CONSTRUCTIVE THEORY OF FUNCTIONS, Varna '91 Sofia, 1992, pp. 1-8

EULER SPLINES FROM 3-DIRECTIONAL BOX SPLINES

Peter Binev Inst. Mathematics Bulg. Acad. Sciences Sofia 1090, Bulgaria

Kurt Jetter Wallewal ow mouse aids of Fachbereich Mathematik Universität Duisburg D-4100 Duisburg 1, Germany

mb (SID) anddong nothelogus

Dedicated to the memory of Professor Vasil A. Popov

Abstract: Euler spline curves based on 3-directional box spline are introduced. Some of their properties are derived. A short and soft proof of "correctness" of cardinal interpolation with 3-directional box spline shifted along one of the directions is found.

1. Introduction

The univariate exponential Euler spline is defined for any $z \in \mathbb{C}$, $z \neq 0$, by

$$\Phi_n(t;z) := \sum_{j=-\infty}^\infty z^j M_n(t-j), \quad t \in {
m I\!R}.$$

Here M_n is a univariate B-spline defined inductively by

$$M_1(x) := \begin{cases} 1 & \text{for } |x| < 1/2 \\ 1/2 & \text{for } |x| = 1/2 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad M_n(x) := \int_{-\frac{1}{2}}^{\frac{1}{2}} M_{n-1}(x+\tau) d\tau.$$

A definition by its Fourier transform M_n is also possible. We have M_n $(\xi) = (\operatorname{sinc} \frac{\xi}{2})^n$. where sinc $\xi = \frac{\sin \xi}{\xi}$.

The case when |z|=1 is of main interest. The function $\varphi_n(t;u)=\Phi_n(t;e^{iu})$ was introduced by Schoenberg [4] and was studied in detail in [3], [5], [6]. Let us mention some of its properties:

- $(1.1) \varphi_n(t+j;u) = e^{iju}\varphi_n(t;u) \text{ for } j \in \mathbf{Z};$ $(1.2) \varphi_n(t;-u) = \varphi_n(-t;u) = \overline{\varphi_n(t;u)};$
- $(1.3) \varphi_n(t;0) \equiv 1;$
- (1.4) $\varphi_1(t;u) = 1$ for $|t| < \frac{1}{2}$.

According to (1.1) and (1.2) we may consider only the case $0 \le t \le \frac{1}{2}, \ 0 \le u \le \pi$. Then

(1.5)
$$\varphi_n(t;u) = 0 \quad \text{if and only if} \quad t = \frac{1}{2} \text{ and } u = \pi.$$

Moreover, for fixed $u \in (0, \pi)$ and $n \geq 2$ we have

(1.6)
$$\arg \varphi_n(t; u)$$
 is strictly increasing and $0 < \arg \varphi_n(t; u) < \frac{u}{2}$ for $0 < t < \frac{1}{2}$,

and the curve $\Gamma_n(t) = \varphi_n(t; u)$ is strictly convex and left turning for $n \geq 3$.

In this paper we investigate the properties of Euler spline curves which corresponds to 3-directional box splines. As usual (cf. [2]) we define inductively for $k, \ell, m \in \mathbb{N}$:

$$(1.7) M_{k,\ell,0}(x,y) := M_k(x) \ M_{\ell}(y)$$

and

(1.8)
$$M_{k,\ell,m}(x,y) := \int_{-\frac{1}{2}}^{\frac{1}{2}} M_{k,\ell,m-1}(x+\tau,y+\tau)d\tau.$$

An equivalent definition by Fourier transform $M_{k,\ell,m} \hat{}(\xi,\eta) = (\operatorname{sinc} \frac{\xi}{2})^k (\operatorname{sinc} \frac{\eta}{2})^\ell (\operatorname{sinc} \frac{\xi+\eta}{2})^m$ is also possible. We set

(1.9)
$$\psi_{k,\ell,m}(x,y;u,v) = \sum_{j_1,j_2=-\infty}^{\infty} e^{i(j_1u+j_2v)} M_{k,\ell,m}(x-j_1,y-j_2).$$

This function is known as the symbol or the characteristic polynomial of the cardinal interpolation problem (CIP) for the shifted box spline $\phi(\xi,\eta) = M_{k,\ell,m}(x+\xi,y+\eta)$. Solvability of CIP with ϕ refers to solvability of the discrete convolution equations

(1.10)
$$\sum_{j_1,j_2=-\infty}^{\infty} c_{j_1,j_2} \phi(\nu_1-j_1,\nu_2-j_2) = d_{\nu_1,\nu_2}, \quad (\nu_1,\nu_2) \in \mathbf{Z}^2,$$

for a given data $d = (d_{\nu_1,\nu_2})$. This problem is called correct [2] if for any bounded sequence d of data there is a unique bounded sequence c satisfying (1.10), or, in other words, if $\psi_{k,\ell,m}(x,y;u,v) \neq 0$ for all u and v.

