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Classical Polynomial Inequalities in Several
Variables

András Kroó ∗

Classical polynomial inequalities of Chebyshev, Markov, Bernstein, Re-
mez dealing with extremal properties of univariate algebraic and trigono-
metric polynomials play a central role in Constructive Function Theory.
In the last 15–20 years extensions of these inequalities to the multivariate
case have been widely investigated. The transition to several variables
requires a combination of analytic and geometric methods, since the mul-
tivariate results are intricately related to the geometry of underlying sets.
In this paper we shall give a brief survey of these results.

1. Introduction

Classical polynomial inequalities play an important role in Constructive
Function Theory. They describe extremal properties of algebraic and trigono-
metric polynomials under suitable normalization. Basic polynomial inequalities
in univariate case were proved by Chebyshev, Markov, Bernstein and Remez
in the end of 19-th beginning of 20-th century. In the last 15–20 years exten-
sions of the classical polynomial inequalities to the multivariate case have been
widely investigated. In this paper we shall give a survey of these results. The
transition from one variable to several variables leads to a new phenomenon:
the results are intricately connected to the geometry of underlying sets on which
the corresponding extremal problems are considered. This interplay of analytic
and geometric properties will be a constant theme in our considerations.

For the sake of completness we shall recall first the classical inequalities
which will be the center of our attention. The classical polynomial inequalities
are closely related to the extremal properties of the Chebyshev Polynomials
given by

Tn(x) :=
1

2

{
(x+

√
x2 − 1 )n + (x−

√
x2 − 1 )n

}
= 2n−1xn + . . .
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Let us denote by

P 1
n :=

{ n∑
k=0

ak x
k : ak ∈ R

}
the set of algebraic polynomials of degree ≤ n and one real variable x ∈ R.
Furthermore,

‖pn‖K := max
x∈K
|pn(x)|

is the usual supremum norm on the compact set K ⊂ R.
Now we list the main inequalities that we are going to consider.

1. Chebyshev Inequalities. There are two classical inequlities due
to Chebyshev concerning extremal properties of pn ∈ P 1

n with ‖pn‖[−1,1] = 1.
One of them estimates the size of polynomials outside [−1, 1], the second gives a
bound on the leading coefficient of pn. Here are the corresponding statements:

A) For any pn ∈ P 1
n and x ∈ R \ [−1, 1],

|pn(x)| ≤ |Tn(x)| · ‖pn‖[−1,1] . (1.1)

B) For any pn(x) = anx
n + · · ·+ a0 ∈ P 1

n ,

|an| ≤ 2n−1‖pn‖[−1,1] . (1.2)

The next two inequalities due to Markov and Bernstein are dealing with
the size of derivatives of polynomials.

2. Markov Inequality:

‖p′n‖[−1,1] ≤ n2‖pn‖[−1,1], pn ∈ P 1
n . (1.3)

3. Bernstein Inequality:

|p′n(x)| ≤ n√
1− x2

‖pn‖[−1,1], x ∈ (−1, 1), pn ∈ P 1
n . (1.4)

Markov and Bernstein Inequalities complement each other in the sense that
while estimate (1.3) is uniform on [−1, 1], inequality (1.4) yields a sharper
bound for x ∈ (−1, 1) suitably separated from the endpoints ±1.

Next we consider the Remez Inequality which gives a bound for the norm
of polynomial on [−1, 1] provided that its size on a “large” subset on [−1, 1] is
known. (Remez-type inequalities are instrumental in verifying further impor-
tant polynomial inequalities, for instance Nikolski or Schur-type inequalities.)
From now on we shall denote by µd(. . . ) the Lebesgue measure in Rd.

