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Nonlinear n-term Approximation from
Hierarchical Spline Bases

Pencho Petrushev ∗

This article is a survey of some recent developments which concern two
multilevel approximation schemes: (a) Nonlinear n-term approximation
from piecewise polynomials generated by anisotropic dyadic partitions
in Rd, and (b) Nonlinear n-term approximation from sequences of hi-
erarchical spline bases generated by multilevel triangulations in R2. A
construction is given of sequences of bases consisting of differentiable (in
Cr with r ≥ 1) piecewise polynomials (splines) over multilevel triangula-
tions, which allow triangles with arbitrarily sharp angles. Both schemes
are based on multiscale decompositions that are defined through mul-
tilevel nested partitions and their common features are best captured
by the term “multiresolution”, which also relates them to wavelets. In
contrast to the wavelet case, these are highly nonlinear approximation
methods from redundant systems with a great deal of flexibility. It is
shown that the rates of nonlinear n-term spline approximation, when us-
ing the above schemes with an arbitrary but fixed multilevel partition
or triangualtion, are governed by certain smoothness spaces, called B-
spaces. Unlike the commonly used Besov spaces, the B-spaces allow to
characterize all rates of approximation, which gives more complete re-
sults in the isotropic case as well. An effective algorithm is described
for finding, for a given function, an anisotropic dyadic partition which
minimizes the corresponding B-norm of the function and thus provides
an optimal rate of highly nonlinear approximation using the first scheme
above. Scalable algorithms are given for nonlinear approximation which
both capture the rate of the best approximation and provide the basis
for numerical implementation.

1. Introduction

Nonlinear approximation of functions in dimensions d > 1 is a challenging
area, specially when one moves away from regular (i.e., tensor product type)
schemes in order to more adequately approximate functions with singulari-
ties along curves and with other anisotropies. One of the most natural tools
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for approximation is piecewise polynomials over triangulations, and a funda-
mental problem is to characterize the rate of nonlinear approximation in Lp
(0 < p ≤ ∞) in terms of properly defined global smoothness conditions. This
problem is disheartening if one allows the nonlinear approximation to be from
any piecewise polynomial over an arbitrary triangulation. The difficulty stems
from the highly nonlinear nature of piecewise polynomials in dimensions d > 1.
For instance, if s1 and s2 are two piecewise polynomials over n triangles in R2

each, then s1 + s2 is in general a piecewise polynomial over many more than
n (even > n2) pieces. Therefore, the well-known Jackson-Bernstein estimate
machinery is not applicable in this case. In addition, if we are interested in dif-
ferentiable piecewise polynomials (splines), which is an important requirement
for surface modeling, for example, then the problem becomes much harder.
Indeed, even for a general triangulation of a polygonal domain in R2 consisting
of a finite number of triangles, the corresponding space of all piecewise poly-
nomials of degree < k and smoothness r ≥ 1 can be very complicated. For
example, the dimension of this space is not known and stable local bases are
impossible, in general, if k ≤ 3r + 2 [4].

A reasonable alternative to “spline approximation with free triangulations”
is “nonlinear n-term approximation from hierarchical spline bases, associated
with mutiresolution structures”. These are highly nonlinear approximation
methods from large redundant systems which allow a great deal of flexibility.
This article will focus on two multilevel approximation schemes:

(a) Nonlinear n-term approximation from piecewise polynomials generated
by dyadic partitions in Rd.

(b) Nonlinear n-term approximation from hierarchical spline bases associ-
ated with spline multiresolution over multilevel nested triangulations in R2.
We next explain these two classes of highly nonlinear approximation methods
linked by the concept of “multiresolution”.

First, let (Pm)m∈Z be an arbitrary sequence of dyadic partitions of Rd
(d > 1) such that each level Pm is a partition of Rd into disjoint dyadic boxes
I of volume |I| = 2−m, (Pm) are nested, and the boxes in P form a single
tree with respect to the inclusion relation. Set P =

⋃
m∈Z Pm. Evidently, each

dydic box in Pm can be subdivided in d (d > 1) different ways (with children
in Pm+1) and hence there is a huge variety of anisotropic dyadic partitions.
We denote by Sk,−1(Pm) the set of all (discontinuous) piecewise polynomials
of degree < k over the boxes of Pm. Evidently, we have

· · · ⊂ Sk,−1(P−1) ⊂ Sk,−1(P0) ⊂ Sk,−1(P1) ⊂ · · · . (1.1)

Consider now the problem for nonlinear (n-term) approximation in Lp from
the set Σkn(P) of all piecewise polynomials of the form s =

∑
I∈Λn

1I ·PI , where
1I is the characteristic function of I, PI is a polynomial of degree < k, Λn ⊂ P
with cardinality #Λn ≤ n, and Λn may very. When the partition P is allowed
to vary, the approximation from (Σkn(P)) is highly nonlinear with a lot of
flexibility.



Pencho Petrushev 35

Of course, much more flexibility is achieved in the second approximation
scheme, where the dyadic partitions are replaced by multilevel nested trian-
gulations. Consider a sequence (Tm)m∈Z of partitions of R2 (here d = 2 for
simplicity only) into triangles with disjoint interiors such that each level Tm is
a refinement of the previous level Tm−1. Let T :=

⋃
m∈Z Tm. We assume that

the partitions (Tm)m∈Z satisfy certain natural mild conditions which prevent
them from deterioration, but still allow the triangles to change in size, shape,
and orientation quickly when moving around at a given level or through the
levels. In particular, triangles with arbitrarily sharp angles are allowed in any
location and at any level. We denote by Sk,r(Tm) the set of all r-times differ-
entiable piecewise polynomials of degree < k over the triangles of Tm. Assume
that there exists a multiresolution consisting of a ladder of spaces

· · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · , Sm ⊂ Sk,r(Tm) (1.2)

with bases Φm of Sm, m ∈ Z. Set ΦT :=
⋃
m∈Z Φm.

This structure is quite similar to a wavelet multiresolution analysis with
ΦT playing the role of the set of wavelet scaling functions. It lacks the ex-
plicit orthogonal (or biorthogonal) structure of wavelets but has much more
flexibility.

We now consider the problem for nonlinear (n-term) approximation from
the set Σn(ΦT ) of all piecewise polynomials of the form s =

∑n
j=1 cjϕj , where

ϕj ∈ ΦT may come from arbitrary levels and locations.
For both approximation schemes, the first primary goal is to characterize the

rates of approximation in Lp from (Σkn(P)) or (Σn(ΦT )) (with P or T fixed)
in terms of certain global smoothness conditions of the function f which is
being approximated. Secondly, in both cases, it is highly desirable to construct
algorithms which capture the rate of the best n-term approximation. Thirdly,
it is natural to add another degree of nonlinearity by allowing P or T to vary
with f . Then an important problem is to find , for a given function f , an
optimal partition or triangulation in which f exhibits the most smoothness.
Of course, the ultimate problem here is to characterize the rates of nonlinear
n-term approximation, when the partition or triangulation is allowed to very.
Evidently, these goals are easier to achieve when developing the approximation
theory of the first scheme above (approximation from piecewise polynomials
over dyadic partitions). So, it is natural that every advancement in the theory
of the second approximation method be preceded by a similar result in the first
theory.

We next give in more specific terms the program that will lead us in de-
veloping the theory and algorithms of nonlinear spline approximation in this
article:

(i) Construct hierarchical sequences of bases (Φm)m∈Z on multilevel triangu-
lations satisfying certain natural requirements of local regularity but allowing
triangles with arbitrarily sharp angles. For the first approximation method,
there is no alternative but to approximate from discontinuous piecewise poly-
nomials.



36 Nonlinear Spline Approximation

(ii) To quantify the approximation process, introduce and develop collec-
tions of smoothness spaces (B-spaces) depending on ΦT or P. So, the idea
is to measure the smoothness of the functions using in each case a family of
smoothness space scales which vary with ΦT or P, instead of a single space
scale like the scale of Besov spaces.

(iii) Develop a coherent theory of nonlinear n-term approximation from ΦT
or from piecewise polynomials over an arbitrary (fixed) dyiadic partition based
on the idea of proving Jackson and Bernstein estimates using B-spaces and
interpolation.

(iv) Utilize this theory in the development of algorithms for nonlinear piece-
wise polynomial (spline) approximation which capture the rate of the best ap-
proximation.

(v) Develop an algorithm which, for a given function f , finds an optimal
partition or triangulation in which f exhibits the most smoothness with respect
to the corresponding B-spaces. Characterize the nonlinear n-term approxima-
tion from any collection {ΦT }T (T is allowed to very with f) and similarly
for n-term approximation from piecewise polynomials over anisotropic dyadic
partitions.

The above program was suggested in [21, 28] and implemented in [11, 21, 22,
28]. The first step in the program was developed in [11], where the construction
from [10] was adapted. The idea for constructing B-spaces and applying them
to nonlinear approximation was first utilized in [28] in the case of nonlinear
approximation from piecewise polynomials over anisotropic dyadic partitions
of Rd. This idea was further implemented in [21] and fully developed in [11].
Note that the B-spaces can be viewed as a generalization of the approximation
spaces considered in §3.4 of [25]. More precisely, in the specific setting of [25],
the approximation spaces there are B-spaces. The characterization of nonlin-
ear n-term approximation from piecewise polynomials over a fixed anisotropic
dyadic partition P was established in [28], and from a single family of basis
functions Φ in [11, 21]. In [22], three algorithms for nonlinear n-term approx-
imation in Lp (0 < p ≤ ∞) from Courant bases are developed, which both
capture the rate of the best approximation and provide the basis for numerical
implementation. These algorithms can be immediately implemented for non-
linear n-term approximation from differentiable spline bases as well. Naturally,
the last step in the above program presents the most challenging problems. The
problem for finding, for a given function f , an optimal dyadic partition in which
f exhibits the most smoothness has a complete and efficient solution (see [28])
and it remains open in the case of approximation from piecewise polynomials
over multilevel triangulations. The more delicate problem for characterization
of highly nonlinear n-term approximation from collections of basis families, i.e.,
when the partition or triangualtion may very, is open as well.

The theory of nonlinear n-term approximation from box splines (uniform
triangulations) has been developed in [15] (p < ∞) and [18] (p = ∞) (see
also [6, 7] and the references therein, and [23]). In these articles, the rates of
nonlinear spline approximation are characterized by using certain Besov spaces.
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However, even in this isotropic case, the results which utilize B-spaces (in place
of Besov spaces) are more complete since (unlike Besov spaces) they character-
ize nonlinear n-term box spline approximation for all rates of approximation.

The situation in the univariate nonlinear piecewise polynomial approxima-
tion is quite unique, since the scale of Besov spaces Bα,kτ (Lτ ) (1/τ = α+ 1/p)
governs all rates of approximation in this case (see [27]).

Nonlinear spline approximation in the norms of Besov spaces has been con-
sidered in [24]. In the present article, we do not go beyond approximation in
Lp, 0 < p ≤ ∞.

There is an apparent connection between the developments presented in this
article and multilevel finite element methods for PDEs, see, e.g., [25]. It seems
reasonable to develop finite element algorithms for solving PDEs which achieve
the rate of the best nonlinear n-term spline approximation to the solution.

The idea of using B-spaces is not limited only to nonlinear piecewise polyno-
mial approximation. It can be implemented immediately to nonlinear n-term
approximation from refinable functions, in general, and to wavelet approxima-
tion, in particular. This is, however, beyond the scope of this article.

There is a strong relationship between rational and nonlinear spline approx-
imation which we shall not bring forward here (see, e.g., [28, 29]).

The outline of the article is the following. In §2, we explain some basic
principles of nonlinear n-term approximation. In §3, we introduce and discuss
the B-spaces needed for the characterization of nonlinear n-term approximation
from families of basis functions over multilevel nested tiangulations in R2. In
§4, we introduce the B-spaces over dyadic partitions in Rd. In §5, we clarify
the relations between B-spaces and Besov spaces in the univariate case. In
§6, we consider nonlinear approximation from piecewise polynomials generated
by dyadic partitions of Rd. In §7, we present the theory of nonlinear n-term
approximation from piecewise polynomials over multilevel nested tiangulations
in R2. In §8, we present the basic results of nonlinear spline approximation
in dimension d = 1. In §9, we consider algorithms for nonlinear n-term spline
approximation. In §10, we give some concluding remarks and open problems.

Throughout this article, the positive constants are denoted by c, c1, . . . and
they may vary at every occurrence, A ≈ B means c1A ≤ B ≤ c2A, and A := B
or B =: A stands for “A is by definition equal to B”; Πk denotes the set of all
algebraic polynomials in d variables of total degree < k (usually d = 2). For
a set E ⊂ Rd, 1E denotes the characteristic function of E, and |E| denotes
the Lebesgue measure of E. Since we systematically work with quasi-normed
spaces such as Lp, 0 < p < 1, “norm” will stand for “norm” or “quasi-norm”.

2. Nonlinear n-term Approximation: The Principles

In this section, we give some of the general principles of the theory of
nonlinear n-term approximation which will guide us throughout this article.
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Let X be a normed or quasi-normed function space, where the approx-
imation takes place (in this article, X = Lp(E), 0 < p ≤ ∞). Suppose
Φ = {ϕθ}θ∈Θ is a collection of elements in X which is, in general, redun-
dant, and we are interested in nonlinear n-term approximation from Φ, which
we describe in what follows. Let Σn denote the nonlinear set of all function s
of the form

s =
∑
θ∈Λn

aθϕθ,

where Λn ⊂ Θ, #Λn ≤ n, and Λn may vary with s. The error of n-term
approximation to f ∈ X from Φ is defined by

σn(f) := inf
S∈Σn

‖f − S‖X .

Our primary goal is to describe all rates of nonlinear n-term approximation from
Φ. More precisely, we want to characterize the approximation space generated
by nonlinear n-term approximation from Φ.

Approximation spaces. We define the approximation space Aγq := Aγq (Φ, X),
α > 0, 0 < q ≤ ∞, as the set of all functions f ∈ X such that

‖f‖Aγq := ‖f‖X +

( ∞∑
n=1

(nγσn(f))q
1

n

)1/q

<∞ (2.1)

with the `q-norm replaced by the sup-norm if q = ∞. Thus Aγ∞ is the set of
all f ∈ X such that σn(f) = O(n−γ).

An important feature of nonlinear n-term approximation is that (no matter
what the family Φ is) there is no saturation, which means that the approxi-
mation space Aγq (Φ, X) is nontrivial for every 0 < γ < ∞. Therefore, we are
interested in characterizing the approximation spaces Aγq (Φ, X) in the whole
range of the parameters γ and q. To achieve this goal, we shall use the ma-
chinery of Jackson and Bernstein estimates plus interpolation spaces.

Interpolation spaces. We recall some basic definitions from the real in-
terpolation method. We refer the reader to [1] and [2] as general references
for interpolation theory. Let X and B be two quasi-normed speces such that
B ⊂ X (B is continuously embedded in X) and suppose that ‖ · ‖B satisfies
the τ -triangle inequality: ‖f + g‖τB ≤ ‖f‖τB + ‖g‖τB with 0 < τ ≤ 1. We shall
also assume that Φ ⊂ B. The K-functional is defined for each f ∈ X by

K(f, t) := K(f, t;X,B) := inf
g∈B

(‖f − g‖X + t‖g‖B), t > 0.

The real interpolation space (X,B)λ,q with 0 < λ ≤ 1 and 0 < q ≤ ∞ is defined
as the set of all f ∈ X such that

‖f‖(X,B)λ,q := ‖f‖X +

(∫ ∞
0

(t−λK(f, t))q
dt

t

)1/q

<∞,
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where the Lq-norm is replaced by the sup-norm if q = ∞. It is readily seen
that

‖f‖(X,B)λ,q ≈ ‖f‖X +
( ∞∑
m=0

[2mλK(f, 2−m)]q
)1/q

.

A pair of companion Jackson and Bernstein estimates yields direct
and inverse estimates for n-term approximation from Φ, which involve the K-
functional.

Theorem 1. (a) Suppose α > 0 and for each f ∈ B the following Jackson
inequality holds:

σn(f) ≤ cn−α‖f‖B , n = 1, 2, . . . (2.2)

Then, for f ∈ X,

σn(f) ≤ cK(f, n−α), n = 1, 2, . . .

(b) Suppose α > 0 and the following Bernstein inequality holds:

‖s‖B ≤ cnα‖S‖X , for s ∈ Σn, n = 1, 2, . . . (2.3)

Then, for f ∈ X,

K(f, n−α) ≤ cn−α
[
‖f‖τX +

n∑
ν=1

1

ν
(νασν(f))τ

]1/τ

, n = 1, 2, . . .

For the proof of this theorem, see, e.g., [29].

