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Abstract: Euler spline curves based on 3-directional box spline are introduced.
Some of their properties are derived. A short and soft proof of ”correctness”
of cardinal interpolation with 3-directional box spline shifted along one of the

directions is found.

1. Introduction

The univariate exponential Euler spline is defined for any z € C, z # 0, by

Ba(t;2) := Z ZMy(t-j), teR.

. J==-00
Here M, is a univariate B-spline defined inductively by

1 ~ for'|zli<it/2
M(z) := {1/2 for |z =1/2 and  Mg(z):= f_**M -1(z + 7)dr.

0 otherwise

A definition by its Fourier transform M, " is also possible. We have M,," (¢) = (sinc%)",
where sinc ¢ = Ez—i

. The case when |z| = 1 is of main interest. The function @a(t;u) = ®a(t;e™) was
introduced by Schoenberg [4] and was studied in detail in (3], [5], [6]. Let us mention some
of its properties:

(1.1) pn(t +j;u) = e n(t;u) for j € Z;
(1.2) pn(t;—u) = tpn(—t‘fu) = @a(t;u);
(1.3) ¢a(t;0) = 1;

(1.4) o1(t;u) =1 for It < 3.



According to (1.1) and (1.2) we may consider only the case 0 <t < 1,0 <u < 7.
Then

(1.5) ¢n(t;u) =0 ifandonlyif t= -;— and u = 7.
Moreover, for fixed u € (0,7) and n > 2 we have

(1.6) argpn(t;u)is strictly increasing and 0 < argpa(t;u) < g for 0<t< %,
and the curve I'n(t) = @n(t;u) is strictly convex and left turning for n > 3.

In this paper we investigate the properties of Euler spline curves which corresponds
to 3-directional box splines. As usual (cf. [2]) we define inductively for k,¢,m € IN:

(1.7) Mit0(2,y) := Mi(z) Mi(y)
and
3
(1.8) M em(z,y) := / Miem-1(z + 7,y + 7)dr.
-4

An equivalent definition by Fourier transform My ¢ " (€,7) = (sinc-g)"(sinc-;l)‘(sincf%'l)'"
is also possible. We set

o0

(1.9) Vr,e,m(2, Y5 u,0) = E UM, (2 — 1,y — J2)-

il )j2="m

This function is known as the symbol or the characteristic polynomial of the cardinal
interpolation problem (CIP) for the shifted box spline ¢(£,7) = My ¢ m(z + €,y + 7).
Solvability of CIP with ¢ refers to solvability of the discrete convolution equations

oo

(1.10) Z Civia®(1 —J1,v2 — J2) = dyy by (11,12) € 22,

juj2=-00
for a given data d = (d,, ,,). This problem is called correct [2] if for any bounded sequence
d of data there is a unique bounded sequence ¢ satisfying (1.10), or, in other words, if
Yk,e,m(2, y;u,v) # 0 for all u and v.
Our goal is to find some properties (like convexity, monotonicity of the argument, etc.)
of curves generated by taking ¥k ¢m on the lines z = %j, y= %j andz—y = %j for j € Z.
These properties are stated in Lemma 2 and Lemma 3. We define

(1.11a) Tm(t) = Pm(k, £, u,v;t) := . ¢.m(t, 24, v).
A change of the coordinates in (1.9) gives the equalities
(112) d’k,l,m(z’y; uav) = ¢lymuk(y - I,—Iv,-u-— v) = ¢m,k,l(_y1 T=Yi—u - v,u).

Thus we receive the following equations which can be used as a definition of I'y(t) instead
of (1.11a)

(1.11%) Ti(t) = Tk(€, myv, —u — v;t) = g, m k(0, —t; u,v),

(1.11¢) To(t) = Te(m, k,—u — v,u;t) = Ym ke(—t,0;u,v).

In sections 3 and 4 some of the properties of I',(t) are derived. The main result is



Theorem 1. Let k,¢,m € N. Then I'n(t) # 0 for [t| < } and T'su(0) is a positive real
number. :

According to (1.11) and Theorem 1 we have that the symbol ¥y ¢,m(z,y;u,v) does
not vanish for (z,y) satisfying one of the conditions

1
z =0, '|y|<§v
1
(*) el<3 y=0;
il b
I 2, y— .

So Theorem 1, in particular, is a short and soft proof of the theorems of de Boor, Héllig
and Riemenschneider [2] (case z = y = 0) and of Sivakumar (7] (case (*)).

Theorem 2. If (z,y) is from the "star” region (*), then CIP for ¢ = My m(z + -,y + )
18 correct.

