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A Multivariate Analog of Fundamental
Theorem of Algebra and Hermite Interpolation

Hakop A. Hakopian

In this paper we continue the study of the normal systems of algebraic
equations over Ck started in [4,7,8]. The case when the systems have
maximal number of distinct solutions, was characterized there in terms
of certain associated k matrices to be commuting and semisimple. This
was treated as a multivariate fundamental theorem of algebra in the case
of distinct solutions (MFTA1). The maximal number of solutions: ν,
as in the classic fundamental theorem of algebra, equals the number of
coefficients of the polynomial (involved in the normal system) that fol-
low the leading monomial. We prove MFTA2, anticipated from MFTA1,
concerning the case of multiple solutions. Namely, the above mentioned
associated matrices commute if and only if the number of solutions of
the algebraic system, counting also the multiplicities, equals the maxi-
mal possible ν. This gives also a necessary and sufficient condition for
poised systems of points for the multivariate Hermite interpolation (see
the Lagrange case in [6,8]). The proof of MFTA2 here is based on two
systems of PDEs introduced in [5,7], for which the algebraic system serves
as the system of characteristic equations. Meanwhile, the connections of
multiple solutions of algebraic systems with corresponding solutions of
systems of PDEs as well as the general form of latter’s solutions are es-
tablished. For the relation of MFTA2 and a result of Mourrain [12] see
Remark 1.

1. Introduction: the Multivariate Algebraic System
and Systems of PDEs

To present the algebraic system, which is a multivariate analog of the poly-
nomial equation

xn − an−1x
n−1 − · · · − a0 = 0, (1)

we need some standard multivariate notation. We use bold fonts to distinguish
the vector and matrix quantities. Let x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Ck
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be vectors and α = (α1, . . . , αk) ∈ Zk+ be a multiindex. Then we set

x · y =

k∑
i=1

xiyi, xα = xα1
1 · · ·x

αk
k , |α| := α1 + · · ·+ αk, α! = α1! · · ·αk!.

For multiindices α = (α1, . . . , αk) and β = (β1, . . . , βk) the inequality α ≤ β
means that αi ≤ βi, for i = 1, . . . , k. The multiindex whose all entries are zero
except the i-th which is one we denote by ei, i = 1, . . . , k. The zero multiindex
is 0̄ := (0, . . . , 0).

The space of univariate polynomials (with complex coefficients) of degree
at most m we denote by πm. Let also Πk be the space of all polynomials in k
variables and let Πk

m be the subspace of polynomials of total degree at most m.
Next we are going to describe the class of multivariate polynomials we deal.
The finite index set I ⊂ Zk+ is called down connected (to zero), if for any

α ∈ I there exists i1, . . . , in with α = ei1 + · · ·+ ein and ei1 + · · ·+ eim ∈ I for
m = 1, . . . , n. This means that by adding successively suitable ei we can reach
any element of I (see [12]).

From now on, we assume that the set I is down connected.
The space of polynomials, connected with the lower set I, is

Πk
I =

{
p : p(x) =

∑
α∈I

cαxα

}
.

Of course we have
dim Πk

I = #I.

The following will serve as the set of leading monomials for the above polyno-
mial space

∂(I) =

k⋃
i=1

(I + ei) \ I.

In particular, we have in the total degree case:

I = {α : |α| ≤ n− 1} and ∂(I) = {α : |α| = n} .

Of course, in this case Πk
I coincides with Πk

n−1.
We put briefly {y∗} = {yα}∗ := {yα}α∈I . For the components of this vector

we use the lexicographical order. (Any other linear order could be used.)
The algebraic system we will study is

xα − Pα(x) := xα −
∑
β∈I

aα,βxβ = 0, α ∈ ∂(I). (2)

For example in the case k = 2 and I = {(i, j) : i+ j ≤ 1} the system is:

x2 − a0x− b0y − c0 = 0,
xy − a1x− b1y − c1 = 0,
y2 − a2x− b2y − c2 = 0.

(3)
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It turns out that the system (2), with certain natural consistency condition
of commutation of some associated matrices (see [4,7,8]), is a multivariate gen-
eralization of a single univariate polynomial equation (1). The number of roots
of the latter equation, according to the fundamental theorem of algebra, is n
which is the number of coefficients in (1) following the leading monomial, or
in other words it equals dimπn−1. Let us denote the corresponding number of
coefficients in the system (2) by

ν := #I = dim Πk
I .