4. Remez Inequality: For any pn ∈ P 1
n and E ⊂ [−1, 1] with µ1(E) ≥

2(1− ε) we have

‖pn‖[−1,1] ≤ Tn
(

1 + ε

1− ε

)
‖pn‖E . (1.5)
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It should be noted that the explicit formula for Tn given above yields that
Tn
(

1+ε
1−ε
)
∼ ec n

√
ε. Hence (1.5) yields that

‖pn‖[−1,1] ≤ ec n
√
ε ‖pn‖E .

whenever µ1(E) ≥ 2(1− ε) (c is an absolute constant).
In all of the above inequalities by a standard linear transformation the in-

terval [−1, 1] can be replaced by [a, b]. In addition, it should be noted that
inequalities (1.1)–(1.4) are sharp with the Chebyshev Polynomial Tn(x) pro-
viding the extremal polynomial. (In case of Bernstein Inequality this is true for
certain x ∈ (−1, 1), while for Remez Inequality one has to take E = [−1, 1− 2ε]
and the translation of Tn into this interval.)

Now let us consider the set of multivariate algebraic polynomials of total
degree ≤ n and d real variables given by

P dn :=

{ ∑
|k|1≤n

ak x
k : ak ∈ R, k ∈ Zd+

}
.

Here for x = (x1, . . . , xd) ∈ Rd and k = (k1, . . . , kd) ∈ Zd+ we use the standard
notations

xk :=

d∏
j=1

x
kj
j , |x|p :=

( d∑
j=1

|xj |p
)1/p

, p > 0 .

Consider now a compact set K in Rd, and as above let

‖pn‖K := max
x∈K
|pn(x)|.

As it was indicated in the introduction in multivariate case the results in general
heavily depend on the geometry of underlying set K. First we shall consider
the case when K is a convex body in Rd, i.e., K is a closed bounded convex set
with a nonempty interior in Rd. In order to formulate the results we shall need
some auxiliary notations.

Let Sd−1 be the unit sphere in Rd and consider a unit vector v ∈ Sd−1.
Then the directional width of the convex body K in direction v is defined as

wv(K) := sup
{
|a− b|2 : a,b ∈ K, a− b = λv for some λ ∈ R

}
.

Clearly, wv(K) is just the length of the longest line segment having direction
v and imbedded into K. The global width of K can be defined by

w(K) := inf{wv(K) : v ∈ Sd−1}.

It can be shown that w(K) is also equal to the minimal distance between two
parallel supporting hyperplanes of K.
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If K possesses parallel supporting hyperplanes at two points A,B of its
boundary BdK, and h ∈ Sd−1 is the common normal to these hyperplanes
oriented so that 〈A,h〉 < 〈B,h〉, then the set

L := {x ∈ Rd : 〈A,h〉 ≤ 〈x,h〉 ≤ 〈B,h〉}

is called a supporting layer of K. Clearly, K is the intersection of its supporting
layers. Furthermore, given a supporting layer L its α-dilation, α > 0, is defined
as

Lα :=

{
x ∈ Rd :

〈
A− (α−1)

B−A

2
,h
〉
≤ 〈x,h〉 ≤

〈
B+(α−1)

B−A

2
,h
〉}

.

Note that if the distance between the boundary hyperplanes of the supporting
layer L is %, then for Lα this distance becomes α%. Hence Lα is the enlargment
(α > 1) or reduction (α < 1) of the layer L performed symmetrically around
the “middle” hyperplane of L. Using this notation we introduce the α-dilation
of convex body K by

Kα :=
⋂
{Lα : L is a supporting layer of K} , α > 0 .

Clearly, Kα ⊂ K if α < 1, and Kα ⊃ K if α > 1 (K1 = K).
After these preparations we can introduce the α(K,x) functional by

α(K,x) := inf{α > 0 : x ∈ Kα}.

This functional measures the “distance” from any x ∈ Rd to the boundary
BdK of K. Obviously, α(K,x) > 1 if x 6∈ K, α(K,x) < 1 if x ∈ IntK and
α(K,x) = 1 if x ∈ BdK. In the special case when K is central-symmetric
about 0, i.e., x ∈ K if and only if −x ∈ K, we have

Kα = αK = {αx : x ∈ K}

and

α(K,x) = ϕK(x) := inf {α > 0 : x/α ∈ K}.

Here ϕK(x) is the usual Minkowski functional centered at 0 of the convex body
K. Thus α(K,x) can be considered as a generalization of this functional to the
nonsymmetric case.

