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Sequences in the Walsh Table for |z|

E.B. Saff' and H. Stah!’

Abstract

We investigate the convergence behavior of best uniform rational ap-
proximants r;, . with numerator degree m and denominator degree n to
the function |z|*, a > 0, on [—1,1] for ray sequences in the lower triangle
of the Walsh table, i.e. for sequences {(m,n)} of indices with

m
;—vce[l,oo) as m+n — oo.

The results will be compared with those for diagonal sequences (m = n)
and sequences of best polynomial approximants. Sketches of the proofs
will be given.

§1. Introduction

Our aim is to investigate the convergence behavior of ray sequences in the
Walsh table of the function '

f(z)=lz|*, z€[-1,1], 0<a. *itte])

Let II,, denote the collection of all real polynomials p of degree at most n and let
Run = {p/q | p € In, ¢ € I, ¢ # 0}. By ry, = rin (fi[=1,1];-) € Rmn We
denote the best uniform rational approximant to f on the interval [-1,1], i.e.

Enn(f, [—1, 1]) = f - r:nn”[—l.l] = reirrz].{.,. If- 7‘"[-1.1] ’ (2)

where || - ||-1,1) is the sup-norm on [-1,1].
We know that for each pair m,n € IN the best rational approximant r;,  exists
and is unique (see [Me], §9.1 and §9.2, or [Ri], §5.1). The doubly infinite array of
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all v, m,n € N, is called the Walsh table of the function f with respect to
approximation on [-1,1].

An infinite sequence N = N, € IN? of indices (m,n), as well as the sequence
{rmn }(mm)en. of approximants, is called a ray sequence with associated numerator-

denominator ratio c if

%—ace[o,oo] as m+n-—oo, (m,n)€N.. (3)

Since the sequence {r}, }52, fills the diagonal of the Walsh table, it is called the
diagonal sequence, and any sequence with ¢ = 1 is called near diagonal. Best
polynomial approximants r;,, and best reciprocal polynomial approximants rg, fill
the first column and the first row of the table, and they have c-values ¢ = oo
and ¢ = 0, respectively. It will turn out that the asymptotic behavior of the
approximants {r;,, }(mnjen. essentially depends on the parameter c. We shall
investigate ray sequences in the upper triangle of the Walsh table, for which we

have 1 < ¢ < .

Since f is an even function, it is an immediate consequence of the uniqueness
of best approximants that the same is true for r}, ... Thus we have

r;m+i,2n+j (I.’]:Ia, [—11 1]’) = r;mﬂn ('zla» ["1’1];') for m,n € N and la] € {07 l}
(4)

Replacing z? by z in the function and the approximant gives the identity

r;m,?n (Izlzaa["lall;') = r,‘,m (xa’[()’l];') (5)

for all m,n € IN and 0 < a. Hence, the investigation of the Walsh table of |z|*
with respect to the interval [—1,1] is equivalent to an investigation of the Walsh
table of z2/? with respect to [0, 1].

As a prototype of the approximation problem of |z|* on [-1,1] or 2°/? on [0, 1]
one can consider the approximation of |z| on [-1,1]. Much attention has been given
to this problem in the literature. After the pioneering result by Newman [Ne], who
showed in 1964 that

%e"gﬁ < E,.(lz],[-1,1]) £ 3¢V™ forn= 4EH T (6)

a series of results has been published about rational approximants of |z|* and/or
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z®. We have taken the following compilation from [Vjl].

Enn(2,[0,1]) < @™ s eRy,in [FrSz],1967,
E..(z,[0,1]) < &Y™, in [Bu2],1968,

Enn(2°,[0,1]) S =@V ' 4 e R,, in [Gol],1967,

%e"m < Eun (272,[0,1]) < e=™V20-0(74) iy [Bul), 1968,

eV < B (2%,00,1]), @€ Q4 \ N, in [Go2], 1972,
emtVenli+) < B (22,[0,1]) < e~™VeR1-9 4 e R, \N,e> 0,n > n(e, a),
in [Go3],1974,
Enn(2'2,[0,1)) < cne=™™ | in [Vj3],1974,

1
Ee_Nﬁ < Epn(22,(0,1]) < ce=™™, i [V}2], 1975,

eV < B (¥5,(0,1]) S e 26NVF s € N, in [T2], 1976

Here, ¢, ¢(a), ... denote constants. In [Ga), 1979, and [Vj1], 1980, T. Ganelius and
N.S. Vjacheslavov have proved independently that

cl(oz)e'z"‘/;'T < Enn(2%,[0,1]) £ cz(a)e’z'm, ni=i1,2: 00

where, for the proof of the upper bound, it was necessary to assume that a € Q.
and it could not be proved that ¢,(a) depends continuously on a. The lower bound
holds for all @ € Ry \ IN. Without the restriction that « is rational, T. Ganelius
[Ga] was able to prove the somewhat weaker result that

a(@)e o™ < B, (2%,[0,1]) < cz(a)e'z""/a—""'"(a)“/; =T A (T

for all @ € R4 \ IN, where ¢3(a) > 0 is a third constant.

