi(a)= \begin{cases}\varphi(a) & , a \in I, \\ \psi(a) & , a \in J .\end{cases}$
The function $\xi(\cdot)$ is continuous, decreasing and $\lim \}(a)=k+1$ $(a \rightarrow+\infty), \quad \xi\left(\frac{\mathrm{R}}{\mathrm{k}}\right)=\mathrm{k},\left(\mathrm{R}=\frac{\mathrm{d}_{\mathrm{T}}}{2}\right)$.

Thus, for any $\alpha^{*} \in[k, k+1)$ there is a number $a^{*} \epsilon\left(0, \frac{R}{k}\right)$ for which $\xi\left(a^{*}\right)=\alpha^{*}$.

References

1. Малоземов B. H., Об отклонении ломеных. В. Ленингр. унив. , 咅 7 , 1966, 150-153.
2. 근инов A.C. Приближение непрерывных ф̆ункции ломаными. Мат, замет쓰, 6, 1969, 鲃2, 149-169.
З. Сендов_Бл. Некоторые вопросы приближения фуункций в хаусдорф̆овой метрике. Успехи мат. наук., 24, 1969, Јí 5, 141-178.

 603-605.
3. Тотков_ $\Gamma_{\perp} A_{\perp}, M_{2} C_{2}$ Базелков, Кетрические свойства модуля непрерывности и интерполяция сплайнами на треугольных сетках, Констр. теория ф̆ункций $\cdot 81$, Тр. межд. конФ̆. Соф̆ия, 1983, 171-177.
4. Тотков_ $\Gamma_{2} A_{2}, M_{2} \mathrm{C}_{2}$ Базелков, 0 точности полигональной интерполяции B $\mathrm{H}_{\omega}^{s}(\mathrm{~S}=1,2)$
Internasional Conference Function Spaces ,August 24-30,1986,
Poznan, (in print)

University of Plovdiv
24"Tsar Assen"str., 4000
Plovdiv, Bulgaria

```
Higher Institute of Food and
Flavour Industries
26"Lenin"boul.,4002
Plovaiv,Bulgaria
```

