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Entire Functions of Exponential Type in
Approximation Theory

D.P. Dryanov, M.A. Qazi, and Q. I. Rahman ∗

The classical theorem of K. Weierstrass about polynomial approxima-
tion says that any function g continuous on a compact interval I, and so
bounded and uniformly continuous on I, can be approximated arbitrarily
closely on I by polyomials. However, for any given non-constant func-
tion g that is continuous and bounded on the real axis, and a positive
number ε, we cannot find a polynomial p such that |g(x)−p(x)| < ε for
all real x. We will see that entire functions of exponential type bounded
on the real axis constitute the smallest class of entire functions which, for
any g bounded and uniformly continuous on R and any ε > 0, contains
a function f such that max{|g(x)− f(x)| : −∞ < x < ∞} < ε. Prob-
lems of best approximation by polynomials whose degree does not exceed
a fixed given integer n were concidered by P. L. Chebyshev much before
Weierstrass proved his theorem. We shall discuss analogous questions for
best approximation by entire functions of exponential type. In particu-
lar, we shall prove the existence of an entire function f∗ of exponential
type τ minimizing the quantity sup{|g(x) − f(x)| : −∞ < x < ∞} as
f varies in the class of all entire functions of exponential type τ .

There is no loss of generality in supposing that the interval I in
the theorem of Weierstrass is the unit interval [−1 , 1]. A theorem of
L. Féjer says that if H2n−1 is the polynomial of degree 2n − 1, which

interpolates g in the points cos
(2ν − 1)π

2n
, ν = 1, . . . , n , and has a

vanishing derivative at these points, then H2n−1(x) → g(x) uniformly
on [−1 , 1]. We shall present an analogous result about approximation,
via Hermite interpolation, to a uniformly continuous function g on the
whole real axis.

The famous theorem of Faber excludes Lagrange interpolation as a
viable process for uniform approximation by polynomials. The situa-
tion is just as hopeless for uniform approximation on the whole real line
via Lagrange interpolation by entire functions of exponential type. Like
P. Turán and others who considered (0 , m) - interpolation by polyno-
mials and trigonometric polynomials, we consider (0 , m) - interpolation
by entire functions of exponential type, and look at their convergence
properties of such interpolants.

∗The paper was presented by Professor Rahman as one of the plenary speakers.
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For any function g continuous on [−1 , 1], let Ln−1(. ; g) be the
unique polynomial of degree not exceeding n − 1, which duplicates the

function g in the zeros of Tn, the points cos
(2ν − 1)π

2n
, ν = 1, . . . , n,

then (see [31] ; [16])

lim
n→∞

∫ 1

−1

1√
1− x2

|g(x)− Ln−1(x ; g)|p dx → 0 (p > 0) .

Various extensions of this result have been obtained by P. Erdős and
P. Turán, R. Askey, P. Nevai, Y. Xu, and others. Here, we discuss
analogous results about the mean convergence of Lagrange interpolating
entire functions of exponential type for appropriately chosen systems of
interpolation points. Certain Gaussian quadrature formulae are known
to play a crucial role in the study of mean convergence of sequences of
interpolating polynomials. A similar role is played by certain Gaussian
quadrature formulae for entire functions of exponential type. So, we shall
discuss such formulae too.

1. Introduction

Any function g, defined and continuous on a compact interval can be ap-
proximated arbitrarily closely by polynomials. This is what the following fa-
mous theorem of Weierstrass [43] says.

Theorem A (Weierstrass’ First Approximation Theorem). Let g ∈ C[a , b].
Then, for any ε > 0, there exists a polynomial p such that

max
a≤x≤b

|g(x)− p(x)| < ε .
�

We remark that the preceding theorem holds for functions in C[a , b] if and
only if it holds for those in C[0 , 1]. It is not obvious but the above theorem
of Weierstrass is equivalent to the following result, which also bears his name.

Theorem B (Weierstrass’ Second Approximation Theorem). Let g be a
continuous 2π-periodic function. Then, for any ε > 0, there exists a trigono-
metric polynomial t such that

max
−π≤θ≤π

|g(θ)− t(θ)| < ε .
�

For any non-constant g, continuous and bounded on the real axis, there
exists a positive number εg such that sup{|g(x)− p(x)| : −∞ < x <∞} > εg,
whatever the polynomial p may be, simply because a non-constant polynomial
does not remain bounded on any line.