2. Chebyshev-Type Inequalities on Convex Bodies

Using the above definitions we can extend now Chebyshev Inequalities (1.1)
and (1.2) for the convex bodies in Rd.
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Theorem 1 (Kroó-Schmidt, [10]). For any x ∈ Rd \K we have

sup
p∈Pd

n

|pn(x)|
‖pn‖K

= Tn(α(K,x)).

(A partial result was given earlier by Rivlin-Shapiro [22].)

Now for any pn ∈ P dn denote by p∗n its n-th order homogeneous part, that
is

pn(x) =
∑
|k|1≤n

akx
k =

∑
|k|1=n

akx
k +

∑
|k|1

p∗n(x) =
∑
|k|1=n

akx
k .

For a fixed v ∈ Sd−1 consider the problem of estimating from above the quan-
tity |p∗n(v)| under condition that ‖pn‖K ≤ 1. Since p∗n(v) is a linear functional
of the leading coefficients of pn this question is related to the second Chebyshev
Inequality (1.2).

Theorem 2 (Kroó, [12]). For any v ∈ Sd−1

sup
p∈Pd

n

|p∗n(v)|
‖pn‖K

=
22n−1

wnv(K)
.

This theorem also yields the next

Corollary 1 ([12]). For any convex body K ⊂ Rd

sup
p∈Pd

n

‖p∗n‖Sd−1

‖pn‖K
=

22n−1

wn(K)
.

Theorems 1–2 provide analogues of Chebyshev Inequalities (1.1)–(1.2) for
convex bodies in Rd. (Recently in [25] an extension for R∞ was also given.)

Let us briefly describe now the extremal polynomials in Theorems 1
and 2. The extremal polynomials can be described using the next two Lemmas.

Lemma 1 ([10]). Given a convex body K ⊂ Rd and any x ∈ Rd \K there
exists a line ` through x intersecting BdK at A and B, so that K possesses
parallel supporting hyperplanes at A,B.

Lemma 2 ([11]). Let v ∈ Sd−1 and K ⊂ Rd be a convex body. Fur-
thermore, let A,B ∈ BdK be such that A − B = λv with some λ ∈ R, and
|A−B|2 = wv(K). Then K possesses parallel supporting hyperplanes at A,B.

Consider now the “ridge” polynomial Tn
(

2
〈h,B−A〉

〈
h,x− A+B

2

〉)
, where h,

is a normal to the parallel supporting hyperplanes of Lemma 1 or Lemma 2.
Then this polynomial will be extremal for Theorem 1 or Theorem 2, respec-
tively.

Finally, let us mention that while in the univariate case the extremal poly-
nomial for Chebyshev Inequalities is unique, the situation is more complex in
the multivariate setting, with both uniqueness and nonuniqueness occuring in
different cases. (The question of uniqueness for d = 2 and d > 2 is considered
in [12] and [23], respectively.)
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3. Markov, Bernstein and Remez-Type Inequalities on
Convex Bodies

Now we turn our attention to analogues of inequalities (1.3)–(1.4) in mul-
tivariate setting. We shall consider the directional derivatives

Dv pn := 〈∂pn,v〉, v ∈ Sd−1,

and denote by

Dpn := max
v∈Sd−1

|Dv pn| = |∂pn|2

the Eucledian norm of the gradient ∂pn of pn. Then the n-th Markov Factor
of the set K ⊂ Rd is given by

Mn(K) := sup
pn∈Pd

n

‖Dpn‖K
‖pn‖K

.

(Note that Markov Inequality (1.3) can be rewritten now as Mn([a, b]) =
2n2/b− a, since estimate (1.3) is attained by the Chebyshev polynomial trans-
lated to [a, b].)

The first sharp multivariate estimate of Mn(K) was given by Kellogg ([20]),
who showed that Mn(BR) = n2/R, where BR stands for the Eucledian ball of
radius R. Later Wilhelmsen [30] gave the following estimates for any convex
body K ⊂ Rd:

2n2

w(K)
≤Mn(K) ≤ 4n2

w(K)
.