An extension of the methods in the proof of Theorem 1 is applied by authors in [1]
for proving Theorem 2 for the region Q = {(z,y) € R |z < 1, |y| < lz—yl< i}

-2. Two simple cases
Let first mention that (1.7), (1.8) and (1.9) give the formulas

(2.1) Vi,e,0(2,¥54,v) = @i(z; u)pe(y; v),

* :
(22) '/)k,l,m(zv y5u, v) = / * ‘l’k,l,m—l(x +7 Yy + T u, v)-

Now we examine two cases in which the symbol coincides with the univariate Euler spline.
Proposition 1. Given k,£,m € IN we have

Yrem(2,:0,v) = 9e4m(y; ),

'r,’k,l.m(z’y;“vo) i ‘PH'm(z;u)v

t/)k,l,m(:t) yiu, _u) — ()ok+l(z =Y u)'
In particular, T',(t) # 0 for |t| < 3 in the casesu =0,v=0and u+v = 0.

Pl.'oof: According to (1.12) and (1.2) it is enough to consider only the case u = 0. Here,
using (2.1) and (1.3) we receive ¥ ¢,0(z,¥;0,v) = @e(y,v). For m > 0 we use (2.2) and
induction to yield

¥
Yr,e,m(z,y;0,0) = / { t4m-1(y + 7;0)dT = Ye4m(y;v).

Now T () # 0 for |t| < % follows from (1.11a) and (1.5). M



Proposition 2. The following equality holds true forn € IN
Ta(1,1,4,v;t) = puy1(t;u + v).
Proof: We use (2.1), (1.4) and (1.1) to receive
Yra0(t G u,0) = it u)er(tv) = pa(tu + v).

The induction by n yields

3 ¥
1)z)l.l,'l(tat; uav) = / " ¢1,l.n-l(t+7,t+7;u) v)dT = / 3 Qon(t'*'T; u+v)dT o= ‘Pn+l(t;u+v)'

Now the proposition follows from (1.11a). W

3. Preliminaries

Let the curve o : R — C be given. The sequence of curves {¢,} is defined inductively

by
H

(3.1) Ea(t) = /*E,._l(t +ridr, n=142,...
Given 0 < a < 7 we suppose that the following properties hold true
(3.2q) €t +J) = €7%a(t) foreach j € Z;
(32b) En(t) = En(_t)’
and then
(3.20) g5+ 1) = €%a(—3 +1) = (5 ~ 1)

LC € n 2 — n 2 — € n 2 .

It is necessary to have the properties (3.2) only for n = 0. Then they can be inductively
verified for each n € IN using (3.1).
Taking the derivatives of both sides in (3.1) we receive

() = bna(t 4 3) ~Ena(t = 3) = (€% 1) baalt = 3)

and therefore from (3.2b)
; ) BN 1
(3.3) arg én(t) = % tatagln-i(t-3) =3 +a—agba(; - 1)

On the other hand (3.2) gives that £,(0) and e~**{,(3) are real numbers and according
to (3.1), (3.2b) and (3.2c) we have

] ) 3 ,
(34)  £a(0)=2 /o Re £n_y(7)dr, e""’f,.(%)=2 /0 Re (e~ _y(r))dr.

First we prove one technical result.



Lemma 1. Let 0 < f < 7 and the curve ¢ : [0,3] — C have the properties:

(i) £(0) #0, £(3)#0 and argf(0) =0, arsE() B;
(i) &'(t)#0 and B <argé'(t)y<w for 0<t<2

Then for 0 < t < 5:

(a) E(t) #0 and 0<argé(t)<p;
(b) argé&(t) is strictly increasing.

Proof: From (i) we have Im £(0) = 0 and Im (e~*¢(3)) = 0. On the other hand (ii) gives
that Im £(¢) and Im (e~*P¢(t)) are strictly increasing. Hence

Imét) >0 and Im(eP€(#) <0 for 0<t<%,

which proves (a). We compare (ii) and (a) to receive
0< argé'(t) — argé(t) < .
Thus (b) holds true, too. W

The following two lemmas consider some properties of the curves £,.

Lemma 2, Let 0 < a £ 7, £o(t) # 0 and a — § < arg€o(t) < & for 0 < t < 3. Then for
each n € IN we have

(a) €n(0) >0 and e_iagn(%) > 0;

(b) €n(t) £0 and 0<argép(t)<a for 0<t<i;

(c) argén(t) is strictly increasing;

(d) &, is a strictly convez left turning curve for n > 2.