A main result of [4,5,7,8] – MFTA1 (see the forthcoming Theorem 10) states
that the number of distinct solutions of the system (2) equals the maximal
possible ν, if and only if the associated matrices are semisimple and commuting:

AiAj = AjAi, 1 ≤ i 6= j ≤ k, (4)

where Ai = {a(i)
α,β}, in the lexicographical order, with

a
(i)
α,β =


0, if α+ ei ∈ I, β 6= α+ ei

1, if α+ ei ∈ I, β = α+ ei

aα+ei,β , if α+ ei ∈ ∂(I).

(5)

In other words, for the monomial base {xα : α ∈ I}, one has

[Ai]T (xα) =

{
xix

α, if α+ ei ∈ I
Pα+ei(x), if α+ ei ∈ ∂(I).

Note that the number of the associated matrices equals the dimension k
and otherwise it does not depend on the algebraic system (2). Notice also that
some rows of these matrices consist of 0s and one 1 and the others coincide
with the rows of coefficients of the algebraic system.

For example in the case of system (3), the two associated matrices are: 0 1 0
c0 a0 b0
c1 a1 b1

 ,

 0 0 1
c1 a1 b1
c2 a2 b2

 .

As one could expect, the condition of semisimplicity in MFTA1 just guaran-
tees the distinctness (or simplicity) of solutions. This leads to MFTA2 (see the
forthcoming Theorem 8): The number of solutions of the system (2), counting
also multiplicities, equals the maximal possible ν, if and only if the associated
matrices are commuting.

For C1 there is no commuting condition because of only one associated
matrix. Thus in this case MFTA2 turns into the classic fundamental theorem
of algebra.
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Remark 1. Let us mention that the basic statements of MFTA2, except
one (coinciding with forthcoming Theorem 7), follow from a result of Mourrain
on normal form algorithms [12, Theorem 3.1] and a known fact from ideal
theory on the codimension of a 0−dimensional polynomial ideal (see [1]). Thus,
in view of this fact, MFTA2 follows from Theorem 7 and Mourrain’s result
(see [8] for more details and a short proof of the latter result).

The proof of MFTA2 we bring is based on two linear homogeneous systems
of PDEs (see [5,7,8]) with constant coefficients. In what follows till the end of
the section we bring results on these systems, which are multivariate analogs of
the homogeneous first-order normal system of ordinary differential equations

y′ = Ay, (6)

where y = (y1, . . . , yn)T is the vector of unknown functions, and the homoge-
neous n-th order normal differential equation:

y(n) = an−1y
(n−1) + · · ·+ a0y. (7)

The homogeneous first order normal system of PDEs, the multivariate analog
of (6), is the following Pfaff system:

∂{z∗}
∂xi

= Ai{z∗}, i = 1, . . . , k. (8)

Here {z∗} is the unknown vector-function. The initial conditions are

zα(x0) = z0
α, α ∈ I, (9)

where x0 ∈ Rk and {z0
α}∗ ∈ Cν .

The matrix Ai = {a(i)
α,β} is the same as in (5).

Let us denote

Dαz := z(α) :=
∂|α|z

∂xα1
1 · · · ∂x

αk
k

.

The higher order (HO) normal system of PDEs (see [8]) with constant coeffi-
cients, the multivariate analog of the equation (7), is

Dαz =
∑
β∈I

aα,βD
βz, α ∈ ∂(I). (10)

Note that, as in (7), we have a single unknown scalar function z (of k variables).
The initial conditions for this system are the following

Dαz(x0) = z0
α, α ∈ I, (11)

where x0 ∈ Rk and {z0
α}∗ ∈ Cν .

Now, by using that the set I is down connected, we obtain (see [8]) that
problems (8)–(9) and (10)–(11) are equivalent by the following one-to-one cor-
respondence of solutions.
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Theorem 1 (On Equivalence). To the each solution z of the problem (10)–
(11) there corresponds a solution {z∗} = {Dαz}∗ of the problem (8)–(9) and
vice versa, i.e., each solution {z∗} of (8)–(9) has form {Dαz}∗ where z is a
solution of (10)–(11).