Our goal is to find some properties (like convexity, monotonicity of the argument, etc.) of curves generated by taking $\psi_{k,\ell,m}$ on the lines $x = \frac{1}{2}j$, $y = \frac{1}{2}j$ and $x - y = \frac{1}{2}j$ for $j \in \mathbb{Z}$. These properties are stated in Lemma 2 and Lemma 3. We define

(1.11a)
$$\Gamma_m(t) = \Gamma_m(k, \ell, u, v; t) := \psi_{k,\ell,m}(t, t; u, v).$$

A change of the coordinates in (1.9) gives the equalities

$$(1.12) \quad \psi_{k,\ell,m}(x,y;u,v) = \psi_{\ell,m,k}(y-x,-x;v,-u-v) = \psi_{m,k,\ell}(-y,x-y;-u-v,u).$$

Thus we receive the following equations which can be used as a definition of $\Gamma_n(t)$ instead of (1.11a)

(1.11b)
$$\Gamma_k(t) = \Gamma_k(\ell, m, v, -u - v; t) = \psi_{\ell, m, k}(0, -t; u, v),$$

(1.11c)
$$\Gamma_{\ell}(t) = \Gamma_{\ell}(m, k, -u - v, u; t) = \psi_{m,k,\ell}(-t, 0; u, v).$$

In sections 3 and 4 some of the properties of $\Gamma_n(t)$ are derived. The main result is

Theorem 1. Let $k, \ell, m \in \mathbb{N}$. Then $\Gamma_m(t) \neq 0$ for $|t| < \frac{1}{2}$ and $\Gamma_m(0)$ is a positive real number.

According to (1.11) and Theorem 1 we have that the symbol $\psi_{k,\ell,m}(x,y;u,v)$ does not vanish for (x,y) satisfying one of the conditions

$$x = 0, \quad |y| < \frac{1}{2};$$

$$|x| < \frac{1}{2}, \quad y = 0;$$

$$|x| < \frac{1}{2}, \quad y = x.$$

So Theorem 1, in particular, is a short and soft proof of the theorems of de Boor, Höllig and Riemenschneider [2] (case x = y = 0) and of Sivakumar [7] (case (*)).

Theorem 2. If (x, y) is from the "star" region (*), then CIP for $\phi = M_{k,\ell,m}(x + \cdot, y + \cdot)$ is correct.

An extension of the methods in the proof of Theorem 1 is applied by authors in [1] for proving Theorem 2 for the region $\Omega = \{(x,y) \in \mathbb{R}^2; |x| < \frac{1}{2}, |y| < \frac{1}{2}, |x-y| < \frac{1}{2}\}.$

2. Two simple cases

Let first mention that (1.7), (1.8) and (1.9) give the formulas

(2.1)
$$\psi_{k,\ell,0}(x,y;u,v) = \varphi_k(x;u)\varphi_\ell(y;v),$$

(2.2)
$$\psi_{k,\ell,m}(x,y;u,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \psi_{k,\ell,m-1}(x+\tau,y+\tau;u,v).$$

Now we examine two cases in which the symbol coincides with the univariate Euler spline.

Proposition 1. Given $k, \ell, m \in \mathbb{N}$ we have

$$\psi_{k,\ell,m}(x,y;0,v) = \varphi_{\ell+m}(y;v), \psi_{k,\ell,m}(x,y;u,0) = \varphi_{k+m}(x;u), \psi_{k,\ell,m}(x,y;u,-u) = \varphi_{k+\ell}(x-y;u).$$

In particular, $\Gamma_n(t) \neq 0$ for $|t| < \frac{1}{2}$ in the cases u = 0, v = 0 and u + v = 0.