(This was also proved for a triangle 4 ⊂ R2 in [28].)
(Note that w(BR) = 2R, i.e., Kellog’s result can be written as Mn(BR) =

2n2/w(BR).) The question of sharp constants in the above inequality remained
open for some time. Subsequently Sarantopoulos [26] and Baran [1] showed that
if K is a 0-symmetric convex body then

Mn(K) =
2n2

w(K)
, (3.1)

and for every pn ∈ P dn and x ∈ IntK

|Dv pn(x)| ≤ 2n‖pn‖K
wv(K)

√
1− ϕ2

K(x)
, (3.2)

where ϕK(x) is the Minkowski functional of K centered at 0. The last inequal-
ity is a sharp equivalent of (1.4) for central symmetric convex bodies.

Surprisingly, the situation turned out to be quite different in nonsymmetric

case. It was shown in [7] that Mn(K) > 2n2

w(K) , in general, when K ⊂ R2 is

a triangle. Recently, Skalyga [27] settled the question of sharp Markov-type
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inequality for nonsymmetric convex bodies. He verified that for every convex
body K ⊂ Rd

Mn(K) ≤
2n cot π

4n

w(K)
,

and this inequality is sharp, in general, in the class of all convex bodies in Rd.
(Note that for large n cot π

4n ∼
4n
π , i.e. we obtain a constant ∼ 8n2/πw(K).)

A sharp Bernstein-type inequality for non-symmetric convex bodies was
given by Kroó, Révész [11]: whenever x ∈ IntK,

|Dv pn(x)| ≤ 2n‖pn‖K
wv(K)

√
1− α(K,x)

, pn ∈ P dn . (3.3)

Note that the same “distance” functional used for Chebyshev-type inequalities
comes into play here. In general, (3.2) can not be deduced from (3.3), but
nevertheless the constant 2 in (3.3) can not be replaced by 2− ε, ε > 0. (This
can be seen by taking K and x such that α(K,x) is small.)

Since by the Baran-Sarantopoulos theorem Mn(K) = 2n2

w(K) whenever K

is central-symmetric about 0 this leads to the natural question of extremal
polynomials in this equality. It can be easily shown that there exist points A ∈
BdK for which |A|2 = w(K)/2 and that polynomial Tn

( 2〈x,A〉
w(K)

)
is extremal

for relation (3.1) with largest derivatives attained in radial directions. It is
shown in [14] that any polynomial extremal for (3.1) must coincide along some

line passing through 0 with Tn
( 2〈x,A〉
w(K)

)
. This “weak” uniqueness of extremal

polynomials can be extended further only under some additional conditions
([14], [24]).

Now we present a Remez–type inequality first given in Brudnyi and Ganz-
burg [6]. For any convex body K ⊂ Rd and a subset F ⊂ K satisfying µd(F ) ≥
(1− ε)µd(K) we have

‖pn‖K ≤ Tn
(

1 + ε1/d

1− ε1/d

)
‖pn‖F , pn ∈ P dn . (3.4)

Moreover, equality in (3.4) is attained for some pn and F if and only if K is a
convex cone. (Estimate (3.4) easily extends to starlike domains, see [10].) As
it was mentioned above Tn

(
1+ε
1−ε
)
∼ ec n

√
ε, i.e., we obtain from (3.4) that

‖pn‖K ≤ ec n ε
1/2d

‖pn‖F . (3.5)

Thus the increase in dimension d clearly has an adverse effect on the rate of
convergence ‖pn‖F → ‖pn‖K as µd(F )→ µd(K), i.e., ε→ 0.

Inequalities (3.1)–(3.4) of this section give sharp Markov, Bernstein and
Remez-type inequalities on convex bodies. Clearly they can be extended to the
sets which are unions of convex bodies K with w(K) ≥ δ > 0. Sets of this type
are called noncuspidal. Of course, exact constants can not be given anymore,
but the asymptotic value with respect to n (and ε in case of (3.4)–(3.5)) remains
the same for noncuspidal sets.
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4. Effects of Smooth Boundary on Markov and Remez-
Type Inequalities

In this section we shall adress the following natural question: what are
the effects of smoothness of the boundary of the underlying set K ⊂ Rd on
resulting Markov and Remez-type inequalities? First we look at the Markov
problem on a regular convex body K, that is we shall assume that K possesses
a unique supporting hyperplane at every point of its boundary. In addition, let
us assume that 0 ∈ IntK, and consider the 0-centered Minkowski functional

ϕK(x) := inf{α > 0 : x/α ∈ K}.