An immediate consequence of Theorem 1 is that if the Jackson and Bern-
stein inequalities (2.2) and (2.3) hold, then σn(f) = O(n−γ), 0 < γ < α, if
and only if K(f, n−α) = O(n−γ). In general, Theorem 1 readily implies the
following characterization of the approximation spaces Aγq (Φ):

Theorem 2. If the Jackson and Bernstein inequalities (2.2) and (2.3)
hold, then

Aγq (Φ, X) = (X,B) γ
α ,q
, 0 < γ < α, 0 < q ≤ ∞,

with equivalent norms.

General embedding theorem and Jackson estimate. Jackson estimates
are easy to prove when approximating in Lp, 0 < p < ∞ from families Φ
consisting of well localized functions. We first give an embedding theorem
which is crucial for the whole development.

Theorem 3. Suppose (Φm) is a sequence of functions in Lp(Rd), d ≥ 1,
0 < p <∞, which satisfies the following additional properties when 1 < p <∞:

(i) Φm ∈ L∞(R2), supp Φm ⊂ Em with 0 < |Em| <∞, and

‖Φm‖∞ ≤ c1|Em|−1/p‖Φm‖p.
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(ii) If x ∈ Em, then ∑
Ej3x, |Ej |≥|Em|

(|Em|/|Ej |)1/p ≤ c1,

where the summation is over all indices j for which Ej satisfies the indicated
conditions. Denote f :=

∑
m Φm and assume that for some 0 < τ < p

N(f) := (
∑
m

‖Φm‖τp)1/τ <∞. (2.4)

Then
∑
m |Φm(·)| < ∞ a.e. on Rd, and hence, f is well-defined on Rd, f ∈

Lp(Rd), and

‖f‖p ≤ ‖
∑
m

|Φm(·)|‖p ≤ cN(f),

where c = c(α, p, c1).
Furthermore, if 1 ≤ p < ∞, condition (2.4) can be replaced by the weaker

condition

N(f) := ‖(‖Φm‖p)‖w`τ <∞, (2.5)

where ‖(xm)‖w`τ denotes the weak `τ -norm of the sequence (xm):

‖(xm)‖w`τ := inf{M : #{m : |xm| > Mn−1/τ} ≤ n for n = 1, 2, . . . }.

Theorem 4 (Jackson estimate). Under the hypothesis of Theorem 3, sup-
pose (Φ∗m)∞j=1 is a rearrangement of the sequence (Φm) such that ‖Φ∗1‖p ≥
‖Φ∗2‖p ≥ . . . . Set sn :=

∑n
j=1 Φ∗j . Then

‖f − sn‖p ≤ cn−αN(f) with α = 1/τ − 1/p,

where c = 1 if 0 < p ≤ 1 and c = c(α, p, c1) if 1 < p < ∞. Furthermore, the
estimate remains valid if condition (2.4) is replaced by (2.5) when 1 ≤ p <∞.

For the proof of Theorems 3-4, see [21, 28]. Note that there is no simple
recipe for proving Jackson estimates in the uniform norm. More sophisticated
techniques are needed in this case (see §9). There is no simple recipe for proving
Bernstein estimates as well (see [11, 21, 28]).

3. B-spaces Generated by Spline Multiresolution over
Multilevel Nested Triangulations in R2

In this section, we introduce and discuss the smoothness spaces (B-spaces)
needed for the characterization of nonlinear n-term approximation generated
by sequences of hierarchical (multiscale) spline bases over triangulations. We
include all necessary tools for B-spaces and, in particular, three types of trian-
gulations, a description of hierarchical spline bases in general and a construction
of concrete differentiable spline bases, etc. We refer the reader to [11, 21, 22]
as references for this section.
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3.1. Multilevel Triangulations

Here we introduce several types of multilevel nested triangulations which
will be needed for the definition of sequences of spline bases and B-spaces. Each
triangulation exists in two versions, namely, for E = R2 and for any compact
polygonal domain E ⊂ R2. Since there is no substantial difference between
them we shall present in detail only the triangulations on R2.

Weak locally regular (WLR) triangulations. We call T =
⋃
m∈Z Tm a

weak locally regular (WLR) triangulation of R2 with levels (Tm) if the following
conditions are fulfilled:

(a) Every level Tm is a partition of R2, that is, R2 =
⋃

∆∈Tm ∆ and Tm
consists of closed triangles with disjoint interiors.

(b) The levels (Tm) of T are nested, i.e., Tm+1 is a refinement of Tm.
(c) Each triangle ∆ ∈ Tm (m ∈ Z) has at least two and at most M0 children

(subtriangles) in Tm+1, where M0 ≥ 4 is a constant.
(d) For any compact K ⊂ R2 and any fixed m ∈ Z, there is a finite collection

of triangles from Tm which cover K.
(e) There exist constants 0 < r < ρ < 1 (r ≤ 1

4 ) such that for each ∆ ∈ Tm
(m ∈ Z) and any child ∆′ ∈ Tm+1 of ∆

r|∆| ≤ |∆′| ≤ ρ|∆|. (3.1)

We denote by Vm and Em the sets of all vertices and edges of Tm, respectively.

We also set V =
⋃
m∈Z
Vm and E =

⋃
m∈Z
Em.

Locally regular (LR) triangulations. We call T =
⋃
m∈Z Tm a locally

regular (LR) triangulation of R2 if T is a WLR-triangulation of R2 and satisfies
the following additional conditions:

(f) No hanging vertices condition: No vertex of any triangle ∆ ∈ Tm lies in
the interior of an edge of another triangle from Tm.

(g) The valence Nv of each vertex v of any triangle ∆ ∈ Tm (the number of
the triangles from Tm which share v as a vertex) is at most N0, where N0 ≥ 3
is a constant.

(h) There exists a constant 0 < δ1 ≤ 1 independent of m such that for any
4′,4′′ ∈ Tm (m ∈ Z) with a common edge

δ1 ≤ |4′|/|4′′| ≤ δ−1
1 . (3.2)

Strong locally regular (SLR) triangulations. We call T =
⋃
m∈Z Tm a

strong locally regular (SLR) triangulation of R2 if T is an LR-triangulation of
R2 and satisfies the following additional condition:

(i) There exists a constant 0 < δ2 ≤ 1/2 such that for any 4′,4′′ ∈ Tm
(m ∈ Z) sharing an edge,

|conv (4′ ∪4′′)|/|4′| ≤ δ−1
2 , (3.3)
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where conv (G) denotes the convex hull of G ⊂ R2.
Obviously, (3.3) implies (3.2) with δ1 = δ2.

Regular (R) triangulations. By definition, T =
⋃
m∈Z Tm is a regular (R)

triangulation if T is an LR-triangulation and T satisfies the following condition:
(k) There exists a constant β = β(T ) > 0 such that the minimal angle of

each triangle 4 ∈ T is ≥ β.
Evidently, every regular triangulation is an SLR-triangulation.

Triangulations on compact polygonal domains in R2. A set E ⊂ R2 is
said to be a compact polygonal domain if E can be represented as the union
of a finite set T0 of closed triangles with disjoint interiors: E =

⋃
∆∈T0

∆.

Weak locally regular, locally regular, etc. triangulations T =
⋃∞
m≥0 Tm of such

domain E ⊂ R2 are defined similarly as when E = R2. The only essential
distinctions are that the levels (Tm)m≥0 now are consecutive refinements of the
initial coarse level T0 and, if a vertex v ∈ Vm is on the boundary, we should
include in Vm as many copies of v as is its multiplicity.

Remarks. It is a key observation that the collection of all SLR-triangulations
with given (fixed) parameters is invariant under affine transforms. The same
is true for LR-triangulations.

It is easy to see that condition (i) (see (3.3)) is equivalent to the following
Affine transform angle condition: There exists a constant β = β(T ), 0 <

β ≤ π/3, such that if 40 ∈ Tm (m ∈ Z) and A : R2 → R2 is an affine transform
that maps 40 one-to-one onto an equilateral reference triangle, then for every
4 ∈ Tm which has at least one common vertex with 40, we have

min angle (A(4)) ≥ β, (3.4)

where A(4) is the image of 4 by the affine transform A.
It is important to know how |∆|, min angle (∆), and max edge (∆) of a

triangle ∆ ∈ T may change as ∆ moves away from a fixed triangle ∆� within
the same level or through the nested refinements. If T is a WLR-triangulation,
then it may happen that ∆′,∆′′ ∈ Tm share an edge and |∆′|/|∆′′| is arbitrarily
small (or large). Because of condition (h), this is impossible if T is an LR-
triangulation.

Consider now the case when T is an LR-triangulation. Then conditions (e)
and (h) suggest a geometric rate of change of |∆| (at the same level). In fact,
the rate is polynomial. Furthermore, if ∆′,∆′′ ∈ Tm have a common vertex and
are also children of some ∆ ∈ Tm−1, then, it is possible that ∆′ be equilateral
(or close to such), but ∆′′ have an uncontrollably sharp angle.

If T is an SLR-triangulation, the above configuration is impossible, but
the triangles from T still may have uncontrollably sharp angles. In this case,
min angle (∆) changes gradually from one triangle to the adjacent ones.

For more details about multilevel triangulations, see [21, 22].

Some additional notation will be needed. For a triangle 4 ∈ Tm (m ∈ Z),
we define level (4) := m. For any vertex v ∈ Vm, we let star (v) = star 1(v)
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denote the star of v, i.e., the union of all triangles 4 ∈ Tm attached to v.
Moreover, for ` ≥ 2, we denote by star `(v) the union of star `−1(v) and the
stars of the vertices of star `−1(v). We also set

Ω`4 :=
⋃
{star `(v) : v ∈ Vm, 4 ⊂ star `(v)}, 4 ∈ Tm. (3.5)

3.2. Local Polynomial Approximation and Moduli of Smoothness

For a function f ∈ Lq(G) with G ⊂ Rd, d ≥ 1, and 0 < q ≤ ∞, we denote
by Ek(f,G)q the error of Lq-approximation of f from Πk on G, i.e.,

Ek(f,G)q := inf
P∈Πk

‖f − P‖Lq(G). (3.6)

We also denote by ωk(f,G)q the k-th local modulus of smoothness of f on G:

ωk(f,G)q := sup
h∈Rd

‖∆k
h(f, ·)‖Lq(G), (3.7)

where ∆k
h(f, x) = ∆k

h(f, x,G) :=
∑k
j=0(−1)k+j

(
k
j

)
f(x + jh) if [x, x + rh] is

entirely contained in G and ∆k
h(f, x) := 0 otherwise.

Whitney’s theorem is an important tool in piecewise polynomial approxima-
tion. We shall give it in the form we need it. Suppose G = 4 or G = Ω4 := Ω1

4
with 4 a triangle from an SLR-triangulation or G is a box in Rd. If f ∈ Lq(G),
0 < q ≤ ∞, then

Ek(f,G)q ≤ c ωk(f,G)q, (3.8)

where c depends only on the corresponding parameters. Note that this estimate
holds for much more general regions G, but then the constant c = c(G) may
become hard to control. For this reason we restrict ourselves to using (3.8)
only on simple regions G as above.

The (global) k-th modulus of smoothness of f in Lq(G) is defined by

ωk(f, t)q = ωk(f, t,G)q := sup
|h|≤t

‖∆k
h(f, ·)‖Lq(G), t > 0. (3.9)

Another important technical tool is the averaged modulus of smoothness which
is defined by

wk(f, t)qq = wr(f, t,G)qq :=
1

td

∫
[0,t]d

∫
G

|∆k
h(f, x,G)|q dx dh, G ⊂ Rd.

(3.10)

It is well known that wk(f, t)q is equivalent to ωk(f, t)q:

c1wk(f, t)q ≤ ωk(f, t)q ≤ c2wk(f, t)q, t > 0, (3.11)

where c1, c2 > 0 depend only on q, r, and d. (see, e.g., [29] for the proof of this
in the univariate case; the same proof applies in the multivariate case as well).
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We shall often use the equivalence of different norms of polynomials. for
instance, if P ∈ Πk and G is a box or G = Ω4 with 4 a triangle from a
SLR-triangualtion, then

‖P‖Lp(G) ≈ |G|1/p−1/q‖P‖Lq(G) (3.12)

with constants of equivalence independent of P and G.

3.3. Hierarchical Families of Spline Bases: The General Setting

Let T =
⋃
m∈Z Tm be a locally regular (or better) triangulation of R2.

For r ≥ 0, and k ≥ 1, we denote by Sk,rm = Sk,r(Tm) the set of all r times
differentiable piecewise polynomial functions of degree < k over Tm, i.e., s ∈
Sk,rm if s ∈ Cr(R2) and s =

∑
4∈Tm 14 · P4 with P4 ∈ Πk. Naturally, Sk,−1

m

will denote the set of all piecewise polynomials of degree < k over Tm which
are, in general, discontinuous across the edges from Em.

Spline multiresolution. We assume that for each m ∈ Z there exist a sub-
space Sm of Sk,rm (r ≥ 0, k ≥ 2) and a family Φm = {ϕθ : θ ∈ Θm} ⊂ Sm
satisfying the following conditions:

• Sm ⊂ Sm+1.

• Πk̃ ⊂ Sm, for some 1 ≤ k̃ ≤ k (k̃ independent of m).

• For any s ∈ Sm there exists a unique sequence of real coefficients {aθ(s)},
θ ∈ Θm, such that

s =
∑
θ∈Θm

aθ(s)ϕθ.

(Thus Φm is a basis for Sm and {aθ(·)}θ∈Θm are the dual functionals.)

• For each θ ∈ Θm there is a vertex v = vθ ∈ Vm such that

suppϕθ ⊂ star `(v) =: Eθ, (see (3.5))

‖ϕθ‖L∞(R2) = ‖ϕθ‖L∞(Eθ) ≤M1,

|aθ(s)| ≤M2‖s‖L∞(Eθ), s ∈ Sm,

where ` ≥ 1 and M1,M2 > 0 are constants, independent of θ and m.

We denote S := (Sm)m∈Z, Φ :=
⋃
m∈Z Φm and Θ :=

⋃
m∈Z Θm. We shall call

S a spline multiresolution over T with a family of basis functions Φ.
A simple example of spline multiresolution is the sequence (Sm)m∈Z of all

continuous piecewise linear functions (r = 0, k = 2) on the levels (Tm)m∈Z of a
given LR-triangulation T of R2. A basis for each space Sm is given by the set
Φm of the Courant elements ϕθ, supported on the cells θ of Tm (θ is the union
of all triangles of Tm attached to a vertex, say, vθ). The function ϕθ takes the
value 1 at vθ and the value 0 at all other vertices.
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Box splines with the corresponding ladder of spline spaces provide another
example of a spline multiresolution.

Concrete constructions of differentiable spline basis functions (from Cr,
r ≥ 1) associated with spline multiresolution over general triangulations will
be discussed in §3.4.

Note that Θ and Θm (m ∈ Z) above are simply index sets, which in the case
of Courant elements can be identified as sets of cells (supports of basis func-
tions). In general, several basis functions of Φm may have the same support.
However, the supports of only ≤ constant of them may overlap.

It follows from the above conditions that each basis Φm is Lq-stable for all
0 < q ≤ ∞, i.e., if g :=

∑
θ∈Θm

bθϕθ, where {bθ}θ∈Θm is an arbitrary sequence
of real numbers, then

‖g‖q ≈
( ∑
θ∈Θm

‖bθϕθ‖qq
)1/q

with constants of equivalence independent of (bθ)θ∈Θm and m.

Quasi-interpolant. For 0 < q ≤ ∞ and an arbitrary triangle 4, we let
P4,q : Lq(4)→ Πk be a projector such that

‖f − P4,q(f)‖Lq(4) ≤ cEk(f,4)q, for f ∈ Lq(4). (3.13)

Note that P4,q can be realized as a linear projector if q ≥ 1.
We define a linear operator Qm : Sk,−1(Tm) → Sm as follows. For each

θ ∈ Θm, let λθ : Sk,−1(Tm)|Eθ → R be a linear functional such that

λθ(s|Eθ ) = aθ(s), if s ∈ Sm, and

|λθ(f)| ≤M2‖f‖L∞(Eθ), f ∈ Sk,−1(Tm)|Eθ .
Such linear functionals always exist according to the Hahn-Banach theorem.
We set

Qm(s) :=
∑
θ∈Θm

λθ(s|Eθ )ϕθ, s ∈ Sk,−1(Tm). (3.14)

Clearly, Qm(s) = s if s ∈ Sm, and thus Qm is a linear projector of Sk,−1(Tm)
into Sm. Moreover, Qm is a bounded projector: For any s ∈ Sk,−1(Tm),
0 < q ≤ ∞ and 4 ∈ Tm,

‖Qm(s)‖Lq(4) ≤ c‖s‖Lq(Ω`4),

with a constant c independent of m, 4, and s.
We now extend Qm to Lloc

q (R2), 0 < q ≤ ∞ Let P4,q : Lq(4) → Πk be a
projector satisfying (3.13). We define

pm,q(f) :=
∑
4∈Tm

14 · P4,q(f), for f ∈ Lloc
q ,

and the quasi-interpolant that we need is defined by

Qm,q(f) := Qm(pm,q(f)), for f ∈ Lloc
q , (3.15)
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which is a projector of Lloc
q into Sm.