Proof: The conditions on arg £o(t) give that Re £o(t) and Re (e ~**¢,(t)) are positive. Thus
from (3.4) we get (a). From (3.3) we have that a < arg€}(t) < = for 0 <t < §. Applying
Lemma 1 for ¢ = £; and B = a we receive (b) and (c) for n = 1.

In the induction step we receive (a) from (3.4) and (b) for n — 1. Then condition (ii)
of Lemma 1 is verified using (3.3), (b) for n — 1 and a < %. The application of Lemma 1
for £ = £, gives (b) and (c) for n, while (d) is an immediate consequence of (c) for n — 1
and (3.3). W

Lemma 3. Let 7 < a < 7. Assume that &y(t) # 0, arg€o(t) is strictly increasing and
0 < arg Eo(t) <a {Ot 0 <t < 1. Denote by p the maximal integer such that £,(0) and

e~tog, ( ) are posmve for alln < . Then the following properties of the curves ¢,(t) hold
true for 0 <t< -

(a) if n=12...,u—1 then £,(t) # 0, argé,(t) is strictly increasing and
0 < argé,(t) < a;

(b) if €4(0) < 0, then e~"¢,(3) > 0, £u(t) # 0 and § < argéu(t) < 7. Moreover
for n > p we have £,(0) < 0, e"'"{,.(%) > 0, argé,(t) is strictly decreasing and
@ < arg {u(t) < 7;

(¢) if e="¢,(3) <0, th"" £u(0) > 0, §u(t) #0 and a—7 < a.rg{,.(t) < a—F. Moreover
for n.> p we have £,(0) > 0, e""’f,,(l) < 0, argén(t) is strictly decreasmg and
a—7<argf,(t) <0;



(d) for 1 < n < p the curve €, is strictly convez and left turning, while for n > p + 2 it
18 strictly convez and right turning.

Proof: We obtain (a) using an induction argument. The statement for n = 0 is contained
in the assumption of the lemma. Let now suppose that it holds for n — 1. Then using (3.3)
we receive that arg ) (t) is strictly increasing and

1
(3.5) ll'-<arg££,(t)<£-+-oz for 0<t<=.
2 2 2
Therefore for some 7 € (0, 3] we have that Im £,(t) increases for t € (0,7) and decreases
for t € (7, 7). Hence

(36) Iim £,(4) >vinin{In &(0);Ib g,.(% )

On the other hand Im £,(0) = 0 and Im f,,( ) > 0 subject to n < p. Thus Im €n(t) > 0 for
0 <t < 1. By the same reasoning Im (e"“’f,,(t)) < 0 and therefore 0 < arg{,(t) < a for
0<t< s ? . In order to prove the increasing of arg {»(t) we fix t € (0, 2) and set v = arg ,,(t).
Then 0 < v < a and therefore Im (e="7€,(0)) < 0 < Im (e""{,.( =)). Hence there exist
70 € (0,) and 7y € (t,3) such that arg&)(r;) € (7,7 + ) for j = 0 1. Taking in account
the increasing of arg E:,, we receive arg £1,(t) € (v,7+7), i.e. 0 < arg €),(t) —arg€q(t) < .
This shows that arg ,(t) is strictly increasing and completes the proof of (a).

Let now n = p. Then (3.5) and (3.6) hold true. If £,(0) < 0, then Im (e~*¥¢£,,(0)) > 0.
But it follows from (3.5) that Im (e~*¥£,(t)) is increasing and therefore

(3.7) Im (e7*¥¢,(t)) >0 for 0<t<

l\)lp—-

Hence £,(t) # 0 and e~**€,(3) > 0. The last inequality shows that Im £,() > 0 and
according to (3.6) and Im ¢ ,,(0) 0 we have

Im (e™"€,(t)) = —Im£,(t) <0 for 0<t< %
Comparing this with (3.7) we receive

g < argéu(t) < .

Finally applying Lemma 2 to the curves —{,4;(t),7 = 0,1,... with 8 = 7—a, we receive
(b). The proof of (c) is analogous. The convexity property (d) follows from increasing or
decreasing of arg £} (t), which is a consequence of (3.3) and the monotonicity of arg ¢, _,(t)
in (a) or (b) and (c), respectively. W

In the proof of Theorem 1 we shall use the following corollary of Lemma 3.

Lemma 4. Let ¢, be the curves from Lemma 3. Then €4(t) # 0 for 0 < t < % and at
least one of the sequences {¢x(0)} and {e=**¢4(3)} has only positive terms.

It is easy to see that Lemma 4 holds true in the case when arg £,(t) is nondecreasing.