Then ϕK(x) ≤ 1 if and only if x ∈ K, and the gradient ∂ϕK(x) of the
Minkowski functional (which provides the outer normal to BdK at x) is con-
tinuous on BdK. Hence

ω(∂ϕK , t) := max
x,y∈BdK, |x−y|2≤t

|∂ϕK(x)− ∂ϕK(y)|2 → 0

as t→ 0+.
Clearly, smoothness of the boundary does not effect the rate of the usual

Markov Factor Mn(K), since even for the unit ball B1 we have Mn(B1) = n2.
The situation changes dramatically if only tangential derivatives on BdK are
considered. Namely, we introduce the so-called Tangential Markov Factor:

MT
n (K) := sup

{
|Dvpn(x)| : x ∈ BdK, v ∈ Sd−1 is tangent to BdK at x,

pn ∈ P dn , ‖pn‖K ≤ 1
}
.

It should be noted that the crucial difference in the definition of MT
n (K)

compared to Mn(K) consists in the fact that intstead of estimating Dv pn(x) in
all directions v ∈ Sd−1 we only consider the derivatives in tangential directions.
This notation leads to the following

Theorem 3 (Kroó, [16]). If K ⊂ Rd is a regular convex body then

MT
n (K) = O

(
1

w−1
K (1/n2)

)
, (4.1)

where ωK(t) = tω(∂ϕK , t), and ω−1
K stands for its inverse. Moreover this

estimate is asymptotically sharp, in general.

In particular the above estimate yields that MT
n (K) = o(n2) for every

regular convex body. Furthermore, if the boundary of K is Cq-smooth, 1
covered by an `q-ball inscribed into K), then ωK(t) ∼ tq, and we obtain from
(4.1) that MT

n (K) = O(n2/q). In case of C2-smoothness (q = 2) this yields
MT
n (K) = O(n). All of the above exhibit a significant improvement compared

to the rate Mn(K) ∼ n2 of the usual Markov Factors.
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It is also interesting to consider the Markov problem for homogeneous poly-
nomials of degree n

Hd
n :=

{ ∑
|k|1=n

ak x
k : ak ∈ R

}
.

Clearly, h(tx) = tnh(x) for any h ∈ Hd
n, x ∈ Rd, t ∈ R. Therefore radial

derivatives of h ∈ Hd
n have magnitude n. Since in case of ordinary polynomials

of total degree ≤ n the largest derivatives of order n2 are attained precisely
in radial directions it is natural to expect that better bounds should hold for
Markov Factors of homogeneous polynomials defined by

M∗n(K) := sup
h∈Hd

n

‖Dh‖K
‖h‖K

.

It was proved by Harris [9] that for any convex body K ⊂ Rd

M∗n(K) = O(n log n) . (4.2)

In a recent paper [17] we show that for regular convex bodies

M∗n(K) ≤ c n
∫ 1

1/n

ω(∂ϕK , t)

t
dt . (4.3)

This clearly yields that M∗n(K) = o (n log n) for every regular convex body.
Moreover, under the mild restriction∫ 1

0

ω(∂ϕK , t)

t
dt <∞

we obtain M∗n(K) = O(n).
Let us also mention two converse results from [17]. One of them comple-

ments (4.2) by stating that M∗n(K) ≥ c n log n whenever K is a nonregular
0-symmetric convex body. Furthermore, for arbitrary εn ↓ 0+ one can con-
struct a regular convex body K ⊂ Rd (0 ∈ IntK) so that M∗n(K) ≥ εn n log n
for every n ∈ N. This shows that estimate M∗n(K) = o (n log n) is sharp in the
class of all regular convex bodies. The question of reversing the more delicate
inequality (4.3) remains open.