Proof: According to (1.12) and (1.2) it is enough to consider only the case u = 0. Here, using (2.1) and (1.3) we receive $\psi_{k,\ell,0}(x,y;0,v) = \varphi_{\ell}(y,v)$. For m > 0 we use (2.2) and induction to yield

$$\psi_{k,\ell,m}(x,y;0,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \varphi_{\ell+m-1}(y+\tau;v) d\tau = \varphi_{\ell+m}(y;v).$$

Now $\Gamma_n(t) \neq 0$ for $|t| < \frac{1}{2}$ follows from (1.11a) and (1.5).

Proposition 2. The following equality holds true for $n \in \mathbb{N}$

$$\Gamma_n(1,1,u,v;t) = \varphi_{n+1}(t;u+v).$$

Proof: We use (2.1), (1.4) and (1.1) to receive defined

$$\psi_{1,1,0}(t,t;u,v) = \varphi_1(t;u)\varphi_1(t;v) = \varphi_1(t;u+v).$$

The induction by n yields

$$\psi_{1,1,n}(t,t;u,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \psi_{1,1,n-1}(t+\tau,t+\tau;u,v) d\tau = \int_{-\frac{1}{2}}^{\frac{1}{2}} \varphi_n(t+\tau;u+v) d\tau = \varphi_{n+1}(t;u+v).$$

Now the proposition follows from (1.11a).

of All) and 3. Preliminaries at such a (s. r) M. S. merconf I

Let the curve $\xi_0:\mathbb{R}\to\mathbb{C}$ be given. The sequence of curves $\{\xi_n\}$ is defined inductively by

(3.1)
$$\xi_n(t) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \xi_{n-1}(t+\tau)d\tau, \quad n = 1, 2, \dots$$

Given $0 < \alpha < \pi$ we suppose that the following properties hold true

(3.2a)
$$\xi_n(t+j) = e^{i2j\alpha}\xi_n(t) \text{ for each } j \in \mathbb{Z};$$

$$\xi_n(t) = \overline{\xi_n(-t)},$$

and then

(3.2c)
$$e^{-i\alpha}\xi_n(\frac{1}{2}+t) = e^{i\alpha}\xi_n(-\frac{1}{2}+t) = e^{-i\alpha}\xi_n(\frac{1}{2}-t).$$

It is necessary to have the properties (3.2) only for n = 0. Then they can be inductively verified for each $n \in \mathbb{N}$ using (3.1).

Taking the derivatives of both sides in (3.1) we receive

$$\xi_n'(t) = \xi_{n-1}(t + \frac{1}{2}) - \xi_{n-1}(t - \frac{1}{2}) = (e^{i2\alpha} - 1) \ \xi_{n-1}(t - \frac{1}{2})$$

and therefore from (3.2b)

(3.3)
$$\arg \xi'_n(t) = \frac{\pi}{2} + \alpha + \arg \xi_{n-1}(t - \frac{1}{2}) = \frac{\pi}{2} + \alpha - \arg \xi_{n-1}(\frac{1}{2} - t).$$

On the other hand (3.2) gives that $\xi_n(0)$ and $e^{-i\alpha}\xi_n(\frac{1}{2})$ are real numbers and according to (3.1), (3.2b) and (3.2c) we have

(3.4)
$$\xi_n(0) = 2 \int_0^{\frac{1}{2}} \operatorname{Re} \, \xi_{n-1}(\tau) d\tau, \quad e^{-i\alpha} \xi_n(\frac{1}{2}) = 2 \int_0^{\frac{1}{2}} \operatorname{Re} \, (e^{-i\alpha} \xi_{n-1}(\tau)) d\tau.$$

First we prove one technical result.

Lemma 1. Let $0 < \beta < \pi$ and the curve $\xi : [0, \frac{1}{2}] \to \mathbb{C}$ have the properties:

- (i) $\xi(0) \neq 0$, $\xi(\frac{1}{2}) \neq 0$ and $\arg \xi(0) = 0$, $\arg \xi(\frac{1}{2}) = \beta$;
- (ii) $\xi'(t) \neq 0$ and $\beta < \arg \xi'(t) < \pi$ for $0 < t < \frac{1}{2}$.

Then for $0 < t < \frac{1}{2}$:

- (a) $\xi(t) \neq 0$ and $0 < \arg \xi(t) < \beta$;
- (b) $\arg \xi(t)$ is strictly increasing.