In view of Theorem 9 of [8] (and the extension to the complex case following
it) we have:

Theorem 2. The problems (8)–(9) and (10)–(11) have a solution for ar-
bitrary initial data if and only if the consistency condition (4) is satisfied. In
addition, the solution is unique and is defined on the whole Rk.

We will use the following multivariate generalization of Wronskian (see [5,7]).
Consider a set of ν solutions of the system (10): G = {zα : α ∈ I}. Then the
Wronskian is defined as

W (x) := W (x|G) := det ||Dβzα||α,β∈I .

Theorem 2 implies (see [7]) the following.

Theorem 3. Assume that the consistency condition (4) is satisfied. Then
the dimension of the linear space of solutions of the system of PDEs (10) equals
ν. Moreover, for any set of solutions {zα : α ∈ I} either W = 0 identically,
when they are linearly dependent, or W (x) 6= 0 for all x ∈ Rk, when they are
independent. In the latter case they form a fundamental set of solutions.

Next we bring the basic relations between the systems of PDEs (8),(10), the
algebraic system (2), and the associated matrices, established in [8, Theorems 2
and 10]. Note that the algebraic system is the system of characteristic equations
of the system of PDEs (10). Let us mention that the equivalence of (i), (iv),
and (v) below, in the special case of common zeros of multivariate orthogonal
polynomials, were established earlier by Xu [14].

Theorem 4. The following assertions are equivalent:

(i) λ = (λ1, . . . , λk) is a solution of the algebraic system (2);

(ii) the function f = exp(λ · x) is a solution of the system (10);

(iii) z = h exp(λ · x) is a solution of the system (8), with some vector h;

(iv) λ is a collection of eigenvalues corresponding to some common eigenvector
h for the matrices Ai, 1 ≤ i ≤ k;

(v) h = c{λβ}∗ is a common eigenvector for the matrices Ai, 1 ≤ i ≤ k.
Moreover, the common eigendirection is determined uniquely by the correspond-
ing collection of eigenvalues λ, by (v).
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2. Multiple Zeros of Multivariate Polynomials

The concept of multiple zero has been studied in algebraic geometry by
many different approaches. For example by means of formal power series, or
quadratic transformations and consecutive neighborhoods (see e.g. [13, Chap-
ter 3, Section 7.6 and Chapter 4, Section 5.1]. These approaches are inappro-
priate for our purpose since they are not transparent.

We follow a natural way, from the point of view of approximation theory, to
define multiple or Hermite zero. Namely, we consider it as a result of collapsing
of respective number of simple zeros. As it turns out in Proposition 5 below, the
result of this approach becomes identical with one based on ideal interpolation
schemes, pointed out by Marinari, Möller, and Mora [10] as well as de Boor
and Ron [2].

Before we start let us briefly consider a simple approach. The multiplicity
here is characterized by means of consecutive chain of directional derivatives:
more precisely, for given directions a1, . . . ,am in Ck,

P = 0, Da1
P = 0, . . . , Dam · · ·Da1

P = 0. (12)

The idea here is that the collapsing of one point to another fixed one through
a path gives rise to the directional derivative along the tangent line of the
path at the fixed point. Nevertheless, as the forthcoming Remark 2 shows this
approach cannot be used to describe the Hermite multiplicity, even in the case
of two points approaching another fixed one.

Let R(D) be the differential operator given by the polynomial R ∈ Πk.
We say that a multiple zero at x0 given byR(D), whereR ∈ Πk, is Hermitian

or is a result of coalescence of m simple zeros, i.e.,

lim
n→∞

xi,n = x0, i = 1, . . . ,m,

where xi,n are distinct for each fixed n, if for any polynomial P ∈ Πk with

P = lim
n→∞

Pn, and Pn(xi,n) = 0, i = 1, . . . ,m, (13)

we have that

R(D)P (x0) = 0.

Let us mention that the convergence in (13) is coefficientwise.

Proposition 1. Let the multiple zero at x0 given by R(D), R ∈ Πk :

R(D)P (x0) = 0 (14)

be Hermitian. Then we have

R(α)(D)P (x0) = 0, for all α ∈ Zk+. (15)
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Proof. The Hermite multiplicity of a zero, according to the adopted ap-
proach, depends only on the set of collapsing simple zeros and not on the
particular polynomial. Let us show, in view of this, that the condition (14)
implies that

R(D)(SP )(x(0)) = 0,

where S ∈ Πk is any polynomial. Indeed, by multiplying the equalities in (13)
by S(x) we get that they hold also with P replaced by P̂ = PS.