We next show that Qm,q provides a good local Lq-approximation from Sm.
We let S4(f)q denote the error of Lq-approximation from Sm on Ω`4, i.e.,

S4(f)q := inf
s∈Sm

‖f − s‖Lq(Ω`4), 4 ∈ Tm. (3.16)

The good local approximation properties of Qm,q can be described as follows:
(a) If f ∈ Lloc

q , 0 < q ≤ ∞ (f ∈ C if q =∞), then

‖f −Qm,q(f)‖Lq(4) ≤ cS4(f)q, 4 ∈ Tm (m ∈ Z),

with c independent of f , m, and 4.
(b) If f ∈ Lloc

q , 0 < q ≤ ∞, then for every compact K ⊂ R2,

‖f −Qm,q(f)‖Lq(K) → 0 as m→∞.

We denote S−∞ :=
⋂
m∈Z Sm. Note that if s ∈ S−∞, s 6= constant, and

|{x ∈ R2 : |s(x)| > t}| < ∞ for some t > 0, then s ≡ 0 and, in particular, if
s ∈ S−∞ ∩ Lp (p <∞), then s ≡ 0.

3.4. Construction of Differentiable Spline Bases

In this section, we present a concrete construction of bases for the spline
spaces Sk,rm := Sk,r(Tm), r ≥ 1, k > 4r + 1, m ∈ Z, provided T =

⋃
m∈Z Tm is

an SLR-triangulation of R2. This construction provides bases which satisfy all
requirements for such bases from §3.3.

Nodal functionals. As before, let Vm and Em be the sets of all vertices and all
edges of Tm. We shall construct basis functions for Sm = Sk,r(Tm), k > 4r+ 1,
(see §3.3) by the so called nodal functionals defined on Sk,r(Tm), which involve
the values of the splines and their derivatives at specific points in R2. The
functional corresponding to the simple evaluation of the splines at ξ ∈ R2 will
be denoted by δξ. Of particular interest as evaluation points are the vertices
v ∈ Vm of Tm, where we also need the derivative evaluation functionals of type
δvD

α
e with e being any edge in Em attached to v, and δvD

α
e1D

β
e2 , where e1, e2

are adjacent edges attached to v. Here Dα
e s denotes the derivative of s of order

α in the direction of e weighted by the length of e.
We shall need the following additional notation. For an interval e := [v1, v2],

we denote by |e| the length of e. Throughout we assume that the vertices
v1, v2, v3 of any triangle [v1, v2, v3] are ordered counterclockwise. We let star(e)
denote the union of the two triangles attached to e ∈ Em.

Let 41,42 ∈ Tm share an edge e. Since every s ∈ Sk,rm is continuous, the
two polynomial patches s|41

and s|42
coincide along e. Therefore, δvD

α
e s may

be computed for any α = 0, 1, . . . as either δvD
α
e (s|41) or δvD

α
e (s|42) with

the same result. Similarly, if e1, e2 ∈ Em are two edges of a triangle 4 ∈ Tm
with a common vertex v, then δvD

α
e1D

β
e2s denotes the mixed derivative of s at

v in the directions of e1 and e2 away from v. If α + β ≤ r, this derivative is
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uniquely defined. If α + β > r, the result may depend on the choice of the
polynomial patch of s attached to v. We follow the convention to always take
δvD

α
e1D

β
e2s := δvD

α
e1D

β
e2(s|4), where 4 is the above triangle formed by e1, e2.

We shall also need functionals evaluating at some points on an edge e the
derivatives of the spline in an affine invariant direction not parallel to e. Let
e = [v1, v2] ∈ Em and let 4e = [v1, v2, v3] ∈ Tm be a triangle attached to e.
Denote by µ(e,4) the median of 4 connecting the middle point (v1 + v2)/2
of e with the third vertex v3 of 4. For any point ξ ∈ e, δξDµ(e,4) will denote
the derivative at ξ in the direction pointing into the half-plane containing 4
parallel to µ(e,4), weighted with the length of µ(e,4). For each edge e ∈ Em,
we choose one of the two triangles attached to e and denote it by 4e. (Note
that this selection of 4e is not unique but it will cause no problems to the basis
construction.)

Characterization of differentiability. Let L be a straight line splitting R2

into two halfplanes H, H̃. Given p, p̃ ∈ Πk, we define a piecewise polynomial
function s by setting s|H = p, s|H̃ = p̃. To verify whether s is differentiable
across L, we choose two points u, v on L as well as two points w, w̃ in the
interiors of H and H̃, respectively. We set 4 := [u, v, w], 4̃ := [u, v, w̃],
e := [u, v], µ := [u,w], µ̃ := [u, w̃], θ := ∠eµ, θ̃ := ∠µ̃e.

It is readily seen that if 0 ≤ r < k, then s ∈ Cr(R2) if and only if

δuD
α
µ̃D

q−α
e p̃ =

α∑
β=0

(−1)β
(
α
β

)
sinα−β(θ + θ̃)

(
|e| sin θ̃
|µ|

)β( |e| sin θ
|µ̃|

)−α
δuD

β
µD

q−β
e p,

(3.17)

for all α = 0, . . . , r and q = α, . . . , k − 1 (see, e.g. [10]).

Construction of basis splines. Consider the following set Nm of nodal
functionals on Sk,rm ,

Nm :=
( ⋃
v∈Vm

N v
m

)
∪
( ⋃
e∈Em

N e
m

)
∪
( ⋃
4∈Tm

N4m
)
, where

(i) for each triangle 4 = [v1, v2, v3] ∈ Tm,

N4m := {η4ξ := δξ : ξ ∈ Ξ4},

Ξ4 :=
{ i1v1 + i2v2 + i3v3

k − 1
: i1 + i2 + i3 = k − 1, i1, i2, i3 > r

}
⊂ 4;

(ii) for each edge e = [v1, v2] ∈ Em,

N e
m := {ηeq,ξ := δξD

q
µ(e,4e) : q = 0, . . . , r, ξ ∈ Ξe,q},

Ξe,q :=
{ i1v1 + i2v2

k − q − 1
: i1 + i2 = k − q − 1, i1, i2 > 2r − q

}
⊂ e;

(iii) for each vertex v ∈ Vm,

N v
m :=

2r⋃
q=0

N v,q
m ,
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with N v,q
m , q = 0, . . . , 2r, being defined as follows. Let 4[i] = [v, vi, vi+1],

i = 1, . . . , Nv, be the triangles in Tm attached to v in counterclockwise order,
vNv+` = v`, and let ei = [v, vi]. We set

N v,0
m := {ηv,0 := δv},

N v,q
m := {ηv,qi,α := δvD

q−α
ei Dα

ei+1
: i = 1, . . . , Nv, α = 0, . . . , q − 1}, q ≥ 1.

In view of (3.17), the functionals in N v,q
m are not linearly independent on

Sk,rm if q ≥ 1. Namely, the following conditions hold for all s ∈ Sk,rm , v ∈ Vm,
q = 1, . . . , 2r:

ηv,qi,α(s)−
α∑
β=0

(−1)β
(
α
β

)
sinα−β(θi−1 + θi)

(
|ei| sin θi
|ei−1|

)β( |ei| sin θi−1

|ei+1|

)−α
ηv,qi−1,q−β(s)

= 0, α = 1, . . . ,min{r, q}, i = 1, . . . , Nv,
(3.18)

where θi := ∠eiei+1, ηv,qi,q := ηv,qi+1,0.

The following key lemma is basic in constructing the basis functions.

Lemma 1. There is a unique spline s ∈ Sk,rm such that

η4ξ (s) = a4ξ , ξ ∈ Ξ4, 4 ∈ Tm,

ηeq,ξ(s) = aeq,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ∈ Em,

ηv,0(s) = av,0, v ∈ Vm,

ηv,qi,α(s) = av,qi,α, i = 1, . . . , Nv, α = 0, . . . , q − 1, q = 1, . . . , 2r, v ∈ Vm,

for any given a4ξ , a
e
q,ξ, a

v,0 ∈ R and any av,qi,α ∈ R satisfying

av,qi,α −
α∑
β=0

(−1)β
(
α
β

)
sinα−β(θi−1 + θi)

(
|ei| sin θi
|ei−1|

)β( |ei| sin θi−1

|ei+1|

)−α
av,qi−1,q−β = 0,

α = 1, . . . ,min{r, q}, i = 1, . . . , Nv.

Moreover, for each 4 ∈ Tm,

‖s|4‖L∞(4) ≤ c δ−2r
2 max

η∈Nm(4)
|η(s)|, (3.19)

where c is a constant depending only on k, and

Nm(4) :=
( ⋃
v∈Vm∩4

N v
m

)
∪
( ⋃
e∈Em
e⊂4

N e
m

)
∪N4m .

For each v ∈ Vm and q = 1, . . . , 2r, we denote by Rv,qm the (min{r, q}Nv ×
qNv)-matrix of differentiability conditions (3.18). Let the vectors

av,q,j , j = 1, . . . , ρv,q := qNv − rank(Rv,qm ),
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form an orthonormal basis for the null space of Rv,qm :

null(Rv,qm ) := {a ∈ RqNv : Rv,qm a = 0}.

For convenience, we shall use the double indices introduced in the definition of
N v,q
m also for the components of av,q,j : av,q,ji,α , i = 1, . . . , Nv, α = 0, . . . , q − 1.

We set

ηv,q,j :=

Nv∑
i=1

q−1∑
α=0

av,q,ji,α ηv,qi,α , j = 1, . . . , ρv,q,

Ñ v,q
m := {ηv,q,j : j = 1, . . . , ρv,q}, q = 1, . . . , 2r,

Ñ v
m := N v,0

m ∪
2r⋃
q=1

Ñ v,q
m , v ∈ Vm,

Ñm :=
( ⋃
v∈Vm

Ñ v
m

)
∪
( ⋃
e∈Em

N e
m

)
∪
( ⋃
4∈Tm

N4m
)
,

and define the set

Φm := {ϕη : η ∈ Ñm}

of the basis functions for Sk,rm by the duality condition,

µ(ϕη) =

{
1, if µ = η

0, if µ ∈ Ñm \ {η}.

Properties of basis splines. It follows by Lemma 1 that every spline
s ∈ Sk,r(Tm) is uniquely determined by the sequence (η(s))η∈Ñm . Further-

more, (3.19) implies that ‖ϕη‖L∞(R2) ≤ c δ−2r
2 and suppϕη is contained in

star(v), star(e), or 4, whenever η belongs to Ñ v
m, N e

m, or N4m , respectively.
Also, by Markov’s inequality, |η(s)| is bounded above by a constant multiple
of ‖s‖L∞(star (v)), ‖s‖L∞(star (e)), or ‖s‖L∞(4), respectively.

From this, it follows that Φm = {ϕη : η ∈ Ñm} satisfies all requirements

of §3.3 with Sm = Sk,r(Tm) and k̃ = k. (Obviously, Πk ⊂ Sm and Sk,r(Tm) ⊂
Sk,r(Tm+1) if Tm+1 is a refinement of Tm.)

Remarks. The above construction of spline bases is given in [11] and follows
the scheme of [10] with appropriate modifications.

A key property of the basis families constructed above is that they are
invariant under affine transforms.

In [11] (see Example 4.7), there is an example which shows that for the
construction of differentable spline bases the assumption that T is an SLR-
triangulation cannot be omitted.

The construction from this section is extendable to the spaces Sk,rm , k >
r2d + 1, in dimensions d > 2. To this end the algorithm given in [10] should be
extended to strong locally regular triangulations in Rd.
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If the triangulation only covers a compact domain E, then usual modifica-
tions of basis functions corresponding to boundary edges or vertices (see [10])
lead to the desired stable local bases.

For complete review of the spline basis constructions which can be adapted
for SLR-triangulations, see [11].

Spline bases on special triangulations. There are several constructions
of differentiable spline bases fitting into the scheme of §3.3, which are only
available for specific multilevel triangulations. The box splines provide the
best known example of such bases (see [5]). (Note that only box splines are
available for dimensions d > 2.) For a complete review of the spline bases on
uniform triangulations, see §5 of [11].

3.5. Slim B-spaces on R2

Suppose T is an LR(or better)-triangulation of R2 and let S = ST be
a spline multiresolution over T with a hierarchical family of basis functions
Φ = ΦT , as described in §3.3. For the characterization of nonlinear n-term
Lp-approximation from Φ, we need the slim B-spaces Bατ (S) induced by S.
As will be shown below this spaces have atomic decompositions using Φ. For
this reason and to simplify the notation, we shall primary use the notation
Bατ (Φ) := Bατ (S). We shall need the slim B-spaces Bατ (S) in two cases: (a)
0 < p <∞ and α > 0, or (b) p =∞ and α ≥ 1. In both cases, 1/τ := α+ 1/p
(1/∞ := 0).

Definition of Bα
τ (Φ) = Bα

τ (S) via local approximation. We define the
B-space Bατ (Φ) as the set of all functions f ∈ Lτ (R2) such that

‖f‖Bατ (Φ) :=
( ∑
4∈T

(|4|−αS4(f)τ

)τ
)1/τ <∞, (3.20)

where S4(f)τ is the error of Lτ -approximation to f from Sm on Ω`4, if 4 ∈ Tm
(see (3.16)).

From the properties of S−∞ (see §3.3), it follows that ‖f‖Bατ (Φ) = 0 implies
f = 0 a.e. and now it is easy to see that ‖ · ‖Bατ (Φ) is a norm if τ ≥ 1 and a
quasi-norm if τ < 1. We shall call it a “norm” in both cases. We next introduce
several other equivalent norms in Bατ (Φ).

First, for f ∈ Lη, 0 < η < p, we define

NΦ,S,η(f) :=
( ∑
4∈T

(|4|1/p−1/ηS4(f)η)τ
)1/τ

. (3.21)

Clearly, NΦ,S,τ (f) = ‖f‖Bατ (Φ).

Definition of a norm in Bα
τ (Φ) via basis functions (atomic decompo-

sition). For f ∈ Lτ , we define

NΦ(f) := inf
f=

∑
θ∈Θ cθϕθ

(∑
θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )τ
)1/τ

, (3.22)
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where the infimum is over all representations of f : f =
∑
θ∈Θ cθϕθ in Lτ (an

absolute convergence a.e. and in Lp follows immediately if NΦ(f) < ∞). It
follows that

NΦ(f) ≈ inf
f=

∑
θ∈Θ cθϕθ

(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

.

Definition of norms in Bα
τ (Φ) via projections. For f ∈ Lη, we set

qm,η(f) := Qm,η(f)−Qm−1,η(f) ∈ Sm, (3.23)

where Qm,η is from (3.15), and let {bθ,η(f)}θ∈Θm be defined by the identity

qm,η(f) =
∑
θ∈Θm

bθ,η(f)ϕθ , i.e., bθ,η(f) := aθ(qm,η(f)), θ ∈ Θm.

We define

NΦ,Q,τ (f) :=
(∑
θ∈Θ

(|Eθ|−α‖bθ,τ (f)ϕθ‖τ )τ
)1/τ

and, more generally (see (3.21)), for 0 < η < p,

NΦ,Q,η(f) :=
(∑
θ∈Θ

(|Eθ|1/p−1/η‖bθ,η(f)ϕθ‖η)τ
)1/τ
≈
(∑
θ∈Θ

‖bθ,η(f)ϕθ‖τp
)1/τ

.
(3.24)

The following embedding theorem plays a crucial role in the proof of the
equivalence of the norms, introduced above, and in the overall development.

Theorem 5. If f ∈ Lη, 0 < η < p ≤ ∞, and NΦ,Q,η(f) < ∞, then
f ∈ Lp,

f =
∑
m∈Z

qm,η(f) =
∑
θ∈Θ

bθ,η(f)ϕθ (3.25)

with the series converging absolutely a.e., and

‖f‖p ≤ c‖
∑
m∈Z
|qm,η(f)(·)|‖p ≤ c‖

∑
θ∈Θ

|bθ,η(f)ϕθ(·)|‖p ≤ cNΦ,Q,η(f).

with c independent of f .

Theorem 6. The norms ‖ · ‖Bατ (Φ), NΦ,S,η(·) (0 < η < p), NΦ(·), and
NΦ,Q,η(·) (0 < η < p), defined in (3.20)–(3.22) and (3.24), are equivalent with
constants of equivalence depending only on p, α, η, and the parameters of T
and Φ.

Since the B-spaces can be considered as sequence spaces, the embedding of
one of them into another is quite easy to establish. Also, it is easy to interpolate
them: Suppose 0 < p < ∞ and α0, α1 > 0 or p = ∞ and α0, α1 ≥ 1. Let
τj := (αj + 1/p)−1, j = 0, 1. Then

(Bα0
τ0 (Φ), Bα1

τ1 (Φ))λ,τ = Bατ (Φ)
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with equivalent norms, provided α = (1 − λ)α0 + λα1 with 0 < λ < 1 and
τ := (α+ 1/p)−1.