Proof: From (i) we have Im $\xi(0) = 0$ and Im $(e^{-i\beta}\xi(\frac{1}{2})) = 0$. On the other hand (ii) gives that Im $\xi(t)$ and Im $(e^{-i\beta}\xi(t))$ are strictly increasing. Hence

$$\operatorname{Im} \xi(t) > 0 \quad \text{and} \quad \operatorname{Im} \left(e^{-i\beta} \xi(t) \right) < 0 \quad \text{for} \quad 0 < t < \frac{1}{2},$$

which proves (a). We compare (ii) and (a) to receive

$$0 < \arg \xi'(t) - \arg \xi(t) < \pi.$$

Thus (b) holds true, too.

The following two lemmas consider some properties of the curves ξ_n .

Lemma 2. Let $0 < \alpha \le \frac{\pi}{2}$, $\xi_0(t) \ne 0$ and $\alpha - \frac{\pi}{2} < \arg \xi_0(t) < \frac{\pi}{2}$ for $0 < t < \frac{1}{2}$. Then for each $n \in \mathbb{N}$ we have

and $e^{-i\alpha}\xi_n(\frac{1}{2})>0;$ (a) $\xi_n(0) > 0$

- (a) $\xi_n(0) > 0$ and $e^{-t}\xi_n(\frac{\pi}{2}) > 0$; (b) $\xi_n(t) \neq 0$ and $0 < \arg \xi_n(t) < \alpha$ for $0 < t < \frac{1}{2}$;
- (c) $\arg \xi_n(t)$ is strictly increasing;
- (d) ξ_n is a strictly convex left turning curve for $n \geq 2$.

Proof: The conditions on arg $\xi_0(t)$ give that Re $\xi_0(t)$ and Re $(e^{-i\alpha}\xi_0(t))$ are positive. Thus from (3.4) we get (a). From (3.3) we have that $\alpha < \arg \xi_1'(t) < \pi$ for $0 < t < \frac{1}{2}$. Applying Lemma 1 for $\xi = \xi_1$ and $\beta = \alpha$ we receive (b) and (c) for n = 1.

In the induction step we receive (a) from (3.4) and (b) for n-1. Then condition (ii) of Lemma 1 is verified using (3.3), (b) for n-1 and $\alpha \leq \frac{\pi}{2}$. The application of Lemma 1 for $\xi = \xi_n$ gives (b) and (c) for n, while (d) is an immediate consequence of (c) for n-1and (3.3).

Lemma 3. Let $\frac{\pi}{2} < \alpha < \pi$. Assume that $\xi_0(t) \neq 0$, arg $\xi_0(t)$ is strictly increasing and $0 < \arg \xi_0(t) < \alpha$ for $0 < t < \frac{1}{2}$. Denote by μ the maximal integer such that $\xi_n(0)$ and $e^{-i\alpha}\xi_n(\frac{1}{2})$ are positive for all $n<\mu$. Then the following properties of the curves $\xi_n(t)$ hold true for $0 < t < \frac{1}{2}$:

- (a) if $n = 1, 2, ..., \mu 1$, then $\xi_n(t) \neq 0$, $\arg \xi_n(t)$ is strictly increasing and $0 < \arg \xi_n(t) < \alpha;$
- (b) if $\xi_{\mu}(0) \leq 0$, then $e^{-i\alpha}\xi_{\mu}(\frac{1}{2}) > 0$, $\xi_{\mu}(t) \neq 0$ and $\frac{\pi}{2} < \arg \xi_{\mu}(t) < \pi$. Moreover for $n > \mu$ we have $\xi_n(0) < 0$, $e^{-i\alpha}\xi_n(\frac{1}{2}) > 0$, $\arg \xi_n(t)$ is strictly decreasing and $\alpha < \arg \xi_n(t) < \pi;$
- (c) if $e^{-i\alpha}\xi_{\mu}(\frac{1}{2}) \leq 0$, then $\xi_{\mu}(0) > 0$, $\xi_{\mu}(t) \neq 0$ and $\alpha \pi < \arg \xi_{\mu}(t) < \alpha \frac{\pi}{2}$. Moreover for $n > \mu$ we have $\xi_n(0) > 0$, $e^{-i\alpha}\xi_n(\frac{1}{2}) < 0$, $\arg \xi_n(t)$ is strictly decreasing and $\alpha - \pi < \arg \xi_n(t) < 0;$

(d) for $1 \le n \le \mu$ the curve ξ_n is strictly convex and left turning, while for $n \ge \mu + 2$ it is strictly convex and right turning.