Now one could use the above mentioned ideal structure approach presented
in [10] and [2], which will end the proof.

Instead, for the sake of completeness, we make use of the following known
relation

R(D) [g(x)f(x)] =
∑
γ

1

γ!
g(γ)(x)R(γ)(D)f(x). (16)

Notice that to verify this it suffices to check it for R being a monomial which
reduces (16) to Leibniz’s rule. By setting here f = P and g(x) = S(x) = xi,
i = 1, . . . , k, we get that

∂R

∂xi
(D)P (x0) = 0.

Continuing this way and taking consecutively R(x) = xα with α in lexico-
graphical order, we come to the desired conclusion.

It may seem that the Hermite conditions in the multivariate case must
be given at least by homogeneous differential operators R(D), as they are for
example in (12). The following example of just three collapsing points, one of
which is fixed, shows that this is not true.

Remark 2. Consider the following three distinct points: (x0, y0) = (0, 0);
(x1, y1) = (0, ε2); (x2, y2) = (ε2, ε) (cf. the example at the end of [9]). Let us
show that these simple zeros are transforming to the following three Hermite
conditions:

P (x0, y0) = 0;
∂

∂y
P (x0, y0) = 0;

[
∂

∂x
+

1

2
· ∂

2

∂y2

]
P (x0, y0) = 0, (17)

where

P = lim
ε→0

Pε,

with coefficientwise convergence and

Pε(0, 0) = 0; Pε(0, ε
2) = 0; Pε(ε

2, ε) = 0.

Indeed, the first condition of (17) is obvious. The second condition can be
obtained easily by using the points (x0, y0) and (x1, y1). To obtain the third one
we proceed as follows. We take an auxiliary point (x̄2, ȳ2) = (0, ε) and consider
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the following linear combination of the values of Pε at (xi, yi), i = 0, 1, 2 (below
the coefficient of Pε(x̄2, ȳ2) equals zero)

1

ε2
[Pε(x2, y2)− Pε(x̄2, ȳ2)]

+
1− ε
ε

[
Pε(x̄2, ȳ2)− Pε(x1, y1)

ε− ε2
− Pε(x1, y1)− Pε(x0, y0)

ε2

]
= 0.

By expressing this in terms of divided differences we get that

[0, ε2]Pε(·, ε) + (1− ε)[0, ε, ε2]Pε(0, ·) = 0.

This, of course, in the limit gives the third condition.

In view of Proposition 1 we bring

Definition 1. We shall say that the multiplicity set of P (x) or of equation
P (x) = 0, at x = x0, contains R if the condition (15) holds (R,P ∈ Πk).

Let us mention that this definition is in accordance with the Bezout The-
orem. Thus, it is equivalent to the other definitions of multiple zeros from
algebraic geometry mentioned earlier. Besides, it can be seen that the multi-
plicity with consecutive directional derivatives (12) is not appropriate from the
point of view of the Bezout theorem. Indeed, consider the following system

x2 − x = 0, y3 = 0.

The number of solutions here, according to the Bezout Theorem, equals 6 =
2× 3 and the solutions are (0, 0) and (1, 0) each with multiplicity R = y2, y, 1.
When adopting consecutive directional derivatives (12) as multiplicity, here
we would have infinitely many solutions, counting also the multiplicities. In
view of (12) these multiplicities, for the same solutions, are a1 = (0, 1), a2 =
(1, 0), ai = (0, 1), i = 3, 4, . . .

Remark 3. Let us mention that

(i) In the univariate case the linear span of R(i)(x) : i = 0, 1, . . . , for any
polynomial R ∈ πm\πm−1, coincides with πm. Thus, in this case, starting
with any polynomial we arrive at the usual univariate Hermite conditions.

(ii) If R(D) = (Dy)n, then the conditions (15) coincide with (Dy)iP (x0) = 0,
i = 0, . . . , n.

(iii) If R(D) = Dα, then the conditions (15) coincide with DβP (x0) = 0,
β ≤ α.

(iv) Conditions (15) always include P (x0) = 0.
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(v) If R belongs to a multiplicity set, then ∂/∂xi(R), i = 1, . . . , k, belongs to
it too.