Now let us consider the effects of the smooth boundaries on the Remez-type
inequalities (3.4)–(3.5). It is proved in [13] that in case when K ⊂ Rd has a
Cq-boundary (i.e., points of K can be covered by inscribed `q-balls) 1 ≤ q ≤ 2
then (3.5) can be replaced by the estimate

‖pn‖K ≤ ec n ε
q/(2d+2q−2)

‖pn‖F . (4.4)

Since q
2d+2q−2 >

1
2d whenever q > 1 the estimate (4.4) is sharper than (3.5) for

q > 1 (smooth boundaries). The best rate in (4.4) is attained when q = 2 with

ε
1

d+1 replacing ε
1
2d . The estimate (4.4) is also shown to be sharp, in general.
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5. Markov-Type Inequalities for Cuspidal Sets

As it was mentioned above the rate of the Markov Factors remains n2

for those sets which have the property that their points can be covered by
inscribed convex bodies (of width separated from 0). The situation changes
substantially in presense of cusps, that is, points which can not be covered by
convex bodies inscribed into underlying set. For cuspidal domains the rate of
the Markov Factors can increase substantially. The first example of this nature
was provided by Goetgheluck [31] who showed that for

Dp := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ xp}, p > 1,

we have Mn(Dp) ∼ n2p. Clearly, 0 is a cuspidal point for Dp an this results in
a dramatic increase of the rate of Markov Factors.

In order to give a systematic study of Markov Factors for cuspidal domains
we need to introduce some structural properties of cuspidal points. We shall
assume that any point x of the underlying set K can be connected to IntK
by a curve γ(t), 0 ≤ t ≤ 1, so that B(γ(t), ϕ(t)) ⊂ K, 0 ≤ t ≤ 1, γ(0) = x.
Here ϕ(t) is a fixed “width” function which measures cross-sections of cusps,
B(a, r) = {x ∈ Rd : |x − a|2 ≤ r} is the ball of radius r centered at a.
Typically, ϕ(t) = o(t) for cuspidal domains. The connecting curves γ can
be taken to be polynomial, analytic, etc. Correspondingly, we say that K is
polynomially or analytically connected. Thus the structure of cuspidal domains
will depend on the analytic properties of connecting curves and the size of
the width function ϕ(t). The above concept was introduced by Pawlucki and
Plesniak [21] with polynomial curves. They also gave first estimates of Markov
Factors for polynomially connected cuspidal domains.

Let us list now some asymptotically sharp bounds for polynomially con-
nected domains given in Baran [2], and Kroó, Szabados [18]:

1) if the width function ϕ(t) has polynomial growth (i.e. t−βϕ(t) is a de-
creasing function for some β > 1), then

Mn(K) = O(1/ϕ(n−2)) ;

2) in case of an arbitrary width function

Mn(K) = O(en δn) ,

where δn is the solution of n
√
δ = log 1

ϕ(δ) .

Note that δn defined above always tends to 0 as n → ∞, i.e., we obtain
from the second statement that

lim sup
n→∞

M1/n
n (K) = 1 (5.1)

whenever K is polynomially connected. The growth condition (5.1) is usually
called subexponential.



András Kroó 29

This leads to the natural question of what conditions guarantee the subex-
ponential growth (5.1) of the Markov Factors? It was shown independently
by Kroó [15] and Totik [29] that subexponential increase (5.1) holds whenever
K is analytically connected. Moreover, Totik [29] also gives an example of a
C∞-connected domain for which Markov Factors grow exponentially.

Thus subexponential growth (5.1) holds for analytically connected domains,
and fails, in general, for C∞-connected sets. On the other hand, in general,
analytic connectedness is not necessary for (5.1) to hold: there exist simple
transcendental domains without analytic connectedness whose Markov Fac-
tors are subexponential. An example of this phenomenon is given in Erdélyi,
Kroó [8] where it is shown that for the transcendental domain

Kα := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, xα ≤ y ≤ 2xα},

α > 1 irrational, the relation

Mn(Kα) ≤ nc logn

holds.
The exact rate of Markov Factors of “banana” shaped domains Kα is not

known even for α = p
q rational. The existing estimates (see [18]) yield

c2n
2p/q ≤Mn(Kα) ≤ c1 n2p, α =

p

q
> 1 .