Remarks. The slim B-spaces are introduced and utilized in nonlinear spline
approximation in [11, 21, 22].

If p =∞, then the B-space Bατ (Φ) (τ := 1/α) is useful for our goals only if
α ≥ 1. The reason for this is that Bατ (Φ) is not embedded in C if α < 1.

We introduced the B-norms NΦ,S,η(·) and NΦ,Q,η(·) with 0 < η < p (see
(3.21) and (3.24)) for the following reason. As we shall see in §7, normally
α > 1 and hence τ < 1 which compels us to work in Lτ with τ < 1 that is not
a very friendly space. At the same time, if p > 1 we can choose 1 ≤ η < p and
work in Lη instead.

We also want to explain why we introduced the slim B-spaces over locally
regular (or better) triangulations but not over more general ones. The reason
for this is that if we relax the main conditions (3.1)–(3.2) in the definition of
LR-triangulations, then we can hardly work with the B-spaces. In particular,
the equivalence of the norms (see Theorem 6) fails to exist which makes it
impossible to prove all approximation results from §7.

Given a spline multiresolution ST over an LR(or better)-tiangulation T and
an associated family of basis functions Φ = ΦT , as described in §3.3, we define
the more general slim B-space Bαpq(Φ), α > 0, 0 < p, q ≤ ∞, as the set of all
f ∈ Lp such that

‖f‖Bαpq(Φ) :=

(∑
m∈Z

[
2mα

( ∑
4∈T , 2−m≤|4|<2−m+1

S4(f)pp

)1/p]q)1/q

<∞,

with the `q-norm replaced by the sup-norm if q = ∞. Evidently, Bαp (Φ) =
Bαpp(Φ). Here, we do not explore the B-spaces in such generality because the
space scale Bατ (Φ) is sufficient for our goal of characterizing the rates of non-
linear n-term spline approximation.

3.6. Skinny B-spaces on R2

In this subsection, we define a family of B-spaces which is needed for
the characterization of nonlinear approximation from (discontinuous) piecewise
polynomials generated by sequences of nested triangulations. Throughout this
subsection, we assume that T is an arbitrary weak locally regular triangulation
of R2 (see §3.1). As elsewhere in this article, we assume that k ≥ 1, 0 < p <∞
and α > 0, or p =∞ and α ≥ 1, and in both cases 1/τ := α+ 1/p.

The skinny B-space Bαkτ (T ) is defined as the set of all f ∈ Lτ such that

‖f‖Bαkτ (T ) :=
( ∑

∆∈T
(|∆|−αωk(f,∆)τ )τ

)1/τ

<∞, (3.26)

where ωk(f,4)τ is the k-th local modulus of smoothness of f on 4 (see (3.7)).
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Whitney’s inequality (3.8) implies

‖f‖Bαkτ (T ) ≈
( ∑

∆∈T
(|∆|−αEk(f,∆)τ )τ

)1/τ

,

where Ek(f,∆)τ is the error of Lτ (∆)-approximation to f from Πk (see (3.6)).
As in Theorem 6, one can prove that, for 0 < η < p,

‖f‖Bαkτ (T ) ≈
( ∑

∆∈T
(|∆|1/p−1/ηωk(f,∆)η)τ

)1/τ

≈ inf
f=

∑
∆∈P P∆

(∑
∆∈T

‖P∆‖τp
)1/τ

,

where P∆ ∈ Πk.
Let P4,η : Lη(4) → Πk be a projector satisfying (3.13) with q = η. Set

Pm,η(f) :=
∑

∆∈Tm 1∆·P∆,η(f). Clearly, Pm,η(f) is a projector into Sk,−1(Tm).
We define

pm,η(f) := pm,η(f, T ) := Pm,η(f)− Pm−1,η(f) ∈ Sk,−1(Tm),

and set p∆,η(f) := 1∆ · pm,η(f) for ∆ ∈ Tm. If f ∈ Bαkτ (T ), then f ∈ Lp,
f =

∑
∆∈T p∆,η(f), and

‖f‖Bαkτ (T ) ≈
( ∑

∆∈T
(|∆|1/p−1/η‖p∆,η(f)‖η)τ

)1/τ

≈
( ∑

∆∈T
‖p∆,η(f)‖τp

)1/τ

.

For more details, see [21].

3.7. Fat B-spaces on R2: The Link to Besov Spaces

Let T be an arbitrary strong locally regular triangulation of R2. We again
assume that k ≥ 1, 0 < p < ∞ and α > 0, or p = ∞ and α ≥ 1, and in both
cases 1/τ := α+ 1/p.

The fat B-space Bαkτ (T ) is defined as the set of all functions f ∈ Lτ such
that

‖f‖Bαkτ (T ) :=
( ∑

∆∈T
(|∆|−αωk(f,Ω∆)τ )τ

)1/τ

<∞, (3.27)

where Ω∆ := Ω1
∆ is the union of all triangles in Tm which have a common

vertex with ∆, if ∆ ∈ Tm (see (3.5)). The principle difference between the
skinny B-space Bαkτ (T ) and fat B-space Bαkτ (T ) is that the Ω∆’s in definition
(3.27) overlap substantially. One can prove that, for 0 < η < p,

‖f‖Bαkτ (T ) ≈
( ∑

∆∈T
(|∆|1/p−1/ηωk(f,Ω∆)η)τ

)1/τ

Also, similarly as for skinny B-spaces, one can introduce equivalent norms via
local polynomial projections. For more details, see [21].
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3.8. B-spaces on Compact Polygonal Domains in R2

Slim, skinny, and fat B-spaces can be introduced on an arbitrary compact
polygonal domain E ⊂ R2 quite similarly as on R2. We shall only define the
slim B-spaces on such domain E, placing the emphasis on the distinctions from
the case E = R2.

Suppose T =
⋃∞
m=0 Tm is an LR(or better)-triangualation on E (see §3.1)

and let S = (Sm)m≥0 be a spline multiresolution over T with a hierarchical
family of basis functions Φ := ΦT (see §3.3-§3.4). Assuming that p, α, and τ
are as in §3.5 and elsewhere, we define the slim B-space Bατ (S) = Bατ (Φ) on E
as the set of all functions f ∈ Lτ (E) such that

|f |Bατ (Φ) :=
( ∑

∆∈T
(|∆|−αS∆(f)τ )τ

)1/τ

<∞,

where S∆(f)τ is the error of Lτ -approximation to f from Sm on Ω`∆, if ∆ ∈ Tm
(see (3.16)). Clearly, | · |Bατ is a semi-norm if τ ≥ 1 and a semi-quasi-norm if
τ < 1. Since Bατ (Φ) is continuously embedded in Lp(E), it is natural to define
a (quasi-)norm in Bατ (T ) by

‖f‖Bατ (Φ) := ‖f‖p + |f |Bατ (T ).

Equivalent norms similar to the ones from (3.21), (3.22), and (3.24) can be
defined. The only difference would be that, in this case, Θ =

⋃∞
m=0 Θm and

the operators Qm,η(·) and qm,η(·) should be defined on E accordingly with the
natural modification Q−1,η(f) := 0.

For more details, we refer the reader to [22].

3.9. B-spaces over Triangulations and Besov Spaces:
Miscellaneous

Comparison between different B-spaces over the same triangulation.
Suppose ST is a spline multiresolution over T an SLR-triangualation of R2

and ΦT is a family of basis functions for S (see §3.3). Let Πk ⊂ Sm ⊂ Sk,rm (T )
(m ∈ Z). Evidently, for f ∈ Lτ and ∆ ∈ Tm, we have

Ek(f,∆)τ ≤ S∆(f, T )τ ≤ Ek(f,Ω`∆)τ ≤ c
∑

∆′∈Tm,∆′⊂Ω`∆

Ek(f,Ω∆′)τ ,

which implies
‖f‖Bαkτ (T ) ≤ c‖f‖Bατ (ΦT ) ≤ c‖f‖Bαkτ (T ).

Comparison of regular B-spaces with Besov spaces. We first recall
the definition of the classical Besov spaces on a set E ⊂ Rd with moduli of
smoothness. The Besov space Bsq(Lp) := Bsq(Lp(E)), s > 0, 1 ≤ p, q ≤ ∞, is
defined as the set of all functions f ∈ Lp(E) such that

|f |Bsq(Lp) :=

(∫ ∞
0

(t−sωk(f, t)p)
q dt

t

)1/q

<∞ (3.28)
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with the Lq-norm replaced by the sup-norm if q = ∞, where k := [s] + 1 and
ωk(f, t)p is the k-th modulus of smoothness of f in Lp(E) (see (3.9)). The
norm in Bsq(Lp) is usually defined by ‖f‖Bsq(Lp) := ‖f‖p + |f |Bsq(Lp). It is well-

known that if in (3.28) k is replaced by any other k > s, then the resulting
space would be the same with an equivalent norm. However, the situation is
totally different when p < 1 (for more details, see §5) and this is a reason for
introducing k as a parameter of the Besov spaces with the next definition. We
define the space

Bs,kq (Lp) := Bs,kq (Lp(E)), 0 < p, q ≤ ∞, s > 0, k ≥ 1,

as the Besov space Bsq(Lp(E)) from above, where the parameters k and s are
already set independent of each other.

For the theory of nonlinear (regular) spline approximation in Lp(E), 0 <
p ≤ ∞, one can use the Besov space

Bdα,kτ (Lτ ) := Bdα,kτ (Lτ (E))

with parameters set as elsewhere in this article: k ≥ 1 and 1/τ := α + 1/p,
according to two specific choices of p and α: (a) 0 < p <∞ and 0 < α <∞, or
(b) p = ∞ and 1 ≤ α < ∞. Since Bdα,kτ (Lτ ) is embedded in Lp, it is natural
to define the (quasi-)norm in Bdα,kτ (Lτ ) by

‖f‖Bdα,kτ (Lτ ) := ‖f‖p + |f |Bdα,kτ (Lτ ).

However, if E = Rd and |f |Bdα,kτ (Lτ ) <∞, then ‖f‖p ≤ c|f |Bdα,kτ (Lτ ) and hence

‖f‖Bdα,kτ (Lτ ) ≈ |f |Bdα,kτ (Lτ ). In the following, we shall restrict our attention to

the case E = Rd.
Notice that the smoothness parameters of the B-spaces and Besov spaces

are normalized differently. For instance, the B-space Bατ (Φ) in dimension d = 2
corresponds to the Besov space B2α,k

τ (Lτ ).
It is often convenient to use the equivalence

‖f‖Bdα,kτ (Lτ ) ≈
(∑
m∈Z

(2dαmωk(f, 2−m)τ )τ
)1/τ

, (3.29)

which follows by the properties of ωk(f, t)τ .
Next, we give an equivalent norm of the Besov space Bdα,kτ (Lτ ) in terms of

local polynomial approximation over dyadic boxes. We let D′m denote the set

of all dyadic boxes I ⊂ Rd of the form I =
∏d
j=1[

νj−1
2m ,

νj
2m ), νj ∈ Z, and let D′′m

be the set of all shifts of boxes I ∈ D′m by the vector e := (2−m−1, . . . , 2−m−1),
i.e., D′′m := {I + e : I ∈ D′m}. We set Dm := D′m

⋃
D′′m and D :=

⋃
m∈ZDm.

We now introduce the following norm

N(f) :=
(∑
I∈D

(|I|−αωk(f, I)τ )τ
)1/τ
≈
(∑
I∈D

(|I|−αEk(f, I)τ )τ
)1/τ

, (3.30)
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where Ek(f, I)τ is the error of Lτ -approximation to f on I from Πk (see (3.6)).
We have

N(f) ≈ ‖f‖Bdα,kτ (Lτ ), (3.31)

which easily follows using (3.11).
As in the case of B-spaces (see §3.5-§3.7), the norm N(·) from (3.30) can

be modified as follows. We define

Nη(f) :=
(∑
I∈D

(|I|1/p−1/ηωk(f, I)η)τ
)1/τ
≈
(∑
I∈D

(|I|1/p−1/ηEk(f, I)η)τ
)1/τ
(3.32)

which in integral form gives

Nη(f) ≈
(∫ ∞

0

∫
Rd

[td(1/p−1/η)ωk(f,Bt(x))η]τ t−d−1 dxdt

)1/τ

, (3.33)

where Bt(x) := {y ∈ Rd : ‖y − x‖2 ≤ t} or Bt(x) := {y ∈ Rd : ‖y − x‖∞ ≤ t}.
We have, for 0 < η < p,

Nη(f) ≈ ‖f‖Bdα,kτ (Lτ ). (3.34)

Thus the semi-norm Nη(f) enables us to work in Lη with η ≥ 1 if p > 1 for all
α > 0, while normally τ < 1.

Next, we compare different B-spaces over an arbitrary regular triangulation
T ∗ of R2 (§3.1) with the corresponding Besov spaces on R2.

(a) Using (3.11), it easily follows that

Bαkτ (T ∗) = B2α,k
τ (Lτ ), 0 < α <∞, (3.35)

with equivalent norms.

(b) Suppose ΦT ∗ = {ϕθ} is a family of basis functions over T ∗ as in §3.3
such that Πk ⊂ Sm ⊂ Sk,rm (m ∈ Z), where r ≥ 0 and k > r. We have

Bατ (ΦT ∗) = B2α,k
τ (Lτ ), 0 < α < r + 1 + 1/p, (3.36)

with equivalent norms. Furthermore, if a single basis function ϕθ ∈ ΦT ∗ does
not belong to Cr+1, then

ωk(ϕθ, t)
τ
τ ≈

{
|Eθ|

1
2 (1−(r+1)τ) · t1+(r+1)τ , if 0 < t < |Eθ|1/2

|Eθ|, if t ≥ |Eθ|1/2,

which implies ‖ϕθ‖B2α,k
τ (Lτ ) = ∞ if α ≥ r + 1 + 1/p, while at the same time

‖ϕθ‖Bατ (ΦT ∗ ) ≈ ‖ϕθ‖p. Therefore, (3.36) is no longer valid if α ≥ r + 1 + 1/p.
An interesting situation occurs when p = ∞ and r = 0. Then there is no

α for which (3.36) holds, since α must be at least one in this case. This is the
case when ΦT ∗ is the set of all Courant elements generated by T ∗ (a regular
triangulation).
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(c) We have

Bαkτ (T ∗) = B2α,k
τ (Lτ ), 0 < α < 1/p, (3.37)

with equivalent norms, which is no longer true if α ≥ 1/p. Moreover, for every
∆ ∈ T ∗ and α ≥ 1/p, we have ‖1∆‖B2α,k

τ (Lτ ) = ∞, while ‖1∆‖Bαkτ (T ∗) ≈
‖1∆‖p.

We refer the reader to [11, 21] for more details on the connections between
B-spaces and Besov spaces.

Comparison between B-spaces over different triangulations and Besov
spaces. If T is an SLR-triangulation of R2, then the relationship between slim
(or skinny) and fat B-spaces over T is quite similar to the one between slim
B-spaces over regular triangulations and Besov spaces. For instance, if ΦT is
the set of all Courant elements generated by T , there exists a constant α0 > 0,
depending on p and the parameters of T such that

Bα,2τ (T ) = Bατ (ΦT ), for 0 < α < α0,

with equivalent norms, and Bατ (ΦT ) is substantially larger than Bα,2τ (T ) when
α ≥ α0.

If one compares a Bατ -space over an arbitrary triangulation with the cor-
responding Besov space B2α,k

τ (Lτ ) (or two B-spaces over different triangula-
tions with each other), then everything changes dramatically. As we already
mentioned in §3.1, there exist strong locally regular triangulations with ex-
tremely (uncontrollably) “skinny” triangles which cause problems to Besov
spaces. More precisely, suppose ϕθ is the Courant element associated with a
cell θ ∈ Θ which is convex, and has length l > 0 and width ε with 0 < ε < l.
Simple calculations show that ω2(ϕθ, t)

τ
τ ≈ min{lε−τ t1+τ , lε}, which readily

implies ‖ϕθ‖B2α,2
τ (Lτ ) ≈ (l/ε)α‖ϕθ‖p if 0 < α < 1 + 1/p and ‖ϕθ‖B2α,2

τ (Lτ ) =∞
if α ≥ 1 + 1/p. At the same time, ‖ϕθ‖Bατ (ΦT ) ≈ ‖ϕθ‖p for all α > 0 with
constants of equivalence independent of ε and l. Therefore, even for small α
the Besov norm of a Courant element can be huge in comparison to its Lp-
norm. This is why the Besov spaces are completely unsuitable for the theory
of n-term spline approximation in the case of nonregular triangulations.

B-spaces in dimensions d > 2. Multilevel nested triangulations and B-
spaces can be introduced much in the same way in dimensions d > 2. Naturally,
the triangles should be replaced by simplices, making some of the geometric
argumentation of this section more involved.