According to the last point the linear space of polynomials R describing the
multiplicity is so called D-invariant (see [10],[2], and Section 3).

The following theorem establishes a relation between the multiple solutions
of algebraic and partial differential equations. It generalizes the well-known
univariate relation between the solutions of homogeneous ordinary differential
equation with constant coefficients and the multiple zeros of the characteristic
equation.

Theorem 5. The polynomial R is in the multiplicity set of a solution λ of
the algebraic equation

Q(x) = 0

if and only if the functions of the collection

F := {R(α)(x) exp(λ · x) : α ∈ Zk+}, (18)

are solutions of the PDE
Q(D)z = 0.

Proof. First, let us establish the following formula

Q(D) [R(x) exp(λ · x)] =
∑
β

1

β!
R(β)(D)Q(λ)xβ exp(λ · x). (19)

We start with the following simple relation

Q(D) exp(λ · x) = Q(λ) exp(λ · x).

In view of this we get from (16), with R = Q, g = R, and f(x) = exp(λ · x) :

Q(D) [R(x) exp(λ · x)] =
∑
γ

1

γ!
R(γ)(x)Q(γ)(λ) exp(λ · x).

Then, assuming that R(x) =
∑
α aαxα, we proceed as follows∑

γ

1

γ!
R(γ)(x)Q(γ)(λ) =

∑
γ

1

γ!

∑
α

aα
α!

(α− γ)!
xα−γQ(γ)(λ)

=
∑
γ

1

γ!

∑
β

aγ+β
(γ + β)!

β!
xβQ(γ)(λ) =

∑
β

xβ

β!

∑
γ

aγ+β
(γ + β)!

γ!
Q(γ)(λ)

=
∑
β

xβ

β!

∑
δ

aδ
δ!

(δ − β)!
Q(δ−β)(λ) =

∑
β

1

β!
R(β)(D)Q(λ)xβ .

Thus we established the formula (19) which readily proves the theorem. Indeed,
the part ⇒ is straightforward. To verify the inverse implication assume that
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the left hand side of (19) equals zero. Then, since exp(λ · x) 6= 0, the other
factor – the polynomial in the right hand side is zero, i.e.,∑

β

1

β!
R(β)(D)Q(λ)xβ = 0.

Thus, all the coefficients here are zero and this ends the proof.

The following theorem which complements the previous one, in view of the
above argument, follows immediately from relation (19). It is in an interest-
ing relation with the corresponding property of multiple (or Hermite) zeros of
polynomials (Proposition 1).

Theorem 6. If the function R(x) exp(λ · x) is a solution of the PDE

Q(D)z = 0,

then all the functions of the collection (18) are so.

The following application of Theorems 5 and 6 to algebraic system (2)
generalizes Theorem 4 to the case of multiple solutions. Of course, the same
statement is true also for a single algebraic equation and the corresponding
PDE.

Corollary 1. The polynomial R is in the multiplicity set of a solution λ of
the algebraic system (2) if and only if the function R(x) exp(λ ·x) is a solution
of the system of PDEs (10).

The set I is called lower if α ∈ I and β ≤ α imply β ∈ I.
We shall say that P has multiindex multiplicity J, with this latter being a

lower set, at x0 if
P (α)(x0) = 0, for all α ∈ J.

We get readily from the above corollary the following result from an earlier
version of [8].

Corollary 2. The solution λ of algebraic system (2) has multiindex mul-
tiplicity J if and only if the functions of the collection{

xβ exp(λ · x) : β ∈ J
}

are solutions of the system (10).

Indeed, we have, for any lower set J ,

J = ∪α∈JIα,

where Iα = {β : β ≤ α}. It remains to apply Corollary 1 for R(x) = xα where
α ∈ J.

Note that the total degree multiplicities, which are considered in algebraic
geometry, are characterized in above theorem. Indeed, total degree multiindex
sets are obviously lower.
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3. The Main Results

As was mentioned in the previous section, after Remark 3, the multiple zero
of a polynomial P (or the multiple common zero of several polynomials) at a
point x can be characterized by differential operators from certain D-invariant
linear polynomial space which we denote by Mx :

R ∈Mx ⇒ R(α) ∈Mx for all α ∈ Zk+.