6. Tangential Markov-Bernstein Inequalities on Curves

In this section we shall consider the following tangential Markov and Bern-
stein Factors on curves Γ ⊂ R2,

MT
n (Γ) := sup

pn∈P 2
n

‖DT pn(x)‖Γ
‖pn‖Γ

,

BTn (Γ,x) := sup
pn∈P 2

n

|DT pn(x)|
‖pn‖Γ

, x ∈ Γ ,

where DT pn(x) denotes the tangential derivative of pn at x ∈ Γ, i.e., the
derivative in (unit) tangential direction to Γ at x. It turns out that the magni-
tude of the quantities MT

n (Γ) and BTn (Γ, x) can vary substantially depending
on the analytic properties of the underlying curve Γ. It is known (see [3]) that
the optimal rates MT

n (Γ) ∼ n2 and BTn (Γ, x) ∼ n can be attained essentially
only for algebraic curves. In order to illustrate the dependence between struc-
tural properties of Γ and rates of MT

n (Γ) and BTn (Γ, x) we shall consider some
“model” nonalgebraic curves, namely

Γ = {(x, ex)} or Γ = {(x, xα)}, x ∈ [a, b]
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where α > 1 is not an integer.
First we consider the analytic case (that is, we assume that a > 0 if Γ =

{(x, xα)}). Denote by dn(Γ) the dimension of P 2
n on Γ. Clearly, dn(Γ) ∼ n2

if Γ = {(x, ex)} or {(x, xα)} with irrational α, and dn(Γ) ∼ n if Γ = {(x, xα)}
and α is rational.

Theorem 4 (Kroó and Szabados [19]). Let Γ = {(x, ex), x ∈ [a, b]} or
Γ = {(x, xα), x ∈ [a, b], α > 1, a > 0}. Then

BTn (Γ, x) ∼ d2
n(Γ)

1 + dn(Γ)
√

(x− a)(b− x)
, x ∈ [a, b] .

The above general result yields that

BTn (Γ, x) ∼ dn(Γ)√
(x− a)(b− x)

, a+ d−2
n (Γ) ≤ x ≤ b− d−2

n (Γ) (6.1)

and

MT
n (Γ) ∼ d2

n(Γ) , (6.2)

for Γ as in the above theorem. In particular, MT
n (Γ) ∼ n4 for Γ = {(x, ex)}.

This latter result also appears in Bos, Brudnyi, Levenberg, Totik [5]. It should
be noted that relations (6.1)–(6.2) are analogous to (1.3)–(1.4) with the dimen-
sion dn(Γ) replacing n!

Now let us consider the nonanalytic case, that is, Γα := {(x, xα), 0 ≤ x ≤ 1}
and α > 1 not an integer. In this case the rates of Markov and Bernstein Factors
will differ depending on α being rational or irrational. If α = p

q is rational,

then we have MT
n (Γα) ∼ n2q (see Bos, Levenberg, Milman, Taylor [4]). The

rate of the Bernstein Factor is given in Kroó, Szabados [19]:

BTn (Γα, x) ∼ n

x1−1/2q
√

1− x
, n−2q ≤ x ≤ 1− n−2.

In case when α > 1 is irrational the Markov Factors have exponential rate!
That is, for some A,B > 1 we have

Bn ≤MT
n (Γα) ≤ An .

This was verified independently in Bos, Brudnyi, Levenberg, Totik [5], and
Erdélyi, Kroó [8].

In addition, Kroó, Sabados [19] found the rate of Bernstein Factors for Γα,
α irrational:

BTn (Γα, x) ∼ n3/2

x
√

log 1/x
, e−

c n
log n ≤ x ≤ 1− n−3.
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Thus one can observe that for Γα, α > 1 irrational the regular pattern ((1.3)–
(1.4) or (6.1)–(6.2)) of Markov–Bernstein Factors is not preserved anymore.
Based on this observation one can predict that solving the problem for general
curves must be rather hard. It is not even clear what properties of Γ yield
polynomial or subexponential growth of Markov Factors MT

n (Γ). An example

given in [3] shows that for Γ = {(x, f(x)} with f(x) =
∞∑
k=0

ck x
nk being a rather

lacunary gap series the Markov Factors can grow arbitrarily fast. This means
that analyticity by itself does not guarantee some regular behaviour of Markov
Factors.
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