4. B-spaces Generated by Dyadic Partitions of Rd

In this short section, we define the B-spaces needed in §6 for characteri-
zation of the rates of nonlinear piecewise polynomial approximation generated
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by dyadic partitions of Rd (d > 1) or a box Ω ⊂ Rd. These spaces are quite
similar to the skinny B-spaces from §3.6 and we shall skip some details.

Anisotropic dyadic partitions of Rd or Ω. We call P =
⋃
m∈Z Pm a dyadic

partition of Rd with levels (Pm) if the following conditions are fulfilled:

(a) Every level Pm is a partition of Rd: Rd =
⋃
I∈Pm I and Pm consists of

disjoint dyadic boxes of the form I = I1×· · ·×Id, where each Ij is a semi-open
dyadic interval (Ij = [(ν − 1)2µ, ν2µ)), and |I| = 2−m.

(b) The levels of P are nested, i.e., Pm+1 is a refinement of Pm.

(c) For any boxes I ′, I ′′ ∈ P there exists a box I ∈ P such that I ′ ∪ I ′′ ⊂ I.

Also, we call P =
⋃
m≥0 Pm a dyadic partition of Ω (Ω a dyadic box with

|Ω| = 1) if P0 := {Ω} and the levels (Pm)m≥1 satiffy conditions (a)-(b) from
above with Rd replaced by Ω.

We note that the two children, say, J1, J2 ∈ Pm+1 of any I ∈ Pm can
be obtain by splitting I in two equal subboxes in d (d > 1) different ways.
Therefore, there is a huge variety of anisotropic dyadic partitions.

A typical property of the anisotropic dyadic partitions is that each level Pm
of a partition P consists of dyadic boxes I with |I| = 2−m and at the same
time there could be extremely (uncontrolably) long and narrow boxes in Pm.

We denote by Lp := Lp(P, k) the closed in Lp span of the set {1I ·PI : PI ∈
Πk, I ∈ P}. Evidently, Lp ⊂ Lp but it may happen that Lp 6= Lp.

The B-spaces Bαkτ (P) on Rd. For the purposes of nonlinear approximation
in Lp (0 < p < ∞) from (discontinuous) piecewise polynomials generated by
dyadic partitions of Rd, we need the space Bαkτ (P), where k ≥ 1, α > 0, and
1/τ := α+ 1/p. This space is defined as the set of all f ∈ Lτ (Rd) such that

‖f‖Bαkτ (P) :=
(∑
I∈P

(|I|−αωk(f, I)τ )τ
)1/τ

<∞. (4.1)

Whitney’s theorem (see (3.8)) implies

‖f‖Bαkτ (P) ≈
(∑
I∈P

(|I|−αEk(f, I)τ )τ
)1/τ

,

where Ek(f, I)τ is the error of Lτ (I)-approximation to f from Πk.

As in §3.6, we have, for 0 < η < p,

‖f‖Bα,kτ (P) ≈
(∑
I∈P

(|I|1/p−1/ηωk(f, I)η)τ
)1/τ

≈ inf
f=

∑
I∈P PI

(∑
I∈P
‖PI‖τp

)1/τ

,
(4.2)

where PI ∈ Πk.

Let PI,η : Lη(I)→ Πk be a projector (linear if η ≥ 1) such that

‖f − PI,η(f)‖Lη(I) ≤ cEk(f, I)η, for f ∈ Lη(I).
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Set Pm,η(f) :=
∑
I∈Pm 1∆ · PI,η(f). Clearly, Pm,η(f) is a projector into

Sk,−1(Pm), the set of all piecewise polynomials of degree < k over boxes of
Pm. We define

pm,η(f) := pm,η(f,P) := Pm,η(f)− Pm−1,η(f) ∈ Sk,−1(Pm),

and set pI,η(f) := 1I · pm,η(f) for I ∈ Pm. We have, for 0 < η < p,

‖f‖Bαkτ (P) ≈
(∑
I∈P

(|I|1/p−1/η‖pI,η(f)‖η)τ
)1/τ

≈
(∑
I∈P
‖pI,η(f)‖τp

)1/τ

.
(4.3)

The B-spaces Bαkτ (P) on Ω. Only for convenience, we assume that Ω ⊂ Rd
is a dyadic box with |Ω| = 1. We again assume that 0 < p <∞, α > 0, k ≥ 1,
and 1/τ := α+ 1/p. Let P =

⋃
m≥0 Pm be an arbitrary dyadic partition of Ω.

We define the space Bαkτ (P) on Ω as the set of all f ∈ Lτ (Ω) such that

|f |Bαkτ (P) :=
(∑
I∈P

(|I|−αωk(f, I)τ )τ
)1/τ

<∞. (4.4)

Evidently, |f + P |Bατ = |f |Bατ for P ∈ Πk and hence | · |Bατ is a semi-norm if
τ ≥ 1 and a semi-quasi-norm if τ < 1. Since Bαkτ (P) is continuously embedded
in Lp(Ω), it is natural to define a norm in Bαkτ (P) by

‖f‖Bαkτ (P) := ‖f‖Lp(Ω) + |f |Bαkτ (P).

Equivalent norms in Bαkτ (P) similar to the ones from (4.2)-(4.3) can be intro-
duced and utilized as well.

Remark. The relationship between the B-space Bαkτ (P) and Besov space
Bdα,kτ (Lτ ) is similar as the relationship between the corresponding skinny B-
space and Bdα,kτ (Lτ ) (see §3.9). For more details, see [28].

5. B-spaces and Besov Spaces in Dimension d = 1

In this subsection, we show that the univariate B-spaces on R (with one
exception) coincide with the corresponding Besov spaces and, therefore, they
only provide additional equivalent norms for Besov spaces. Thus, in dimension
d = 1, there is only one (super) scale of smoothness spaces which governs
nonlinear spline approximation. This is a fundamental distinction between the
univariate and multivariate spline approximation.

Weak locally regular (WLR) partitions of R1. We call P =
⋃
m∈Z Pm a

multilevel weak locally regular partition of R with levels (Pm) if the following
conditions are fulfilled:

(a) Every level Pm is a partition of R, i.e., R =
⋃
I∈Pm I, and Pm consists

of compact intervals with disjoint interiors.
(b) The levels (Pm) of P are nested, i.e., Pm+1 is a refinement of Pm.
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(c) Each interval I ∈ Pm has at least two and at most M0 children in Pm+1,
where M0 ≥ 2 is a constant.

(d) There exist constants 0 < r < ρ < 1 such that for each I ∈ Pm and any
child I ′ ∈ Pm+1 of I

r|I| ≤ |I ′| ≤ ρ|I|. (5.1)

Locally regular (LR) partitions of R1. We call P =
⋃
m∈Z Pm a locally

regular partition of R if P is a WLR-partition of R and in addition to this P
satisfies the following property:

(e) There exists a constant 0 < δ ≤ 1 such that for each I ′, I ′′ ∈ Pm (m ∈ Z)
with a common end point δ ≤ |I ′|/|I ′′| ≤ δ−1.

The set D of all dyadic intervals on R is an example of an LR-partition.

We next define the univariate slim, skinny, and fat B-spacesBαkτ (P), Bαkτ (P),
and Bαkτ (P) with parameters k ≥ 1, 1/τ := α + 1/p, and p and α according
to the specific choices (as elsewhere): (a) 0 < p < ∞ and 0 < α < ∞, or (b)
p =∞ and 1 ≤ α <∞.

The slim B-space Bαk
τ (P). Let P be an LR-partition of R and let · · · <

x
(m)
−1 < x

(m)
0 < x

(m)
1 < · · · be the end points of the intervals from Pm. Fix

I ∈ Pm and let I =: [x
(m)
j , x

(m)
j+1] (j ∈ Z). We denote by ϕI the B-spline of

degree k − 1 with knots x
(m)
j , x

(m)
j+1, . . . , x

(m)
j+k (see [3] or [30]). Denote by Sm

the spline space spanned by {ϕI}I∈P (Sm ⊂ Ck−2). For I ∈ Pm, we denote

ΩI := [x
(m)
j−k+1, x

(m)
j+k] and by SI(f)τ the error of Lτ (ΩI)-approximation (local)

to f from Sm (similarly as in (3.16)).
We define the slim B-space Bα,kτ (P) as the set of all functions f ∈ Lτ such

that

‖f‖Bαkτ (P) :=
(∑
I∈P

(|I|−αSI(f)τ )τ
)1/τ

<∞.

Similarly as in §3.5, one can show that, for 0 < η < p,

‖f‖Bαkτ (P) ≈
(∑
I∈P

(|I|1/p−1/ηSI(f)η)τ
)1/τ

≈ inf
f=

∑
I∈P cIϕI

(∑
I∈P
‖cIϕI‖τp

)1/τ

.

Also, equivalent norms in Bαkτ (P) can be introduced via projections (quasi-
interpolants) as in §3.5.

The skinny B-space Bαkτ (P). Assuming that P is an WLR-partition of R,
we define the skinny B-space Bαkτ (P) as the set of all f ∈ Lτ such that

‖f‖Bαkτ (P) :=
(∑
I∈P

(|I|−αωk(f, I)τ )τ
)1/τ

<∞.

Again as in §3.6 and §4, we have, for 0 < η < p,

‖f‖Bαkτ (P) ≈
(∑
I∈P

(|I|1/p−1/ηωk(f, I)η)τ
)1/τ

≈ inf
f=

∑
I∈P PI

(∑
I∈P
‖PI‖τp

)1/τ

,
(5.2)
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where PI ∈ Πk.

The fat B-space Bαkτ (P). We now assume that P is an LR-partition of R
and define the fat B-space Bα,kτ (P) as the set of all f ∈ Lτ such that

‖f‖Bαkτ (P) :=
(∑
I∈P

(|I|−αωk(f,ΩI)τ )τ
)1/τ

<∞,

where ΩI is defined as above.

Besov spaces in dimension d = 1. The univariate Besov space Bα,kτ (Lτ ) on
R is needed for the characterization of the approximation spaces of nonlinear
spline approximation. We recall that (see §3.9) Bα,kτ (Lτ ) := Bα,kτ (Lτ (R)) is
defined as the set of all functions f ∈ Lτ (R) such that

‖f‖Bα,kτ (Lτ ) :=

(∫ ∞
0

(t−αωk(f, t)τ )τ
dt

t

)1/τ

<∞, (5.3)

where k and α are independent of each other. As elsewhere, we shall only use
the spaces Bα,kτ (Lτ ) with parameters k, α, p, and τ set as above.

We next clarify why in the definition of Bα,kτ (Lτ ) above the parameters α
and k are set to be independent. It is easily seen that the set of all f ∈ Lτ such
that ωk(f, t)τ = O(tα) is nontrivial if and only if 0 < α ≤ max {k, k− 1 + 1/τ}
(see, e.g., [29]). Hence, if 1/τ := α+ 1/p, this condition imposes no restriction
on α. Therefore, by choosing 1/τ := α + 1/p and allowing τ < 1, it follows
that Bα,kτ (Lτ ) is nontrivial for all k ≥ 1. This property of Besov spaves is of
fundamental importance for the theory of nonlinear spline approximation in
dimension d = 1 (see §8).

Equivalence of B-spaces and Besov spaces (d = 1). The following
theorem gives the precise conditions under which the B-spaces and Besov spaces
from above coincide:

Theorem 7. Suppose 0 < p < ∞ and 0 < α < ∞, or p = ∞ and α ≥ 1,
1/τ := α+ 1/p, and k ≥ 1.

(a) If P is a WLR partition of R and 0 < p <∞, then Bαkτ (P) = Bα,kτ (Lτ )
with equivalent norms.

(b) If P is an LR partition of R, then Bαkτ (P) = Bα,kτ (Lτ ) with equivalent
norms.

(c) If P is an LR partition of R and k ≥ 2, then Bαkτ (P) = Bα,kτ (Lτ ) with
equivalent norms.

In all cases, the constants of equivalence depend on p, α, k, and the parameters
of P.



62 Nonlinear Spline Approximation

Remark. Claim (a) of Theorem 7 is no longer true when p =∞. Indeed, it is
easily seen that for any interval I, ωk(1I , t)τ ≈ min{t1/τ , |I|1/τ}. This yields
‖1I‖Bα,kτ (Lτ ) =∞, if p =∞ (τ = 1/α), while ‖1I‖Bαkτ (P) ≈ 1 if I ∈ P.

Since we do not have a reference for this important theorem, we shall prove
it in the following.

Proof of Theorem 7. We shall only prove part (a) of the theorem. The proof
of (b)-(c) is similar.

Let f ∈ Bαkτ (P), where P is a WLR-partition of R. Then f can be repre-
sented in the form f =

∑
I∈P PI · 1I with PI ∈ Πk and (see (5.2))

‖f‖Bαkτ (P) ≈
(∑
I∈P
‖PI‖τLp(I)

)1/τ

. (5.4)

We denote Xj := {I ∈ P : 2−j−1 < |I| ≤ 2−j} and fj :=
∑
I∈Xj PI ·1I (j ∈ Z).

It follows by (5.1) that each x ∈ R may belong to ≤ (log2
1
ρ )−1 intervals from

Xj , i.e., only finitely many intervals from Xj may overlap at a time.
Now, we fix j ∈ Z. The above property of Xj implies the following obvious

estimate (t > 0)

ωk(fj , t)
τ
τ ≤ c

∑
I∈Xj

‖PI‖τLτ (I) ≤ c
∑
I∈Xj

|I|ατ‖PI‖τLp(I) ≤ c2
−jατ

∑
I∈Xj

‖PI‖τLp(I),
(5.5)

where we used the norm equivalence of polynomials and that 1/τ := α + 1/p.
On the other hand, since ∆k

h(P, x) = 0 for any polynomial P ∈ Πk, we readily
obtain (see [27])∫

R
|∆k

h(fj , x)|τ dx ≤ c
∑
I∈Xj

min{|h|, |I|}‖PI‖τL∞(I), h ∈ R. (5.6)

Using (5.6) and again the norm equivalence of polynomials, we obtain, for
m ≥ j,

ωk(fj , 2
−m)ττ ≤ c2−m

∑
I∈Xj

|I|−τ/p‖PI‖τLp(I) ≤ c2
−m2jτ/p

∑
I∈Xj

‖PI‖τLp(I).
(5.7)

We set λ := min{τ, 1} and use (5.5) and (5.7) to obtain

ωk(f, 2−m)λτ ≤
∑
j∈Z ωk(fj , 2

−m)λτ ≤ c
∑∞
j=m+1 2−jαλ

(∑
I∈Xj ‖PI‖

τ
Lp(I)

)λ/τ
+c2−mλ/τ

∑m
j=−∞ 2jλ/p

(∑
I∈Xj ‖PI‖

τ
Lp(I)

)λ/τ
.

Inserting this in (3.29), we find
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‖f‖τ
Bα,kτ (Lτ )

≤ c
∑
m∈Z

[ ∞∑
j=m+1

2−(j−m)αλ

(∑
I∈Xj

‖PI‖τLp(I)

)λ/τ]τ/λ

+ c
∑
m∈Z

[ m∑
j=−∞

2−(m−j)λ/p
(∑
I∈Xj

‖PI‖τLp(I)

)λ/τ]τ/λ
≤ c

∑
I∈P
‖PI‖τLp(I) ≤ c‖f‖

τ
Bαkτ (P),

where we used the well-known Hardy inequalities (see, e.g., Lemma 3.10 in [29])
as well as (5.4) and 1/τ := α+ 1/p.

To prove the opposite estimate we shall make use of (3.10)-(3.11) and the
sets (Xj) from above. We have

‖f‖τBαkτ (P) =
∑
I∈P
|I|−ατωk(f, I)ττ ≤ c

∑
j∈Z

2jατ
∑
I∈Xj

ωk(f, I)ττ

≤ c
∑
j∈Z

2jατ
∑
I∈Xj

1

|I|

∫ |I|
0

∫
I

|∆k
h(f, x, I)|τ dx dh

≤ c
∑
j∈Z

2j(ατ+1)

∫ 2−j

0

(∑
I∈Xj

∫
I

|∆k
h(f, x, I)|τ dx

)
dh

≤ c
∑
j∈Z

2jατωk(f, 2−j)ττ ≤ c‖f‖τBα,kτ (Lτ )
.

Therefore, ‖f‖Bαkτ (P) ≈ ‖f‖Bα,kτ (Lτ ).

Remark. A theorem similar to Theorem 7 holds on [a, b] as well.

6. Nonlinear Piecewise Polynomial Approximation
Generated by Dyadic Partitions in Rd

Piecewise polynomials generated by a single dydic partition. Here, we
shall utilize the B-spaces introduced in §4 to characterize the rates of nonlinear
approximation in Lp from piecewise polynomials generated by an arbitrary
anisotropic dyadic partition P of Rd (d > 1). The same results with almost
identical proofs hold on any box Ω ⊂ Rd.