Proof: We obtain (a) using an induction argument. The statement for n=0 is contained in the assumption of the lemma. Let now suppose that it holds for n-1. Then using (3.3) we receive that $\arg \xi'_n(t)$ is strictly increasing and

(3.5)
$$\frac{\pi}{2} < \arg \xi'_n(t) < \frac{\pi}{2} + \alpha \quad \text{for} \quad 0 < t < \frac{1}{2}.$$

Therefore for some $\tau \in [0, \frac{1}{2}]$ we have that Im $\xi_n(t)$ increases for $t \in (0, \tau)$ and decreases for $t \in (\tau, \frac{1}{2})$. Hence

(3.6)
$$\operatorname{Im} \xi_n(t) > \min\{\operatorname{Im} \xi_n(0), \operatorname{Im} \xi_n(\frac{1}{2})\}.$$

On the other hand Im $\xi_n(0) = 0$ and Im $\xi_n(\frac{1}{2}) > 0$ subject to $n < \mu$. Thus Im $\xi_n(t) > 0$ for $0 < t < \frac{1}{2}$. By the same reasoning Im $(e^{-i\alpha}\xi_n(t)) < 0$ and therefore $0 < \arg \xi_n(t) < \alpha$ for $0 < t < \frac{f}{2}$. In order to prove the increasing of $\arg \xi_n(t)$ we fix $t \in (0, \frac{1}{2})$ and set $\gamma = \arg \xi_n(t)$. Then $0 < \gamma < \alpha$ and therefore Im $(e^{-i\gamma}\xi_n(0)) < 0 < \operatorname{Im}(e^{-i\gamma}\xi_n(\frac{1}{2}))$. Hence there exist $\tau_0 \in (0,t)$ and $\tau_1 \in (t,\frac{1}{2})$ such that $\arg \xi_n'(\tau_j) \in (\gamma,\gamma+\pi)$ for j=0,1. Taking in account the increasing of $\arg \xi_n'$, we receive $\arg \xi_n'(t) \in (\gamma,\gamma+\pi)$, i.e. $0 < \arg \xi_n'(t) - \arg \xi_n(t) < \pi$. This shows that $\arg \xi_n(t)$ is strictly increasing and completes the proof of (a).

Let now $n = \mu$. Then (3.5) and (3.6) hold true. If $\xi_{\mu}(0) \leq 0$, then Im $(e^{-i\frac{\pi}{2}}\xi_{\mu}(0)) \geq 0$. But it follows from (3.5) that Im $(e^{-i\frac{\pi}{2}}\xi_{\mu}(t))$ is increasing and therefore

(3.7)
$$\operatorname{Im} \left(e^{-i\frac{\pi}{2}} \xi_{\mu}(t) \right) > 0 \quad \text{for} \quad 0 < t \le \frac{1}{2}.$$

Hence $\xi_{\mu}(t) \neq 0$ and $e^{-i\alpha}\xi_{\mu}(\frac{1}{2}) > 0$. The last inequality shows that Im $\xi_{\mu}(\frac{1}{2}) > 0$ and according to (3.6) and Im $\xi_{\mu}(0) = 0$ we have

$$\operatorname{Im} (e^{-i\pi}\xi_{\mu}(t)) = -\operatorname{Im} \xi_{\mu}(t) < 0 \text{ for } 0 < t < \frac{1}{2}.$$

Comparing this with (3.7) we receive

$$\frac{\pi}{2} < \arg \xi_{\mu}(t) < \pi.$$

Finally applying Lemma 2 to the curves $-\xi_{\mu+j}(t)$, $j=0,1,\ldots$ with $\beta=\pi-\alpha$, we receive (b). The proof of (c) is analogous. The convexity property (d) follows from increasing or decreasing of $\arg \xi'_n(t)$, which is a consequence of (3.3) and the monotonicity of $\arg \xi_{n-1}(t)$ in (a) or (b) and (c), respectively.

In the proof of Theorem 1 we shall use the following corollary of Lemma 3.

Lemma 4. Let ξ_n be the curves from Lemma 3. Then $\xi_n(t) \neq 0$ for $0 < t < \frac{1}{2}$ and at least one of the sequences $\{\xi_n(0)\}$ and $\{e^{-i\alpha}\xi_n(\frac{1}{2})\}$ has only positive terms.