Based on high precision calculations; Varga, Ruttan, and Carpenter [VRC]
recently made the conjecture that the limit

lim eV¥ By (|2, [-1,1]) = 8 (8)

holds true, and this conjecture has subsequently been proved in [St].

If we consider best polynomial instead of best rational approximants, then we
have in case of the approximation of the function f(z) = |z|® the classical result
by Bernstein [Bel], [Be2] that the limit

Jim m By o (|2, [-1,1)) = (o) 9)

exists for each a > 0. For a = 1, the limit (8) is the analogue of (9) in the rational
case.
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A comparison of (7) and (9) shows that there is an essential difference in
the rate of convergence in the polynomial and diagonal rational case. Since ray
sequences are intermediate between both types of approximants, it is interesting to
know how the convergence behavior and especially the rate of convergence changes *
with the value of the numerator-denominator ratio c in the ray sequence N.. The
next theorem shows that for all ¢ € (0,00) the rate is more similar to the diagonal
case than to the polynomial one. '

Theorem 1. Let « € Ry \ 2IN and let N. C IN* be a ray sequence with
numerator-denominator ratio ¢ € (0,00). If we choose constants

¢ < min(1,vc), ©> max(1,Vc), (10)
then ~
eV < Eoa(lzlil=141]) < exteyEr (11)

for all (m,n) € N. with m + n sufficiently large.

The proof of Theorem 1 follows immediately from Ganelius’ result stated in
(7) together with identity (5) and the observation that Ry C Rpun C Ry with
I = min(m,n) and k = max(m,n).

If ¢ # 1, then Theorem 1 does not contain the precise coefficient in the expo-
nent of the error estimate. However, it turns out that the estimate (11) is good
enough for the determination of the asymptotic distribution of zeros and poles of
the approximants and for determining the exact region of convergence, which will
be described in the theorems below.

We conjecture that for every ray sequence N., ¢ € (0,00), the limit

-1
lim

M4 N=00 1/
(m,n)€Nc AT

exists. It is not clear whether it depends on a. By Theorem 1 we only know that
its value has to lie between min(1,/c) and max(1,/c).

log(Emn (|2|*,[-1,1])) (12)

For the special case of the function f(z) = |z| it has been proved by Blatt,
Iserles, and Saff in [BIS] that the sequence {r } converges not only on the interval
[-1,1] but also in the two half-planes H, := {z : Re(z) > 0} and H_ := {z :
Re(z) < 0}. We have

{z for z € H,

-z forze H_. (13)

lim 5, (z) =

n=— 0o

Further, it has been shown that all the poles and zeros lie on the imaginary axis,
and that they interlace on each halfaxis.
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The convergence behavior is completely different in the polynomial case. There
no over-convergence exists; outside of the interval [~1,1] we have

lim r},(2) =00 (14)

uniformly on every compact subset of C \ [—1,1]. Thus, the question arises; what
happens in the intermediate case of ray sequence with ¢ € (1,00) ?

Theorem 2. Let a € Ry \2IN and r},, = r;n(|z|“,[—1,1];-). For any ray
sequence N, C IN* with c € (1,00) we have

. . 1/(m+n) _ [C—l
S P M) = e | e (o) (19)

uniformly on every compact subset of C \ [-1,1], where

S |
gﬁ\[-m] (z,00) = log !z +Vz2 - 1 (16)

is the Green function for C \ [~1,1] with pole at co.

Corollary 3. If c € (1,00, then (c—1)/(c+1) > 0, and therefore we have
lim |r},.(2)|=00  forall z ¢[-1,1]. (17)

M N 00
(m,n)EN

Since the analytic continuation of f(z) = |z|* is finite in H; and H_, the
corollary shows that we do not have overconvergence beyond [-1,1] for any ¢ > 1.
Theorem 2 is proved by using the fact that r},, (v/z), m,n even, is a multipoint

(=]
Padé approximant to the function [ t*/2dt/(t + z), z IR, which is a Stieltjes
0

function for 0 < @ < 2. The main work is then done by potential-theoretic argu-
ments. For more details see §3 and §4 in [SSW]. As a byproduct of the analysis it
turns out that the overconvergence stated in (13) has an analogue for all a > 0.

Theorem 4 (see [SSW], Theorem 1.4): Let a > 0, [a/2] be the greatest integer
not larger than /2, and let r}, . =5, (|z|*,[-1,1];.), m,n € N.

(a) We have
(18)

"l_’_ff}o Thtla/2n (2) =

{ 2° for z € H,
(=2)* forz€ H_

uniformly on compact subsets of H_ U H,.
(b) Let n be even and o ¢ 2IN. Then the n poles and n — 2 of the n + 2[a/2]
zeros of ) . 1o lie on the imaginary axis. The poles are simple, and zeros
and poles interlace on each half of the imaginary axis. The 2[ar/2]+2 remaining

zeros of r;“[al.‘,]'" cluster at z = 0.