We let Σkn(P) denote the nonlinear set consisting of all piecewise polynomial
functions of the form

s =
∑
I∈Λn

1I · PI ,
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where PI ∈ Πk, Λn ⊂ P, and #Λn ≤ n (Λn may very). We denote by σkn(f,P)p
the error of Lp-approximation to f ∈ Lp(Rd) from Σkn(P):

σkn(f,P)p := inf
s∈Σkn(P)

‖f − s‖p.

To characterize the approximation spaces generated by (σkn(f,P)p), we fol-
low the general scheme described in §2. Namely, we first establish Jackson and
Bernstein estimates and then the desired characterization of the approxima-
tion spaces follows immediately by interpolation. Throughout this section, we
assume that P is an arbitrary dyadic partition of Rd (§4), 0 < p < ∞, α > 0,
k ≥ 1, and 1/τ := α+ 1/p. We shall use the B-spaces Bαkτ (P) defined in §4.

Theorem 8 (Jackson estimate). If f ∈ Bαkτ (P), then

σkn(f,P)p ≤ cn−α‖f‖Bαkτ (P)

with c = c(α, p, k, d).

Theorem 9 (Bernstein estimate). If s ∈ Σkn(P), then

‖s‖Bαkτ (P) ≤ cnα‖ϕ‖p
with c = c(α, p, k, d).

We denote by Aγq (Lp,P) the approximation space generated by (σn(f,P)p)
(see (2.1)). The Jackson and Bernstein inequalities from Theorems 8-9, com-
bined with Theorems 1-2 of §2, imply the following characterization of the
approximation spaces Aγq (Lp,P):

Theorem 10. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (Lp,P) = (Lp(P, k), Bαkτ (P))γ/α,q

with equivalent norms (for the definition of Lp(P, k), see §4).

In one specific case the interpolation space as well as the corresponding
approximation space can be identified as a B-space.

Theorem 11. Suppose P is a dyadic partition of Rd, k ≥ 1, 1 ≤ p < ∞,
and 1/τ := α+ 1/p. Let 0 < α < β and 1/λ := β + 1/p. We have(

Lp(P, k), Bβkλ (P)
)
α/β,τ

= Bαkτ (P) = Aατ (Lp,P)

with equivalent norms.

The analogue of this result for Besov spaces is well-known (see [17]).

Nonlinear approximation from the library {Σkn(P)}P . We denote

σkn(f)p := inf
P
σkn(f,P)p,

where the infimum is taken over all dyadic partitions P. The following theorem
is immediate from the Jackson estimate in Theorem 8.
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Theorem 12. If infP ‖f‖Bαkτ (P) <∞, then

σkn(f)p ≤ cn−α inf
P
‖f‖Bαkτ (P)

with c = c(α, k, p, d).

As we show later in this section, in a natural discrete setting, there exists
an effective algorithm for finding a partition P∗ which minimizes ‖f‖Bαkτ (P),
for a given f , over all dyadic partitions P.

It is an open problem to characterize the approximation spaces generated by
(σkn(f)p). See §10 for further discussion of this and other related open problems
for approximation from libraries of basis families.

Remarks. There exists another technique that can be employed for the proof
of Theorem 8. This method is called “split and merge” and was introduced in
[8] and used for nonlinear approximation of functions from the space BV (R2).
It was further used in [23]. Also, the modulus W(f, t)σ,p, used in [23] which is
a generalization of a characteristic from [26] (d = 1), can be generalized and
utilized for anisotropic dyadic partitions P.

Nonlinear n-term approximation from anisotropic Haar bases. An
anisotropic Haar basis is naturally associated with each anisotropic dyadic par-
tition P of a box Ω in Rd (or Rd). For the sake of simplicity, we shall consider
Haar bases only on a dyadic box Ω with sides parallel to the coordinate axes
and |Ω| = 1. Then any dyadic partition of Ω is of the form P =

⋃∞
m=0 Pm. Let

I ∈ P and I =: I1 × · · · × Id. Suppose I is split (in P) by dividing in half the
νth (1 ≤ ν ≤ d) side of I. Then we define HI := 1I1

× · · · ×HIν × · · · × 1Id ,
where HIν is the univariate Haar function supported on Iν and normalized in
L∞. We need to add the characteristic function of Ω to the collection of the
above defined Haar functions. To this end we denote I0 := I0 := Ω and include
both I0 and I0 in P0 and P. We define HI0 := 1I0 .

Thus HP := {HI : I ∈ P} is the Haar basis associated with P. We let
H := {HP}P denote the collection (library) of all anisotropic Haar bases on Ω.

The most important properties of the Haar bases {HP}P are the following:
(a) For each dyadic partition P of Ω the Haar basis HP is an unconditional

basis for Lp(P) (the linear span of HP in Lp(Ω)), 1 < p <∞.
(b) The B-norm of f ∈ Bα,1τ (P) (1 < p <∞, α > 0, 1/τ := α+ 1/p) can be

characterized by means of its Haar coefficients using HP : Every f ∈ Bα,1τ (P)
can be represented uniquely in the form f =

∑
I∈P cI(f)HI with cI(f) :=

|I|−1
∫
I
fHI and

‖f‖Bα,1τ (P) ≈ N (f,HP) := (
∑
I∈P
|I|−ατ‖cI(f)HI‖ττ )1/τ = (

∑
I∈P
‖cI(f)HI‖τp)1/τ .

(6.1)

For a given partition P, we denote by Σ̂n(P) the nonlinear set of all func-
tions s of the form

s =
∑
I∈Λn

aIHI ,
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where Λn ⊂ P and #Λn ≤ n. The error σ̂n(f,HP)p of nonlinear Lp-approximation

to f from Σ̂n(P) is defined by

σ̂n(f,HP)p := inf
s∈Σ̂n(P)

‖f − s‖Lp(Ω).

Clearly, Σ̂n(P) ⊂ Σ1
2n(P) and hence σ1

2n(f,P)p ≤ σ̂n(f,HP)p. We denote by

Âγq := Âγq (Lp,HP) the approximation spaces generated by nonlinear n-term
approximation from HP (see (2.1)). Now, the main goal is to characterize the

approximation spaces Âγq , which reduces to establishing Jackson and Bernstein
inequalities and interpolation (see §2).

Theorem 13. Suppose P is an arbitrary dyadic partition of Ω and let
1 < p < ∞, α > 0, and 1/τ := α + 1/p. Then the following Jackson and
Bernstein inequalities hold:

σ̂n(f,HP)p ≤ cn−α‖f‖Bα,1τ (P), f ∈ Bα,1τ (P), (6.2)

‖s‖Bα,1τ (P) ≤ cnα‖s‖Lp(Ω), s ∈ Σ̂n(P), c = c(α, p, d).

Therefore, if 0 < γ < α and 0 < q ≤ ∞, then

Âγq (Lp,HP) = (Lp(P), Bα,1τ (P))γ/α,q = Aγq (Lp,HP)

with equivalent norms (see Theorem 10).

Nonlinear n-term approximation from the library H := {HP}. We
denote by σ̂n(f)p the error of n-term approximation to f ∈ Lp from the best
basis in H, i.e.,

σ̂n(f)p := inf
P
σ̂n(f,HP)p.

The following theorem is immediate from the Jackson estimate (6.2):

Theorem 14. If infP ‖f‖Bα,1τ (P) <∞, then

σ̂n(f)p ≤ cn−α inf
P
‖f‖Bα,1τ (P)

with c = c(p, α, d).

The scheme for nonlinear n-term approximation of a given function f ∈
Lp(Ω) from the library H := {HP} of all anisotropic Haar bases consists of two
steps:

(i) Find a basis H(f) ∈ H which minimizes the Bα,1τ -norm of f .
(ii) Run a threshold algorithm for near best n-term approximation from

H(f).
The most significant fact in this part is that, in a natural discrete setting, there
is an effective algorithm for best Haar basis selection, which we present below.
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The above approximation scheme requires a priori information (or an es-
timate) for the smoothness order α > 0 of the function f (which is being
approximated) with respect to the optimal Bα,1τ -scale. How to determine this
smoothness is an open problem.

Best Haar basis or best B-space selection. We next describe a fast algo-
rithm for best anisotropic Haar basis or best B-space selection in the discrete
case of dimension d = 2. This algorithm is well-known (see, e.g., [19] and the
references therein).

We consider the set Xn of all functions f : [0, 1)2 → R which are constants
on each of the 2n × 2n “pixels”

I = [(i− 1)2−n, i2−n)× [(j − 1)2−n, j2−n), 1 ≤ i, j ≤ 2n.

Denote by Dn the set of all such pixels on [0, 1)2. We let Pn denote the set of
all dyadic partitions P of [0, 1)2 such that P2n = Dn and we shall consider P
terminated at level 2n. Thus P =

⋃2n
m=0 Pm.

Motivated by the result from Theorem 14, our next goal is to find, for a
given f ∈ Xn, a dyadic partition P∗ := P∗(f) ∈ Pn which minimizes the
B-norm N (f,P) := N (f,HP) from (6.1). Evidently, for P ∈ Pn, HP is an
orthogonal basis for the linear space Xn and, therefore,

f =
∑
I∈P

cI(f)HI with cI(f) := |I|−1

∫
I

fHI .

We denote d(I,P) := |I|−ατ+1|cI(f)|τ . Also, we set d0(I) := d(I,P) if I is
subdivided, say, horizontally in P, and d1(I) := d(I,P) if I is subdivided
vertically in P. We have, for the B-norm from (6.1),

N (f,P)τ =
∑
I∈P

d(I,P) =: D(P).

For a given dyadic box J , we denote by PJ the set of all dyadic partitions PJ
of J which are subpartitions of partitions from Pn. Similarly as above, we set

D(PJ) :=
∑
I∈PJ

d(I,PJ).

We next describe a fast algorithm for finding a partition P∗ ∈ Pn which
minimizes the B-normN (f,P). The idea of this construction is to proceed from
finer to coarser levels minimizing D(PJ) for every dyadic box J at every step.
More precisely, we use the following recursive procedure. We first consider all
dyadic boxes J with |J | = 2−2n+1. Each box J like this is the union of two
adjacent pixels and, hence, it can be subdivided in exactly one way. Thus P∗J is
uniquely determined. Now, suppose that we have already found all partitions
P∗J of all dyadic boxes J with |J | ≤ 2−µ (0 < µ < 2n) which minimize D(PJ)
over all partitions PJ ∈ PJ . Let J be an arbitrary dyadic box such that
|J | = 2−µ+1. There are two cases to be considered.
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Case I: One of the sides of J is of length 2−n. Then there is only one way to
subdivide J and, hence, P∗J and minD(PJ) = D(P∗J) are uniquely determined.

Case II: Both sides of J are of length > 2−n. Then J can be subdivided in
two possible ways: horizontally or vertically and, therefore, J has two sets of
children. Let us denote by J◦1 and J◦2 the children of J obtain when dividing J
horizontally and J ′1 and J ′2 the children of J obtain when dividing J vertically.
The key observation is that

min
PJ

D(PJ) = min
{
D(P∗J◦1 ) +D(P∗J◦2 ) + d0(I), D(P∗J′1) +D(P∗J′2) + d1(I)

}
.

Therefore, if minPJ D(PJ) is attained when J is (first) subdivided horizontally,
then P∗J = P∗J◦1 ∪ P

∗
J◦2
∪ {J} will be an optimal partition of J and P∗J = P∗J′1 ∪

P∗J′2 ∪ {J} will be optimal in the other case. We process like this every dyadic

box of area 2−µ+1 and this completes the recursive procedure. After finitely
many steps, we find a partition P∗ of Ω which minimizes D(P) = N (f,P)τ .

Every f ∈ Xn belongs to any (discrete) space Bα,1τ (P) and we have, by
Theorem 14,

σ̂m(f)p ≤ cm−α inf
P∈Pn

‖f‖Bα,1τ (P), m = 1, 2, . . .

Once the smoothness parameter α > 0 is fixed, the above algorithm provides
a dyadic partition which minimizes the Bατ (P)-norm of f . It is a problem to
find the optimal smoothness order α of a given function f .

Several observations are in order. Fix f ∈ Xn. Evidently, the number of all
coefficients cI(f) (or Haar functions HI) that participate in the representations
of f using all anisotropic Haar bases is ≤ 2N , where N := 22n is the number of
the pixels. Moreover, these coefficients can be found by O(N) operations. For
fixed indices α and τ , only O(N) operations are needed to find a Haar basis
H(f) which minimizes the Bα,1τ -norm N (f,P). Another O(N lnN) operations
(mainly for ordering the coefficients) are needed for finding a near best n-term
approximation to f in Lp (1 < p <∞) from the best Haar basis H(f).

Remark. The above idea for best basis selection applies immediately for best
B-space selection, namely, for the selection of a partition P∗ which minimizes
the B-norm ‖f‖Bαkτ (P) of a given function f , when k > 1.

For the results of this section, we refer the reader to [28].

7. Nonlinear n-term Approximation from Hierarchical
Sequences of Spline Bases over Triangulations in R2

Nonlinear n-term approximation from a single hierarchical sequence
of bases in R2. Let T be a locally regular (or better) triangulation of R2.
Suppose Φ := ΦT is a family of basis functions associated with a spline mul-
tiresolution over T (see §3.3-§3.4). Notice that Φ is not a basis; Φ is redundant.
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We consider nonlinear n-term approximation from Φ in Lp(R2) (0 < p ≤ ∞),
where we identify L∞(R2) as C0(R2). We let Σn(Φ) denote the nonlinear set
consisting of all splines s of the form

s =
∑
θ∈M

aθϕθ,

where M ⊂ Θ(T ), #M ≤ n, and M may vary. We denote by σn(f,Φ)p the
error of Lp-approximation to f ∈ Lp(R2) from Σn(Φ):

σn(f,Φ)p := inf
s∈Σn(Φ)

‖f − s‖p.

The primary goal is to characterize the approximation spaces Aγq (Φ, Lp) (see
(2.1)) generated by nonlinear n-term approximation from Φ. To this end we
next establish a pair of companion Jackson and Bernstein estimates which
utilize the slim B-spaces Bατ (Φ), introduced in §3.5. As elsewhere in this article,
we shall assume that 0 < p < ∞ and α > 0 or p = ∞ and α ≥ 1. In both
cases, 1/τ := α+ 1/p.

Theorem 15 (Jackson estimate). If f ∈ Bατ (Φ), then

σn(f,Φ)p ≤ cn−α‖f‖Bατ (Φ) (7.1)

with c depending only on p, α, and the parameters of T and ΦT .

Theorem 16 (Bernstein estimate). If s ∈ Σn(Φ), then

‖s‖Bατ (Φ) ≤ cnα‖s‖p (7.2)

with c depending only on p, α, and the parameters of T and ΦT .

The following characterization of the approximation spaces follows by the
Jackson-Bernstein estimates (7.1)-(7.2), using Theorems 1-2 of §2:

Theorem 17. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (Φ, Lp) = (Lp, B
α
τ (Φ)) γ

α ,q

with equivalent norms.

As in §6 in one specific case, the interpolation space as well as the corre-
sponding approximation space can be identified as a B-space.

Theorem 18. Suppose 0 < p < ∞ and α > 0 or p = ∞ and α > 1, and
let τ := (α+ 1/p)−1. Then

Aατ (Φ, Lp) = Bατ (Φ)

with equivalent norms.
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The following interpolation result is immediate from Theorem 17 and The-
orem 18.

Corollary 1. Suppose p, α, and τ =: τ(α) are as in the hypothesis of
Theorem 18, and let β > α and τ(β) := (β + 1/p)−1. Then

(Lp, B
β
τ(β)(Φ))α

β ,τ(α) = Bατ(α)(Φ)

with equivalent norms.

Approximation from the library {ΦT }T . An important element of our
concept for nonlinear spline approximation is the introduction of another level
of nonlinearity by allowing the triangulation T to vary. For a given SRL(or
LR)-triangulation T , let ΦT be a family of spline basis functions associated with
a spline multiresolution, like the ones considered in §3.3-§3.4. Now, without
changing the nature of the basis elements from ΦT , we let T vary and obtain
a collection (library) of basis families {ΦT }T . We denote

σn(f)p := inf
T
σn(f,ΦT )p,

where the infimum is taken over all SLR-triangulations T with fixed parameters
and we also assume that the parameters of ΦT are fixed. The following theorem
is immediate from the Jackson estimate in Theorem 15.

Theorem 19. If infT ‖f‖Bατ (ΦT ) <∞, then

σn(f)p ≤ cn−α inf
T
‖f‖Bατ (ΦT )

with c depending only on p, α, and the parameters of T and ΦT .

This theorem gives rise to several interesting problems and, in particular, to
the problem for finding a triangulation T ∗ := T ∗f which minimizes the B-norms
Bατ (ΦT ) of a given function f . For further and more complete discussion of
this and other related problems, see §10.