It is easy to see that Lemma 4 holds true in the case when $\arg \xi_0(t)$ is nondecreasing.

We shall examine the symbol $\psi_{k,\ell,m}(x,y;u,v)$ on the lines $x=\frac{1}{2}j$, $y=\frac{1}{2}j$ and $x-y=\frac{1}{2}j$ for $j\in \mathbb{Z}$. According to (1.12) it is enough to consider only one of these lines. In order to apply Lemma 2 and Lemma 3, we now check the properties (3.1) and (3.2) for the curves

(4.1)
$$\xi_m(t) = \xi_m(k, \ell, u, v, j, s; t) := e^{-i(\frac{j+s}{2}u + \frac{s}{2}v)} \psi_{k, \ell, m}(\frac{j+s}{2} + t, \frac{s}{2} + t; u, v).$$

We receive (3.1) as an immediate consequence of (2.2). According to (1.2) and (1.1), for any integer s we have

$$e^{-i\frac{s}{2}u}\varphi_n(\frac{s}{2}-t;u)=e^{-i\frac{s}{2}u}\overline{\varphi_n(t-\frac{s}{2};u)}=\overline{e^{-i\frac{s}{2}u}\varphi_n(\frac{s}{2}+t;u)}.$$

Using (2.1) we receive

$$\xi_{0}(-t) = e^{-i\frac{j+s}{2}u}\varphi_{k}(\frac{j+s}{2} - t; u) \quad e^{-i\frac{s}{2}v}\varphi_{\ell}(\frac{s}{2} - t; v)$$

$$= e^{-i\frac{j+s}{2}u}\varphi_{k}(\frac{j+s}{2} + t; u) \quad e^{-i\frac{s}{2}v}\varphi_{\ell}(\frac{s}{2} + t; v) = \overline{\xi_{0}(t)}.$$

On the other hand (2.1) and (1.1) give

$$\xi_0(t+j) = \varphi_k(t+j;u) \quad \varphi_\ell(t+j;v) = e^{iju}\varphi_k(t;u) \quad e^{ijv}\varphi_\ell(t;v) = e^{ij(u+v)}\xi_0(t).$$

Hence (3.2) holds true for the curves (4.1) with $\alpha = \frac{u+v}{2}$.

Let $-\pi < u \le \pi$ and $-\pi \le v < \pi$. We suppose that $u \ne 0$, $v \ne 0$ and $u + v \ne 0$ (cases u = 0, v = 0 and u + v = 0 have been already considered by Proposition 1). We divide the proof into two parts: Case 1 $(0 < |u + v| \le \pi)$ and Case 2 $(\pi < |u + v| < 2\pi)$. It is important that the change of the directions given by (1.12) does not change the case. Really, if the pair (u, v) is in Case 1, then (v, -u - v) and (-u - v, u) are also in Case 1. The same is true for Case 2, but here we take $2\pi - u - v$ or $-2\pi - u - v$ instead of -u - v, if $\pi < u + v < 2\pi$ or $-2\pi < u + v < -\pi$, respectively.

On the other hand the formula $M_{k,\ell,m}(-x,-y)=M_{k,\ell,m}(x,y)$ gives that

$$\psi_{k,\ell,m}(-x,-y;-u,-v) = \psi_{k,\ell,m}(x,y;u,v)$$

and therefore only u + v > 0 is essential. We also suppose that $k + \ell > 2$, because the case $k = \ell = 1$ was considered by Proposition 2 and then Theorem 1 follows from (1.5).

Case 1. $0 < u + v \le \pi$

From the definition (4.1) and (2.1) we have

(4.2)
$$\xi_0(t) = e^{-i\frac{j+s}{2}u} \varphi_k(\frac{j+s}{2} + t; u) \ e^{-i\frac{s}{2}v} \varphi_\ell(\frac{s}{2} + t; u).$$

Let $0 < t < \frac{1}{2}$. Then using (1.6), (1.1) and (1.2) we receive that $\arg(e^{-i\frac{j+s}{2}u}\varphi_k(\frac{j+s}{2}+t;u))$ is between 0 and $\frac{u}{2}$, while $\arg(e^{-i\frac{s}{2}v}\varphi_\ell(\frac{s}{2}+t;v))$ is between 0 and $\frac{v}{2}$. Taking in account that $\frac{u+v}{2} > 0$ we receive