4. Proof of Theorem 1

We sha.ll examine the symbol ¥ ¢ m(z,y;u,v) on the lines z = 2], y = 2] and
¢ —y = 3j for j € Z. According to (1.12) it is enough to consider only one of these lines.
In order to apply Lemma 2 and Lemma 3, we now check the properties (3.1) and (3.2) for
the curves

(41) £m(t) = sm(kaevu)vaj’s; t) = e—i(ii—'u-i-fv)wk,['m( '

We receive (3.1) as an immediate consequence of (2.2). According to (1.2) and (1.1), for
any integer s we have

jts

+t,= +tuv)

s 8 . . S
e"%"son(é -1 u) = e_'f"l’p"(t - %; u) = e_'%“(pn(é- + t;u).
Using (2.1) we receive

bo(—t) = e~ w(——— ~tiu) e Hp(5 ~;v)

= e“"q"'“gak(—é-— +t;u) e“f”gol(-é +t;v) = &o(2).
On the other hand (2.1) and (1.1) give
bo(t+7) = pr(t +35u) e(t +7;v) = e pu(tiu) p(t;v) = e H6y(1).
Hence (3.2) holds true for the curves (4.1) with a = %2,

Let -7 < u < 7 and —7 < v < 7. We suppose that u # 0, v # 0 and u +v # 0
(cases u = 0, v = 0 and u + v = 0 have been already considered by Proposition 1). We
divide the proof into two parts: Case 1 (0 < |u + v| < 7) and Case 2 (7 < |u + v| < 27).
It is important that the change of the directions given by (1.12) does not change the case.
Really, if the pair (u,v) is in Case 1, then (v, —u — v) and (—u — v,u) are also in Case 1.
The same is true for Case 2, but here we take 27 —u — v or —27 — u — v instead of —u —v,
f T <u+v<2ror —2r < u+v < —, respectively.

On the other hand the formula M ¢m(—2,—y) = Mk ¢,m(z,y) gives that

Pr,e,m(—=2, —Y; —u, —v) = Pre,m(T, Y34, v)
and therefore only u + v > 0 is essential. We also suppose that k + £ > 2, because the case
k =€ =1 was considered by Proposition 2 and then Theorem 1 follows from (1.5).
Case 1. 0<u+v<n
From the definition (4.1) and (2. 1) we have

(4.2) €o(t) = e"q""gok( 5 +t u) e"'*"cpl( + t; u).

2

Let 0 < t < 1. Then using (1.6), (1.1) and (1.2) we receive that arg(e"q"‘gpk(-'—-+t u))
is between 0 and §, while arg(e~*$"p,($ + t;v)) is between 0 and 3. Taking in account
that 2% > 0 we rhceive
+ v u v

oo,
Hence —’{— — 7 < argéo(t) < 4 subject to —'L <z Now the application of Lemma 2
yields £,,(t) 76 Ofor0<t<i a.nd {m(O) > 0. In partlcula.r (for j =0 and s = 0,1), we
receive the proposition of Theorem 1 in this case.

(4.3)  min{0,3 }<argeo(t><max{



Case 2. T <u+v<2m.

Here 0 < |u, |v| £ 7 yields u,v > 0 and according to (1.6), (4.2) and (4.3) we have
that arg £o(t) increases and 0 < arg&o(t) < *2 for 0 < ¢ < 1. The application of Lemma 3
gives that £m(t) # 0 for 0 < t < ] and therefore I'm(t) # 0 for 0 < |t| < 3.

In order to prove I'y(0) > 0 we set ni(t) = &x(€,m,v,27 — u — v,0,-1;¢) and
Ce(t) = €¢(m, k, 27 — u — v,u,—1,0;t) and define

To(k,e, m) — 'pk,l,m(oa 0;u1v) = €m(0) — e—i('-*)nk(%)a
ik, & m) = e g m(3, 350,0) = ~G(0) = e e (3),
Tz(k, [,m) = e—i(*_")‘pk,l,m(%’o; u, U) = ﬂk(o) = _c—i(’r—*)(l(%)’

where the last two equalities in the definitions of r; are derived from (1.12) and (4.1). We
apply Lemma 4 to the curves £,,, nx and (; to receive that there is at least one positive
number in each of the following pairs:

"O(ka e’m) and rl(kv e)m)a
ro(k,&,m) and ry(k,¢,m),
—ry(k,&,m) and - ry(k,£,m).

Comparing these results we conclude that ro(k,£,m) > 0 and therefore I',,(0) > 0. This
completes the proof of the theorem. W
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