Nonlinear approximation from discontinuous piecewise polynomials
over multilevel triangulations. Similarly as in §6-§7, one can consider
nonlinear n-term approximation from discontinuous piecewise polynomials over
WLR-triangulations and results similar to Theorems 15-19 hold true. The only
difference is that the slim B-spaces Bαkτ (ΦT ) should be replaced by the skinny
B-spaces Bαkτ (T ). For more details, see [21].

Approximation on polygonal domains of R2. The results of this section
hold for nonlinear spline approximation on polygonal domains of R2 with a
natural and obvious adaptation of the setting and the spaces (see [22]).

Remarks. For the results of this section, we refer the reader to [11, 21, 22]. In
the case 0 < p <∞, Theorem 15 follows by Theorem 4 of §2. The proof of this
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theorem when p =∞ can be carried out as the proofs of Theorems 24-25 of §9
(for more details, see Theorem 4.1 of [22]). In the case of regular triangulations
and approximation from box-splines, the results from this section imply the
results from [15, 18, 23] which involve Besov spaces, but are more complete
since they do not impose any restrictions on the approximation rates.

8. Nonlinear Univariate Spline Approximation

In this section, we consider three types of piecewise polynomial (spline) ap-
proximation in dimension d = 1 and show that in all cases (with one exception
only) the corresponding approximation spaces are the same and can be charac-
terized by means of Besov spaces and interpolation. We begin by introducing
the necessary notation.

(a) Nonlinear univariate n-term spline approximation. In this part, we
assume that P is an LR-partition of R (§5) and ΦkP = {ϕI}I∈P is the set of
all B-splines of degree < k (k ≥ 2) as in §5. Notice that ΦkP is not a basis; it
is redundant. We consider nonlinear n-term approximation from ΦkP in Lp(R)
(L∞(R) := C0(R)). We let Σkn(P) denote the nonlinear set consisting of all
splines s of the form s =

∑
I∈Λn

aIϕI , where Λn ⊂ P and #Λn ≤ n (Λn may

vary). We denote by σkn(f,P)p the error of Lp(R)-approximation to f from
Σkn(P):

σkn(f,P)p := inf
s∈Σkn(P)

‖f − s‖p.

(b) Nonlinear univariate n-term approximation from discontinuous
piecewise polynomials. Suppose that P is a WLR-partition of R (§5) and
Σ̃kn(P) is the set of all piecewise polynomials s of the form s =

∑
I∈Λn

PI ,

where PI ∈ Πk, Λn ⊂ P, and #Λn ≤ n. We let σ̃kn(f,P)p denote the error of

Lp-approximation to f ∈ Lp(R) from Σ̃kn(P) (replacing the uniform norm by
the L∞-norm when p =∞):

σ̃kn(f,P)p := inf
s∈Σ̃kn(P)

‖f − s‖p.

(c) Free knot piecewise polynomial approximation. We now consider
nonlinear approximation from (discontinuous) free knot piecewise polynomials
in Lp(R). We denote by S(k, n) the set of all piecewise polynomial functions
of degree < k on R with n+ 1 free knots, i.e., s ∈ S(k, n) if there exist points
(knots) x0 < x1 < · · · < xn such that s =

∑n
j=1 1Ij · Pj , where Ij := [xj−1, xj)

and Pj ∈ Πk. (The values of s at the knots {xj} are insignificant since we use
the L∞ norm instead of the uniform norm if s is discontinuous.) We denote by
skn(f)p the error of Lp-approximation to f ∈ Lp(R) from S(k, n):

skn(f)p := inf
s∈S(k,n)

‖f − s‖p.
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Evidently, Σkn(P) ⊂ S(k, 2n) and Σ̃kn(P) ⊂ S(k, 2n) and hence, for f ∈ Lp,

sk2n(f)p ≤ σkn(f,P)p and sk2n(f)p ≤ σ̃kn(f,P)p. (8.1)

Now, we denote by Aγq (σk(P), Lp), A
γ
q (σ̃k(P), Lp), and Aγq (sk, Lp) the ap-

proximation spaces generated by (σkn(f,P)p), (σ̃kn(f,P)p), and (skn(f)p), re-
spectively (see (2.1)).

The main goal again is to characterize these approximation spaces. To this
end we next establish Jackson and Bernstein estimates, which utilize the Besov
spaces Bα,kτ (Lτ ), defined in §5. For the remainder of this section, we assume
that k ≥ 1, 0 < p < ∞ and α > 0 or p = ∞ and α ≥ 1. In both cases,
1/τ := α+ 1/p.

Theorem 20 (Jackson estimates). If f ∈ Bα,kτ (Lτ ), then

σkn(f,P)p ≤ cn−α‖f‖Bα,kτ (Lτ ) (k ≥ 2), (8.2)

where P is any LR-partition of R,

σ̃kn(f,P)p ≤ cn−α‖f‖Bα,kτ (Lτ ), (8.3)

where P is any WLR-partition of R, and hence

skn(f)p ≤ cn−α‖f‖Bα,kτ (Lτ ), (8.4)

where each c is independent of f and n.

Theorem 21 (Bernstein estimates). (a) If 0 < p < ∞ and s ∈ S(k, n),
then

‖s‖Bα,kτ (Lτ ) ≤ cn
α‖s‖p, c = c(p, α, k). (8.5)

(b) If p =∞ and s ∈ Σkn(P), where k ≥ 2 and P is an LR-partition of R,
then

‖s‖Bα,kτ (Lτ ) ≤ cn
α‖s‖∞ (8.6)

where c depends only on p, α, k and the parameters of P (§5).

Remark. Estimate (8.5) is not valid when p = ∞ even when s is continu-
ous. Indeed, consider a spline s defined by s(x) := 1 on [0, 1], s(x) := 0 on
(−∞,−ε]∪ [1+ε,∞), and with maximal smoothness and ‖s‖∞ = 1. It is easily
seen that ‖s‖Bα,kτ (Lτ ) → ∞ as ε → 0, if τ = 1/α, and hence (8.5) fails when
p =∞.

In view of Theorems 1-2 of §2, the Jackson-Bernstein estimates from The-
orems 20-21 imply the following characterization of the approximation spaces:
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Theorem 22. Suppose P ′ is an LR-partition and P ′′ is a WLR-partition
of R.

(a) Let 0 < p <∞ and α > 0. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (σk(P ′), Lp) = Aγq (σ̃k(P ′′), Lp) = Aγq (sk, Lp) = (Lp, B
α,k
τ (Lτ )) γ

α ,q

with equivalent norms.
(b) Let p =∞, α ≥ 1 and k ≥ 2. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (σk(P ′), L∞) = (L∞, B
α,k
τ (Lτ )) γ

α ,q

with equivalent norms (L∞ := C0).

Results similar to the ones from Theorem 11 of §6, and Theorem 18 and
Corollary 1 of §7 hold true for the above types of approximation. We skip the
details.

Remarks. We first note that the approximation spaces Aγq (sk, L∞) cannot
be characterized by Besov spaces as in Theorem 22. The reason for this is
that the Bernstein estimate (8.5) is no longer valid when p = ∞ (see the
remark after Theorem 21). However, as Theorem 22 shows, in all other cases
of nonlinear univariate spline approximation the corresponding approximation
spaces are the same and are governed by the scale of Besov spaces Bα,kτ (Lτ ),
where 1/τ := α + 1/p. In view of the results from §6-§7, the situation in the
univariate case is quite unique: A scale of Besov spaces governs all rates of all
kinds of nonlinear spline approximation (except for one case). The key role
here is played by the Bernstein estimate (8.5).

Estimates (8.2)-(8.3) and (8.6) can be proved similarly as estimate (7.1)-
(7.2) of §7 are proved (see [11, 21, 22]), using additionally the equivalence of the
B-spaces and Besov spaces from Theorem 7 of §5. Estimate (8.4) is immediate
from (8.2) or (8.3), taking into account (8.1). For the proof of (8.5), see [27].
(See also [15] and [18].)

9. Algorithms for n-term Spline Approximation

In this section, we present three algorithms for n-term Courant element
approximation, which are call “Threshold”, “Trim and Cut”, and “Push the
Error” algorithms. We consider approximation in Lp(E) (0 < p ≤ ∞), where
E a compact polygonal domain in R2. Throughout this subsection, we assume
that T =

⋃∞
m=0 Tm is a LR-triangulation of E (see §3.1) and ΦT = {ϕθ}θ∈Θ is

the set of all Courant element generated by T . Note that Θ =
⋃∞
m=0 Θm.

The primary goal is, by using the B-spaces and the related techniques, to
develop (or refine) algorithms for nonlinear n-term approximation so that the
new algorithms be capable of achieving the rate of the best approximation.
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From the description of the three algorithms below, it will become clear
that they can be applied immediately to nonlinear n-term approximation from
an arbitrary hierarchical family of basis functions Φ associated with a spline
multiresolution. We do not consider the general case here only for simplicity.

Decomposition step for all approximation algorithms. The first step
of each of the three approximation algorithms that we consider in this section
is a decomposition step. This step is not trivial since the set ΦT := {ϕθ}θ∈Θ

of all Courant elements is redundant. For each algorithm, it is crucial to have
a sufficiently efficient initial representation of the function f which is being ap-
proximated. This means that the representation of f should allow a realization
of the corresponding B-norm. As we indicated in §3.8, all theorems from §3.5
and, in particular, Theorems 5-6 have almost identical analogies for a polygonal
domain E. We use a representation of f similar to (3.25) from Theorem 5 of
§3.5, which utilizes the operators Qm,η(·) and qm,η(·) from (3.15) and (3.23).
Thus we have an initial desirable sparse representation of f of the form

f =
∑
θ∈Θ

bθϕθ, bθ = bθ(f), (9.1)

which allows a realization of the B-norm:

‖f‖Bατ (ΦT ) ≈
(∑
θ∈Θ

‖bθ(f)ϕθ‖τp
)1/τ

(see (3.24) and Theorem 6 of §3.5). Without loss of generality we may assume
(when needed) that there is a final level ΘL (L <∞) in (9.1).

9.1. “Threshold” Algorithm (p < ∞ only)

This algorithm utilizes the usual thresholding strategy used for n-term ap-
proximation from a basis in Lp (1 < p <∞). The resulting procedure performs
very well due to the sparse representation realized by the first step.

Description of the algorithm.

Step 1. (Decompose) We use the decomposition of f ∈ Lp(E) from (9.1).

Step 2. (Select the n largest terms) We order the terms {bθϕθ}θ∈Θ in a se-
quence (bθjϕθj )

∞
j=1 so that

‖bθ1ϕθ1‖p ≥ ‖bθ2ϕθ2‖p ≥ · · ·

Then we define the approximant ATn (f)p by ATn (f)p :=
∑n
j=1 bθjϕθj .

Error estimation for the “Threshold” algorithm.
We denote the corresponding error of approximation of this threshold algo-
rithm by ATn (f)p := ‖f −ATn (f)p‖p. The following theorem is immediate from
Theorem 4 of §2.
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Theorem 23. If f ∈ Bατ (T ), α > 0, 1/τ := α+ 1/p (0 < p <∞), then

ATn (f)p ≤ cn−α‖f‖Bατ (T ), (9.2)

where c depends on α, p, and the parameters of T .

Remark. The main drawback of the “Threshold” algorithm is that it is not
applicable to approximation in the uniform norm since the constant c = c(α, p)
in (9.2) tends to infinity as p→∞ and the performance of the algorithm dete-
riorates as p gets large. The obvious reason for this behavior is that f can be
built out of many terms {bθϕθ} which have small coefficients and are supported
at the same location. These terms can pile up to an essential contribution but
the algorithm will fail to anticipate their future significance.

9.2. “Trim & Cut” Algorithm

The idea of this algorithm has its origins in the proof of the Jackson estimate
in [18] (see §5). The approximation considered there is by wavelets or splines
over a uniform partition in the uniform norm.

Description of the “Trim & Cut” algorithm in the case p = ∞.

Step 1. (Decompose) We use the common decomposition of f ∈ Lp(E) given
in (9.1).

Step 2. (Organize the cells of Θ into manageable trees Θν) This is a procedure
for coloring the elements of Θ with K colors ν, so that no two Courant elements
of the same color from the same level have supports that intersect, in fact
corresponding cells of the same color will have a tree structure with set inclusion
as the order relation. This allows us to partition Θ into a disjoint union of sets
Θν (1 ≤ ν ≤ K), and correspondingly organize f as the sum f =

∑K
ν=1 fν ,

where fν :=
∑
θ∈Θν bθϕθ.

Lemma 2 (Coloring lemma). For any multilevel-triangulation T of E, the
set Θ := Θ(T ) of all cells generated by T can be represented as a finite disjoint
union of its subsets (Θν)Kν=1 with K = K(N0,M0) (N0 is the maximal valence
and M0 is the maximal number of children of a triangle in T ), such that each
Θν has a tree structure with respect to set inclusion, i.e., if θ′, θ′′ ∈ Θν with
(θ′)◦ ∩ (θ′′)◦ 6= ∅, then either θ′ ⊂ θ′′ or θ′′ ⊂ θ′.

Fix ε > 0 and let ε∗ := ε
2K , where K is from the above lemma.

Step 3. (“Trimming” of Θν (1 ≤ ν ≤ K) with ε∗) We trim with ε∗ each Θν ,
starting from the finest level Θν

J and proceeding to the coarsest level. Namely,
we remove from Θν every cell θ� such that∑

θ⊂θ�
|bθ| ≤ ε∗.
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We denote by Γν the set of all θ ∈ Θν which have been retained after completing
this procedure.

Step 4. (Partition the remaining trees into “segments”) We cut each Γν into a
set Σν of disjoint segments σ of the form (θj)

i+µ
j=i , µ ≥ 0, so that each segment

satisfies exactly one of the following conditions:

(a) σ consists of a single “significant cell”: |bθi | > ε∗ (case of µ = 0),
(b) σ is a “significant segment”:

i+µ−1∑
j=i

|bθj | ≤ ε∗, but

i+µ∑
j=i

|bθj | > ε∗, (case of µ > 0),

(c) σ is an “remnant segment”:
∑l
j=i |bθj | ≤ ε∗.

Step 5. (Rewriting elements from certain segments of Σν) Let σ = (θj)
µ
j=1 be

any segment from Σν and suppose that the finest cell θµ of σ belongs to Θm.
We rewrite the Courant elements (

∑µ
j=1 bθjϕθj ) of the segment at its finest

(m-th) level, finding coefficients (cθ) such that

∑
θ∈Θm,θ◦∩θµ 6=∅

cθϕθ =

µ∑
j=1

bθjϕθj on θµ.

We denote Xσ := {θ ∈ Θm : θ◦ ∩ θµ 6= ∅ and θ ⊂ θ1}. Obviously, if µ = 1 (i.e.,
the segment consists of a single cell), then the coefficient remains unchanged
and Xσ = σ = {θ1}. Observe in any case that #Xσ ≤ N0 +1 and ∪θ∈Xσθ ⊂ θ1.
Finally, set Σ := ∪Kν=1Σν , and correspondingly define

ATCε (f) :=
∑
σ∈Σ

∑
θ∈Xσ

cθϕθ (9.3)

as our approximant produced by the “Trim & Cut” algorithm.

Error estimation for the “Trim & Cut” algorithm (Case p = ∞).

Suppose that the “Trim & Cut” procedure has been applied to a function f
with ε > 0, and ATCε (f) =

∑
θ∈Λε

cθϕθ is the resulting approximant from (9.3),
where Λε = ∪σ∈ΣXσ. We denote

n(ε) := nf (ε) := #Λε, ATCn(ε)(f)∞ := ‖f −ATCε (f)‖∞,

and
ATCn (f)∞ := inf

{
ATCn(ε)(f)∞ : n(ε) ≤ n

}
.

Note that each of these quantities depends implicitly on T .
The following theorem indicates that the “Trim & Cut” algorithm provides

optimal rate of convergence.



Pencho Petrushev 77

Theorem 24. If f ∈ Bατ (T ), α ≥ 1, τ := 1/α, then for each ε > 0

ATCn(ε)(f)∞ ≤ ε and n(ε) ≤ c ε−τ‖f‖τBατ (T ),

where c = c(N0,M0, α). Therefore,

ATCn (f)∞ ≤ c n−α‖f‖Bατ (T ).

Remark. There is a version of the “Trim & Cut” algorithm for approximation
in Lp (0 < p <∞), which is quite similar to the above algorithm (p =∞) but
we do not present here (see [22]).

9.3. “Push the Error” Algorithm in the Uniform Norm

The idea of this algorithm to our knowledge first appeared in [14]. We
present here the refined “Push the Error” from [22] which achieves optimal
rates of approximation (the rate of convergence of the best approximation).

Description of the algorithm.