(4.3)
$$\min\{0, \frac{u}{2}, \frac{v}{2}\} < \arg \xi_0(t) < \max\{\frac{u+v}{2}, \frac{u}{2}, \frac{v}{2}\}.$$

Hence $\frac{u+v}{2} - \frac{\pi}{2} < \arg \xi_0(t) < \frac{\pi}{2}$, subject to $\frac{u+v}{2} \le \frac{\pi}{2}$. Now the application of Lemma 2 yields $\xi_m(t) \ne 0$ for $0 \le t \le \frac{1}{2}$ and $\xi_m(0) > 0$. In particular (for j = 0 and s = 0, 1), we receive the proposition of Theorem 1 in this case.

Case 2. $\pi' < u + v < 2\pi$.

Here $0 < |u|, |v| \le \pi$ yields u, v > 0 and according to (1.6), (4.2) and (4.3) we have that $\arg \xi_0(t)$ increases and $0 < \arg \xi_0(t) < \frac{u+v}{2}$ for $0 < t < \frac{1}{2}$. The application of Lemma 3 gives that $\xi_m(t) \ne 0$ for $0 < t < \frac{1}{2}$ and therefore $\Gamma_m(t) \ne 0$ for $0 < |t| < \frac{1}{2}$.

In order to prove $\Gamma_m(0) > 0$ we set $\eta_k(t) = \xi_k(\ell, m, v, 2\pi - u - v, 0, -1; t)$ and $\zeta_\ell(t) = \xi_\ell(m, k, 2\pi - u - v, u, -1, 0; t)$ and define

$$\begin{split} r_0(k,\ell,m) &= \psi_{k,\ell,m}(0,0;u,v) = \xi_m(0) = e^{-i(\pi - \frac{u}{2})} \eta_k(\frac{1}{2}), \\ r_1(k,\ell,m) &= e^{-i\frac{u+v}{2}} \psi_{k,\ell,m}(\frac{1}{2},\frac{1}{2};u,v) = -\zeta_\ell(0) = e^{-i\frac{u+v}{2}} \xi_m(\frac{1}{2}), \\ r_2(k,\ell,m) &= e^{-i(\frac{u}{2}-\pi)} \psi_{k,\ell,m}(\frac{1}{2},0;u,v) = \eta_k(0) = -e^{-i(\pi - \frac{v}{2})} \zeta_\ell(\frac{1}{2}), \end{split}$$

where the last two equalities in the definitions of r_j are derived from (1.12) and (4.1). We apply Lemma 4 to the curves ξ_m , η_k and ζ_ℓ to receive that there is at least one positive number in each of the following pairs:

$$r_0(k, \ell, m)$$
 and $r_1(k, \ell, m)$,
 $r_0(k, \ell, m)$ and $r_2(k, \ell, m)$,
 $-r_1(k, \ell, m)$ and $-r_2(k, \ell, m)$.

Comparing these results we conclude that $r_0(k, \ell, m) > 0$ and therefore $\Gamma_m(0) > 0$. This completes the proof of the theorem.

References

- Binev, P. and K. Jetter, Cardinal interpolation with shifted 3-directional box splines, Proc. Royal Soc. Edinburgh (to appear).
- de Boor, C., K. Höllig and S.D. Riemenschneider, Bivariate cardinal interpolation by splines on a three-direction mesh, Illinois J. Math. 29 (1985), 533-566.
- 3. Jetter, K., S.D. Riemenschneider and N. Sivakumar, Schoenberg's exponential Euler spline curves, Proc. Royal Soc. Edinburgh 118 A (1991), 21-33.
- 4. Schoenberg, I.J., Cardinal Spline Interpolation, SIAM (1973).
- Schoenberg, I.J., Cardinal interpolation and spline functions IV: The exponential Euler spline, in: Linear Operators and Approximation, P. L. Butzer, J.-P. Kahane, and B. Sz.-Nagy eds., ISBN 20, Birkhäuser Verlag (1972), 382-404.
- Schoenberg, I.J., A new approach to Euler splines, J. Approx. Theory 39 (1983), 324-337.
- Sivakumar, N., Studies in box splines, Ph. D. Thesis, University of Alberta, Edmonton, 1990.

Research supported in part by DAAD grant # 314/102/002/1 and NATO CRG # 900158