Following [3] and [11] we call µx := dimMx the (arithmetical) multiplicity
of x.

Our first aim is proving that the number of solutions of the algebraic system
(2), counting also the multiplicities, is always less than or equal to ν := #I
(see the forthcoming Theorem 7). For this we need a definition and a lemma.

Definition 2. We call a set of linearly independent vectors

H =
{
h0

1,h
1
1, . . .h

1
i1 , . . .h

m
1 , . . . ,h

m
im

}
,

with the superscript showing the level, a generalized associated series of the
eigenvector h0

1, corresponding to the eigenvalue λ, of the matrix A if

Ah0
1 = λh0

1

and
Ahlj = λhlj + glj ,

where glj belongs to the linear span of vectors of H of levels ≤ l − 1.

The following lemma can be considered as a generalization of the well-
known result concerning the linear independence of the set of associated series
of eigenvectors corresponding to distinct eigenvalues of a single matrix.

Lemma 1. The set of generalized associated series of common eigenvectors
of a set of matrices corresponding to distinct collections of eigenvalues are
linearly independent.

Proof. Let
hr,01 , r = 1, . . . , s,

be the common eigenvectors of matrices A1, . . . ,Aσ corresponding to distinct
collections of eigenvalues and

Hr, r = 1, . . . , s,

be the set of corresponding associated series.
We use induction on s. The case s = 1 is obvious from Definition 2. Assume
that the lemma is true for s−1 common eigenvectors. Conversely, suppose that
the lemma is not true for the case of s common eigenvectors, i.e., a nontrivial
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linear combination of vectors of ∪sr=1Hr is zero, where at least one coefficient
of a vector with the highest level from Hi is nonzero, i = 1, 2.
Since the collections of eigenvalues of h10

1 and h20
1 are distinct, there is a matrix

Ai0 , 1 ≤ i0 ≤ σ, with respect to which the above two vectors have distinct
eigenvalues, that is,

Ai0h
j0
1 = γjh

j0
1 , j = 1, 2, γ1 6= γ2.

Now we apply the operator [Ai0 − γ1E]
m1 to the above nontrivial linear combi-

nation, and thus eliminate the series H1. The resulted zero linear combination
of series of Hr, r = 2, . . . , s, is still nontrivial since the coefficients of highest
level of H2, in particular, are proportional to those of original linear combina-
tion, with a constant of proportionality (γ2 − γ1)

m1 6= 0. This contradicts the
induction hypothesis and proves the lemma.

Let us mention that according to Theorem 1 of [8] the algebraic system (2)
is equivalent to the following quadratic system

Ai{x∗} = xi{x∗}, i = 1, . . . , k,

where {x∗} = {xβ}∗.
Suppose the set of multiplicity of a solution λ of the system (2) contains

the polynomial P. Then, by applying here P (D) to the both sides of the above
equality and using the relation (16) we get

AiP (D){λ∗} = λiP (D){λ∗}+
∂

∂xi
P (D){λ∗}, i = 1, . . . , k, (20)

where {λ∗} = {λβ}∗.
Denote by S the set of all distinct solutions of algebraic system (2).

The following theorem gives the above mentioned bound for the number of
solutions of algebraic system (2), counting also the multiplicities. Let us denote
this number by µ,

µ :=
∑
x∈S

µx =
∑
x∈S

dimMx.

Also, we denote by B[L] a basis of the linear space L.

Theorem 7. The following set of ν-dimensional vectors{
P (D){λβ}∗ : λ ∈ S, P ∈ B[Mλ]

}
is linearly independent and therefore the number of solutions of the algebraic
system, counting also the multiplicities, is ≤ #I, i.e., µ ≤ ν.

Indeed, according to Theorem 4, the above vectors, in the case P = 1, are
common eigenvectors of the associated matrices. On the other hand, again
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by Theorem 4, any different common eigenvectors of associated matrices cor-
respond to different collections of eigenvalues. Thus, to prove the theorem it
is enough to arrange the given vectors such that they satisfy the conditions
of Definition 2 of the associated series. To do this we choose a so called level
basis: Bl in Mλ, λ ∈ S, with the superscripts of elements showing the level,
to fit the previous lemma, in the way described below.