Step 1. (Decompose) For f ∈ C(E) initially represented by (9.1), we may
assume without loss of generality that there exists a finest level ΘJ (J > 0)
such that f is written as

f =

J∑
j=0

∑
θ∈Θj

bθϕθ. (9.4)

Step 2. (“Prune the shrubs”) We fix ε > 0 and let ε∗ := ε/2. The goal of
this step is to discard small insignificant terms bθϕθ in the representation of f
from (9.4) but insuring that the resulting uniform error is at most ε∗. We shall
denote by Γ the set of all retained cells. In addition, we shall construct a set
Γf ⊂ Γ, consisting of “final cells” in Γ.

First, we need to introduce a organizational concept as a replacement for
the tree structures of §9.2. We shall say (figuratively) that a cell θ ∈ Θ sits on
another cell θ� ∈ Θ, if θ is at least as fine as θ� and its interior (denoted by θ◦)
intersects the interior of θ�. Furthermore, for θ� ∈ Θ, we denote the collection
of all cells which sit on θ� by

Yθ� := {θ ∈ Θ : θ◦ ∩ θ� 6= ∅ and level (θ) ≥ level (θ�)}.

The procedure of Step 2 will begin at the finest level and proceed to the
coarsest, level by level, constructing sets Γf and Γ. To initialize the procedure
we put into Γf all significant cells θ ∈ ΘJ , i.e. such that |bθ| > ε∗. We place in
Γ any cell from ΘJ which sits on a cell from Γf .

The inductive step proceeds as follows. Suppose that all cells from Θj with
levels j > m (0 ≤ m < J), have already been processed. We now describe how
to process Θm. We place into Γf all cells θ� ∈ Θm which satisfy∑

θ∈Yθ�

|bθ| > ε∗,
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and for which there is no θ ∈ Γf from a higher level which sits on θ�. A cell θ�

from Θm is placed in Γ if there is a cell θ in the current Γf which sits on θ�.
Obviously, a cell θ� from Θm is discarded and not placed in Γ if∑

θ∈Yθ�

|bθ| ≤ ε∗,

and there is no θ ∈ Γf from level m or finer which sits on θ�.
The procedure is terminated after Θ0 is processed and Step 2 of the algo-

rithm is completed.

We set fΓ :=
∑
θ∈Γ bθϕθ and define aθ :=

{
bθ, if θ ∈ Γ
0, if θ ∈ Θ \ Γ.

Then

fΓ =
∑
θ∈Θ

aθϕθ. (9.5)

It follows from the construction that

‖f − fΓ‖∞ ≤ ε∗. (9.6)

Step 3. (“Push the Error”) We now process cells of fΓ with ε∗, starting from
the coarsest level Θ0 and continuing to finer levels. The outcome of this step
will be an approximant A := APε (f) of the form

A =

J∑
j=0

Aj :=

J∑
j=0

∑
θ∈Λj

dθϕθ, (9.7)

where Λj ⊂ Θj and Λj will depend on f .
We shall use the notation

Xθ� := {θ ∈ Θ : θ◦ ∩ θ� 6= ∅ and level (θ) = level (θ�)}.

We start from the representation of fΓ in (9.5). We define Λ̃0 as the set of all
θ ∈ Θ0 such that |aθ| > ε∗ (‖ϕθ‖∞ = 1) and set Λ0 :=

⋃
θ∈Λ̃0

Xθ. We denote

A0 :=
∑
θ∈Λ0

aθϕθ =:
∑
θ∈Λ0

dθϕθ.

For each θ� ∈ Θj , ϕθ� can be represented as a linear combination of ϕθ’s
with θ ∈ Θj+1. We use this to rewrite (represent) all remaining terms aθϕθ,
θ ∈ Θ0 \Λ0, at the next level and add the resulting terms to the corresponding
terms aθϕθ, θ ∈ Θ1. We denote by dθϕθ, θ ∈ Θ1, the new terms and therefore
obtain a representation of f in the form

f = A0 +
∑
θ∈Θ1

dθϕθ +

J∑
j=2

∑
θ∈Θj

aθϕθ.
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Continuing with the next level, we define Λ̃1 as the set of all θ ∈ Θ1 such
that |dθ| > ε∗, set Λ1 :=

⋃
θ∈Λ̃1

Xθ , and define A1 :=
∑
θ∈Λ1

dθϕθ. As for the
previous level, we rewrite the remaining terms dθϕθ, θ ∈ Θ1 \ Λ1, at the next
level and add the resulting terms to the corresponding terms aθϕθ, θ ∈ Θ2. We
obtain the following representation of f :

f = A0 +A1 +
∑
θ∈Θ2

dθϕθ +

J∑
j=3

∑
θ∈Θj

aθϕθ.

We continue in this way until we reach the highest level of cells ΘJ . At level
ΘJ , we define Λ̃J , ΛJ , and AJ as above and discard all terms dθϕθ, θ ∈ ΘJ \ΛJ .
We finally obtain our approximant A = APε (f) in the form (9.7). We denote

Λ := Λε :=
⋃J
j=0 Λj and so A =

∑
θ∈Λ dθϕθ.

Since we throw away only elements dθϕθ with |dθ| ≤ ε∗ at the finest level
ΘJ , we have the estimate

‖fΓ −A‖∞ ≤ ‖
∑

θ∈ΘJ\ΛJ

dθϕθ‖∞ ≤ ε∗

and hence, using (9.6),
‖f −A‖∞ ≤ 2ε∗ = ε.

This completes Step 3 and with that the description of the algorithm.

Error estimation for the “Push the Error” algorithm.

Suppose “Push the Error” is applied to a function f with ε > 0 and APε (f)
is the approximant obtained: APε (f) :=

∑
θ∈Λε

dθϕθ. As in the “Trim & Cut”
method, we use the corresponding notation

n(ε) := #Λε, APn(ε)(f)∞ := APn(ε)(f, T )∞ := ‖f −APε (f)‖∞,

and
APn (f)∞ := APn (f, T )∞ := inf{APn(ε)(f)∞ : n(ε) ≤ n}.

The following theorem shows that the “Push the Error” algorithm provides the
necessary rates of approximation (i.e., the Jackson estimate from Theorem 15
of §7).

Theorem 25. If f ∈ Bατ (T ), α ≥ 1, τ := 1/α, then for each ε > 0

APn(ε)(f)∞ ≤ ε and n(ε) ≤ cε−τ‖f‖τBατ (T ),

where c = 6N3
0 . Furthermore, we have

APn (f)∞ ≤ cn−α‖f‖Bατ (T ), n = 1, 2, . . . ,

with c = (6N3
0 )α (N0 is from §3.1).

Remark. There is a version of the “Push the Error” algorithm for approxi-
mation in Lp (0 < p <∞), which we do not consider here.
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9.4. Approximation Spaces for Algorithms

The goal in this subsection is to show that the algorithms that we described
in §9.1-§9.3 achieve (in a certain sense) the rate of convergence of the best n-
term Courant element approximation. We shall utilize the characterization of
the approximation spaces

Aγq (Lp, T ;σ) := Aγq (Lp, T ).

from Theorem 18 of §7. We shall denote by Aγq (Lp, T ;AT ), Aγq (Lp, T ;ATC),

and Aγq (Lp, T ;AP ) the approximation spaces generated by the “Threshold”,
“Trim & Cut”, and “Push the Error” algorithms, respectively. Namely, f ∈
Aγq (Lp, T ;A), where A is AT , ATC or AP , if f ∈ Lp(E) and

‖f‖Aγq (Lp,T ;A) := ‖f‖p +

( ∞∑
n=1

(nγAn(f, T )p)
q 1

n

)1/q

<∞

with the usual modification when q =∞ (this is not quite a norm).

Theorem 26. Let T be an LR-triangulation of a compact polygonal do-
main E ⊂ R2.
(a) If p =∞, α > 1, and τ := 1/α, then

Aατ (L∞, T ;AP ) = Aατ (L∞, T ;ATC) = Aατ (L∞, T ;σ) = Bατ (T )

with equivalent “norms”.
(b) If 0 < p <∞, α > 0, and τ := (α+ 1/p)−1, then

Aατ (Lp, T ;ATC) = Aατ (Lp, T ;AT ) = Aατ (Lp, T ;σ) = Bατ (T )

with equivalent “norms”, where “Trim & Cut” is applied with parameter τ ≤
% < p (see [22]).

This theorem (and even more complete results) would follow easily by The-
orems 23-25 if the error An(f) of the corresponding method was quasi-semi-
additive, namely, if Acn(f0 +f1) ≤ c(An(f0)+An(f1)). Since this is not known
(an open problem) the proof employs the following result instead:

Lemma 3. Let f = f0 + f1, where f =
∑
θ∈Θ bθϕθ, f j =

∑
θ∈Θ b

j
θϕθ

(j = 0, 1), and bθ = b0θ + b1θ (all θ ∈ Θ), and suppose

Nj :=

(∑
θ∈Θ

|bjθ|
τj

)1/τj

<∞ (j = 0, 1),

where α0, α1 ≥ 1 and τ0 := 1/α0, τ1 := 1/α1. Furthermore, suppose that “Trim
& Cut” or “Push the Error” has been applied using the above representation of
f , with ε := ε0 + ε1, where ε0, ε1 > 0. Then we have

APn(ε0+ε1)(f)∞ ≤ ε0 + ε1
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and

n(ε0 + ε1) ≤ cε−τ00 N τ0
0 + cε−τ11 N τ1

1 .

Consequently, the estimate

APn (f)∞ ≤ cn−α0N0 + cn−α1N1, n = 1, 2, . . .

holds.

Remark. Similar results hold for the “Trim & Cut” algorithm in Lp for
0 < p <∞ as well as for the “Threshold” algorithm (see [22]).

9.5. Algorithms: Remarks

The three algorithms that we described in this section capture the rate of
the best n-term Courant element approximation in the sense of Theorem 26.
A common feature of these algorithms is the first step, a nontrivial decompo-
sition from the redundant collection of all Courant elements from ΦT . After
this initial step, however, they take three different routes. The “Threshold”
algorithm is completely unstructured but easy to implement. The drawback of
this procedure is that it is not valid in the uniform case and as a consequence
it does not perform well in Lp for p large. The “Trim & Cut” algorithm is
valid for Lp, 0 < p ≤ ∞, but it is over structured and as a result the per-
formance suffers. The “Push the error” algorithm appears to be the preferred
approximation method.

As we already mentioned, the algorithms that we described in this section
are not restricted to n-term Courant element approximation only. They can
be applied immediately to the approximation from (discontinuous) piecewise
polynomials over multilevel triangulations . In this case the role of the B-spaces
Bατ (T ) should be played by the skinny B-spaces Bαkτ (T ), introduced in §3.6.
The results are similar, but simplify considerably. Furthermore, these algo-
rithms can easily be adapted to nonlinear n-term approximation from smooth
piecewise polynomial basis functions such as these considered in §3.3-3.4 and,
in particular, from box splines. For more details about these algorithms, we
refer the reader to [22].

10. Concluding Remarks

Global smoothness of functions: How to measure it? Here we turn
to the fundamental questions in approximation theory (and not only there) of
how the global smoothness of the functions should be measured. Thus as shown
in §7 of this article, in the case of nonlinear n-term Lp-approximation from a
single basis family ΦT , a function f should naturally be considered smooth of
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order α > 0 if ‖f‖Bατ (ΦT ) < ∞. Then the rate of n-term Lp-approximation of
f from ΦT is roughly O(n−α).

However, if we consider the highly nonlinear n-term approximation from a
given collection (library) of basis families {ΦT }T (T can vary), then a function
f should be considered smooth of oder α > 0 if infT ‖f‖Bατ (ΦT ) < ∞, which
means that there exists a triangulation T ∗ := T ∗f such that ‖f‖Bατ (ΦT ∗ ) < ∞.

Then the rate of n-term Lp-approximation of f from {ΦT }T is roughly O(n−α).
It is crystal clear to us that no single super space can do the job in this case.

Now, our approximation scheme proceeds as follows:
(i) For a given function f , find the “right” triangulation T ∗ := T ∗f such

that f exhibits the most smoothness when measured via the scale Bατ (ΦT ∗).
(ii) Find an optimal or near optimal representation of f using ΦT ∗ . (Note

that ΦT ∗ is redundant, i.e., linearly dependent.)
(iii) Using this representation, run an algorithm for n-term Lp-approxi-

mation which achieves the rate of the best n-term approximation.
Naturally, the first step presents the most challenging problem in this

scheme. This problem has a complete and efficient solution in the simpler case
of nonlinear approximation from piecewise polynomials over dyadic partitions
(§6) and remains open in the case of approximation from piecewise polynomials
over nested triangulations. As shown in this article (§7 and §9), the other steps
are now well understood and have complete solutions.

Next, we pose some more delicate open problems about highly nonlinear
approximation from a library of basis families {ΦT }T .

The ultimate problem is to characterize the approximation spaces generated
by (σn(f)p), where σn(f)p := infT σn(f,ΦT )p (see §7).
This problem is intimately connected to the problem for existence of an optimal
(near optimal) triangulation:

For a given function f ∈ Lp, does there exist a single triangulation T � := T �f
such that

σcn(f,ΦT �)p ≤ cσn(f)p, for all n ≥ 1 with c independent of f and n?

If the answer of the latter question is “Yes”, then the approximation of any
f ∈ Lp from the library {ΦT }T could be realized by approximation from a single
basis family ΦT � and characterized by the interpolation spaces generated by
Bατ (ΦT �).

Smoothness of the basis functions. Clearly, in nonlinear approximation
there is no saturation, which means that the corresponding approximation
spaces Aγq are nontrivial for all γ > 0. Therefore, it is highly desirable that
the smoothness spaces we use characterize the approximation spaces Aγq for all
0 < γ <∞. This concept immediately leads to the conclusion that the smooth-
ness spaces to be used should naturally be designed so that the basis functions
{ϕθ} are infinitely smooth with respect to them. This has been one of the
guiding principles in constructing B-spaces. Thus each basis function ϕθ ∈ Φ
is infinitely smooth with respect to the scale of B-spaces Bατ (Φ), which is re-
flected in the fact that ‖ϕθ‖Bατ (Φ) ≤ c‖ϕθ‖p for 0 < α < ∞ (see Theorem 16
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of §7). This makes it possible that the direct, inverse, and characterization
theorems in §6-§7 impose no restrictions on the rate of approximation α <∞.

To make this point more transparent, we shall next briefly compare the ap-
proximation results, presented in this article, with previously existing results,
which involve Besov spaces. We first note that the situation in the univariate
case is quite unique, since the scale of Besov spaces Bα,kτ (Lτ ) (1/τ = α+ 1/p)
governs all rates of nonlinear piecewise polynomial approximation (see §8 and
[27]). Therefore, it is no surprise that (as we showed in §5) the B-spaces
in dimension d = 1 coincide with the corresponding univariate Besov spaces
and hence are not needed. Besov spaces are also used in dimensions d > 1
(see [15, 18, 23], and also [7] and references therein), but they are not the
right smoothness spaces even for nonlinear piecewise polynomial approxima-
tion generated by regular partitions. It follows by the discussion in §3.9 and
the results from §6-§7 that the Besov spaces Bdα,kτ (Lτ ) can do the job when
0 < α < r + 1 + 1/p and they fail when α ≥ r + 1 + 1/p, where r is the
smoothness of the approximating splines. So, even when working on regular
triangulations or partitions, the use of Besov spaces is restricted by the Besov
smoothness (regularity) of the basis functions (see §3.9), while B-spaces impose
no restrictions on the rates of approximation. Furthermore, if we allow trian-
gulations with arbitrarily sharp angles, we allow very “skinny” basis functions
with huge Besov norms compared to their Lp-norms (see §3.9) which precludes
the use of Besov spaces in such situations. In a nutshell, the Besov spaces are
the right smoothness spaces for characterization of nonlinear piecewise poly-
nomial approximation in dimensions d > 1 only for regular partitions and for
a limited range of approximation rates, and they are completely unsuitable in
the anisotropic case.

Spline wavelets (prewavelets) and frames. It is natural to use bases in
nonlinear approximation, and specifically for approximation in Lp (1 < p <∞).
Thus we conveniently have the collection of all anisotropic Haar bases (see §6)
which provides an effective tool for nonlinear approximation from piecewise
constants over dayadic partitions of Rd.

In the case of uniform triangulations, spline wavelets exist and play a sig-
nificant role in practical algorithms. It would be desirable to have compactly
supported wavelet (prewavelet) bases or frames generated by Courant elements
or differentiable spline basis families ΦT over LR or SLR triangulations T . To
our knowledge there are no constructions of this type available, as for now.
Moreover, there is some evidence that such constructions would be too compli-
cated and impractical for general triangulations, if at all computable. However,
continuous spline prewavelets on regular triangulations with uniform dyadic
refinements are available from [9, 20, 31]. Evidently, nonlinear n-term ap-
proximation from compactly supported spline wavelets or frames, generated by
Courant elements or a smoother spline basis family ΦT , cannot surpass the
rate of convergence of nonlinear n-term approximation from ΦT .
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