253



Remark. Since z® has a zero of order at least 2[a/2] and at most 2[a/2] + 2 at
z =0, it is natural to use approximants with a numerator degree that exceeds the

denominator degree by 2[a/2]. In case that a = 0,2,4,... wehaver; o (2) =
2% for all n > 2, and Theorem 4 holds trivially. '

We next come to the investigation of extreme points of the error func-
tion f —ry. on [=1,1]. We have seen in (5) that all approximants r} (z) =
rma (|2|%,[=1,1];2) are even functions.

Lemma 5. Fora € R, \ 2N and even m,n € N there exist m + n + 3 points
—1 =2y <23 $on < Traratss e 1 “ (19)
such that
(=12 () |2kl = rmn (2£)) = Emn (I21°, [<1,1)) (20)

for k = 1,...,m+ n + 3, and the equality (21) holds on [-1,1] only for these
m + n + 3 points.

The lemma follows from Chebyshev’s theorem on alternation points (see [Me],
Theorem 23, or [Ri], Theorem 5.2) and the fact that

m/2 a2

y T

,1:‘+°/2,...,:r("+°)/2}

Wi = span {l,x,...,z
forms a Haar space of dimension (m+n)/2+1 on [0,1] if @ ¢ 2IN. For more details
see [SSW], §2.

Let the set of extreme points {z;,...,Zm4+n+3 } be denoted by A, and the
counting measure of this set by

Vy . = Yo by (21)
. Z€EAmn

where §; is Dirac’s measure at z € C. By wj_;;; we denote the equilibrium distri-
bution of the set [-1,1], i.e.

dwpry) (2) = (1/7)dz/V1-22, z€[-1,1]. (22)

Theorem 6. Let a € Ry \ 2IN. For any ray sequence N, € IN* with numerator-
denominator ratio ¢ € [1,00] and m > n + 2[a/2] for all (m,n) € IN. we have

1 . c-1 c—1
—__m+n+3UA""‘—’(1—|C+1')50+'C+1|w[-1'1) as m+n — oo, (m,n) € N..
(23)

where = denotes the convergence of measures in the weak topology.
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Remarks (1) We see that the asymptotic distribution of the extreme points
changes continuously with the ratio ¢. Actually, it is a convex combination of
the two measures § and wy_y,;), which hold in the extreme cases of the paradi-
agonal rational approximants r} +2[a/dn and the polynomial approximants r} g,
respectively.

(2) In the paradiagonal case m = n + 2[e/2] we have ¢ = 1, and therefore the
asymptotic distribution is §,. Hence, almost all extreme points of f — 77 +2[a/2)n
converge to z = 0.

(3) In the cases of polynomial approximation (¢ = co) assertion (23) has been
proved in [BS]. However, Theorem 6 is somewhat more general since it also covers
sequences {ry, . }%_, with m/n, — co.

The proof of Theorem 6 is closely connected with that of Theorem 2 and follows
from the same analysis. For details see [SSW], §4.

We now come to the last result of our investigation: the asymptotic distribution
of zeros and poles of the approximants r},, = 5. (|z|*,[=1,1]).

Theorem 7. Let a € R, \ 2IN and let N, be a ray sequence with ¢ € [1,00),
m > n + 2[a/2], and m, n even for all (m,n) € N..

-

(a) The approximant r},,. is of exact degree m and n, and all n poles of r, . are
simple and lie on the imaginary axis.

(b) Let Pnp := {y1,---,Yn} be the set of all poles of r},,,. They can be ordered
so that

Im(y;) < Im(yz) < ... <Im(Ynj2) < 0 < Im(ypnj241) < ... <Im(ya). (24)

In each of the n Segments (y11y2)7"'1(yn/2—1 ,yn/2)7(yn/2+l yYn/2+2 )7"-a

(Yn—1,Yn) there lies at least one zero of i, , 2[a/2] + 2 zeros cluster near
z =0, and the remaining m — n — 2[a/2] zeros surround the interval [—1,1].

(¢) Denote the set of all zeros of ;. by Z,,. Then we have

1

;men':’éﬂ as m+n — 09, (m$n)€Nc (25)
1 . ( |c—1|) le=1]

- 1-——) 4 =

mVZmn—’ C+1 0+ c+1w[ l'l]

asm+n — oo, (m,n) € N,.
(d) If ¢> 1, then all poles of r7,, converge to z = 0, and all zeros to [-1,1], i.e.

mn

—_————

© ©
ﬂ Pmn - {0}, n Zmn = [—lvl] (26)
k=1 (m,n)eN. k=1 (m,n)€EN,

m+n>k m+n2k
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Remarks. (1) The additional assumption that m > n +2[a/2] is always satisfied,
up to a finite number of indices if ¢ > 1.

(2) If ¢ = 1, then assertion (d) is in general not true. For instance, if m =
n+2[a/2], then the pole with largest modulus tends to infinity as n tends to infinity.
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