Let
Bi = {P i1, . . . , P imi}, i = 1, 2, . . . ,

be a subset of maximal cardinality of polynomials from Πk
i ∩ Mλ such that

their homogeneous parts of degree i are linearly independent. Then it is easily
seen that the set

Bl = ∪iBi
is a basis of Mλ. Moreover, in view of Theorem 4 and the relation (20),{

P (D){λβ}∗ : λ ∈ S, P ∈ Bl[Mλ]
}

is a set of generalized associated series of the common eigenvectors {λβ}∗,
λ ∈ S, corresponding to the distinct collections of eigenvalues λ of the matrices
Ai, i = 1, . . . , k. This completes the proof.

The above independence in the case of µ = ν, of course, is equivalent to

V (x) := V (x|S,B) := det ||P (D){λβ}∗||β∈I,λ∈S,P∈B[Mλ] 6= 0, (21)

where we use the lexicographical order for rows and some fixed order for the
columns. Since this is the generalized Vandermonde determinant, the above
independence is also equivalent to the poisedness of the Hermite interpolation
with the space of polynomials Πk

I corresponding to the set of points S with
respective multiplicities.

Notice also that every such poised system of points is the set of solutions
of a type (2) system. The coefficients of the latter can be expressed via above
solutions in a standard way, from the corresponding linear systems as in the
Lagrange case described in [7,8].

Now we are in a position to present

Theorem 8 (MFTA2). The number of solutions of the algebraic system
(2), counting also the multiplicities, is the maximal possible, i.e., equals ν :=
#I if and only if the associated matrices Ai, i = 1, . . . , k, are commuting.
Moreover, in the latter case these solutions form a poised set of points for
Hermite interpolation with Πk

I . And any poised set is the set of solutions of
exactly one algebraic system of type (2), for which the associated matrices are
commuting.

Proof. Assume first that the number of solutions of the algebraic system is
the maximal possible: ν. Then we have that the above Vandermonde determi-
nant is different from zero. Our aim is to show that then the Wronskian of the
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set of functions {
P (x) exp(λ · x) : λ ∈ S, P ∈ B[Mλ]

}
which, according to Corollary 1, are solutions of the system of PDEs (10), is
not zero too:

W (x) := W (x|S,B) := det ||DαP (x) exp(λ · x)||α∈I,λ∈S,P∈B[Mλ] 6= 0. (22)

This, according to Theorem 2, will lead to the desired conclusion, i.e., that
the associated matrices are commuting. Indeed, as it can be easily seen, (22)
means that the system of PDEs (10) has a solution for arbitrary initial values.
To simplify the Wronskian we assume that the basis in (22) is the level basis
described in the proof of Theorem 7.

Consider a column in the Wronskian:

DαP (x) exp(λ · x) : α ∈ I. (23)

We make use of the following particular case of the relation (19)

Dα [P (x) exp(λ · x)] =
∑
β

1

β!
P (β)(D)λαxβ exp(λ · x), α ∈ I, (24)

which we treat as an equality of column vectors with coordinates α ∈ I. Let us
show that, in view of (24), by using elementary operations on a determinant
with the column (23) and other columns of lower levels, we can reduce this
column to the form

P (D)λα exp(λ · x) : α ∈ I. (25)

Let us verify this statement by induction on the level l := degP. The case l = 0
is obvious. Assume that the statement is true for the levels ≤ l − 1 and prove
it for l. Then, according to the induction hypothesis, the columns – summands
in the right hand side of (24):

P (β)(D)λα exp(λ · x) : α ∈ I,

with β 6= 0̄ ∈ Zk+, are linear combinations of the columns of the Wronskian of
levels ≤ l − 1. Hence, by elementary operations we can eliminate all this sum-
mands and what remains after this in (24) is the column (25). This completes
the proof of the statement.

Now note that columns (25) differ from the corresponding columns of the
Vandermonde determinant only by the factors exp(λ · x) and thus we get the
following formula

W (x|S,Bl) =
∏
λ∈S

exp(µλλ · x)V (x|S,Bl), (26)

which completes the proof of this part.
Now let us prove the opposite implication. Assume that the associated

matrices are commuting. Then the dimension of the linear space of solutions of
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the system of PDEs (10) equals ν. To complete the proof of the theorem, in view
of the above relation between the Wronskian and Vandermonde determinant
(26), it is enough to prove the following.

Theorem 9. All the solutions of the system of PDEs (10) have the form

P (x) exp(λ · x), (27)

where P ∈ Πk,λ ∈ Ck.

Notice that actually this is more general than we need. Namely, here we do
not assume that the consistency condition (4) holds.

Let us mention that this theorem and the arguments of the above proof of
Theorem 8 yield the following nice relation between algebraic and PDE systems,
where also (4) is not assumed to hold.

Corollary 3. The dimension of the linear space of solutions of the sys-
tem of PDEs (10) equals the number of solutions of the algebraic system (2),
counting also the multiplicities. Moreover,

{P (x) exp(λ · x) : λ ∈ S, P ∈ B[Mλ]}

is a fundamental set of solutions of the system of PDEs (10).

To establish Theorem 9 we need to prove first the following.

Lemma 2. Assume that the set of functions

G := Gm := {g1, . . . , gm}

is linearly independent. Then there is a set of points {x1, . . . ,xm} such that
the respective Vandermonde determinant does not vanish, i.e.,

V (x1, . . . ,xm;G) := det ||gi(xj)||i,j=1,... ,m 6= 0.

Let us prove this by induction on m. The case m = 1 is obvious. Assume
the lemma is true for m− 1, i.e., there is a set {x0

1, . . . ,x
0
m−1} such that

V (x0
1, . . . ,x

0
m−1;Gm−1) 6= 0. (28)

Now let us verify that the determinant

V (x0
1, . . . ,x

0
m−1,xm;G)

is not identically zero, which will complete the proof. Indeed, it is easily seen
that this determinant is a nontrivial linear combination of set G, since the
coefficient of gm there is (−1)m times the determinant in (28) and thus is not
zero.
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Proof of Theorem 9. In view of Theorem 1 (on equivalence) it is enough
to prove the proposition with the system (10) replaced by the system (8).
Correspondingly, we are to show that the first coordinate z0̄ of any solution
of (8) has the form (27). We shall prove this by induction on k, i.e., on the
dimension. If k = 1, then we have the case of system of ordinary differential
equations which is well known. Assume the proposition is true for the case
k − 1; we shall prove it for k. Suppose that z(x) is any solution of (8). Then
for any fixed last coordinate xk this is also a solution of the system

∂{z∗}
∂xi

= Ai{z∗}, i = 1, . . . , k − 1. (29)

Therefore, according to the induction hypothesis we have

z0̄(x) =

m∑
i=1

ci(xk)Pi(x̃) exp(λ̃i · x̃), (30)

where Pi ∈ Πk−1, λ̃i, x̃ = (x1, . . . , xk−1) ∈ Rk−1. Without loss of generality
we can assume that the set of functions

G̃ = {g̃i}mi=1,

where g̃i = Pi(x̃) exp(λ̃i · x̃), is linearly independent. Then we apply the pre-
vious lemma and get a set of points {x̃1, . . . , x̃m} such that

V (x̃1, . . . , x̃m; G̃) 6= 0. (31)

Now we notice that z(x) with any fixed first k − 1 coordinates is a solution of
the system

∂{z∗}
∂xk

= Ak{z∗}.

Therefore we have

m∑
i=1

ci(xk)Pi(x̃j) exp(λ̃i · x̃j) =

m′∑
i=1

c′ijP
′
ij(xk) exp(λijxk), j = 1, . . . ,m.

We consider this as a linear system with respect to unknowns ci(xk), whose
main determinant coincides with the one in (31) and thus is not zero. There-
fore, the solving of this linear system and substituting the result into (30) will
complete the proof.

Thus Theorem 8 is proved, since the part concerning the Hermite interpo-
lation was established earlier.

Let us mention that Theorem 8 (MFTA2) is a complement to the following
result of [4,5,7,8].
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Theorem 10 (MFTA1). The number of distinct solutions of the system
(2) is the maximal possible, which is #I, if and only if the matrices Ai, 1 ≤
i ≤ k, are commuting and each of them is semisimple. Moreover, in the latter
case these solutions form a poised set of points for Lagrange interpolation with
Πk
I . And any poised set is the set of solutions of exactly one algebraic system

of type (2) for which the associated matrices are commuting and semisimple.

This is an important statement for the system (2) since it characterizes
the case of distinct solutions of multivariate polynomial system by means of a
condition of univariate nature, such is the semisimplicity of a matrix.
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