Since polynomials are entire functions of the simplest kind, the question
arises: given any non-constant function g, continuous and bounded on the
whole real axis, and any ε > 0, can we find a transcendental entire function
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f such that |g(x) − f(x)| < ε for all x ∈ (−∞ , ∞) ? This was answered
in the affirmative by Carleman [12]. We refer the reader to the Appendix for
details. However, Carleman’s result does not say anything about the “growth”
of the approximating entire function f . In order to clarify this last statement
we need to recall certain basic notions from the theory of entire functions.

1.1. The Notions of Order and Type

For a function f , holomorphic in |z| < R (or entire), we denote by M(r)
the maximum of |f(z)| for |z| = r < R (or < ∞). We write Mf (r), etc.,
when it is necessary to call attention to the particular function that is being
considered. Except in the case where f is a constant, Mf (r) is a strictly
increasing function of r for r < R, tending to ∞ with r if f is entire. If
f is a polynomial of degree n then Mf (r) = O(rn) as r → ∞. Conversely,
if Mf (r) = O(rλ) as r → ∞, then f is a polynomial of degree at most ⌊λ⌋.
By the three-circles theorem of Hadamard, logM(r) is a convex function of

log r. For a transcendental entire function f , the quotient
logM(r)

log r
is not

only unbounded but also strictly increasing for all large values of r.
The quantity

ρ := lim sup
r→∞

log logM(r)

log r
(0 ≤ ρ ≤ ∞) ,

associated with a non-constant entire function f is said to be its order. A
constant has order 0, by convention. The order of an entire function f defined
by the power series

∑∞
n=0 anz

n is given by the formula

ρ = lim sup
n→∞

n log n

log (1/|an|)
,

where the quotient on the right is taken as 0 if an = 0.
An entire function f , of finite positive order ρ , is said to be of type T if

lim sup
r→∞

logM(r)

rρ
= T (0 ≤ T ≤ ∞) .

The type of an entire function f(z) :=
∑∞

n=0 anz
n of order ρ (0 < ρ <∞) is

given in terms of its coefficients by the formula

T = lim sup
r→∞

1

ρ e
n |an|ρ/n .

1.2. Functions of Exponential Type

A function is said to be “of growth (ρ , τ)” , ρ > 0 if it is of order not
exceeding ρ and of type not exceeding τ if of order ρ . We shall find this
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notion quite convenient because of the fact that it sets up an hierarchy in the
class of all entire functions. In fact, if Cρ,τ denotes the class of all functions of
growth (ρ , τ), then

Cρ1,τ1 ⊂ Cρ2,τ2

if ρ1 < ρ2, whatever τ1 and τ2 may be, and also when ρ1 = ρ2 provided that
τ1 < τ2. The type is not defined for functions of order 0, but according to the
above definition, they belong to Cρ,τ for any ρ > 0 and any τ ≥ 0.

A function of growth (1 , τ), τ < ∞, is called a fuction of exponential type
τ . Thus, f is an entire function of exponential type τ if, for any ε > 0, there
exists a constant Kε such that

|f(z)| ≤ Kε e
(τ+ε)|z| (z ∈ C) .

In particular, any entire function of order less than 1 is of exponential type τ ,
and so is any entire function of order 1 type T ≤ τ . Using Stirling’s formula,

we can check that the power series
∞∑
k=0

1

k!
ak z

k defines an entire function of

exponential type τ if

lim sup
k→∞

|ak|1/k ≤ τ .

The indicator function of an entire function f of exponential type is defined
as

h(θ) = hf (θ) := lim sup
r→∞

log
∣∣f (reiθ)∣∣
r

(θ ∈ R) .

The following result contains a fundamental property of entire functions of
exponential type.

Proposition 1.1. Let f be an entire function of exponential type such that
hf (±π/2) ≤ τ . Suppose, in addition, that |f(x)| ≤M for all real x. Then,

|f(z)| ≤M eτ |ℑz| (z ∈ C) . (1.1)

In particular, if f belongs to C1,0, then f must be a constant.

Proof. For any ε > 0, let Fε(z) := f(z) ei (τ+ε)z. Then, |Fε(x)| ≤ M on the
real axis. Note that M ′ := supy≥0 |Fε(i y)| is finite and that M ′ = |Fε(i y

′)|
for some y′ ∈ [0 , ∞). Thus, Fε satisfies the conditions of Proposition 7.1 with
α := 2, any β ∈ (1 , 2) and θ0 := π/4. Hence, |Fε(z)| ≤ max{M , M ′} in the
first quadrant. The same estimate for |Fε(z)| holds in the second quadrant
since Fε satisfies the conditions of Proposition 7.1 with α := 2, any β ∈ (1 , 2)
and θ0 := 3π/4 also. It follows that |Fε(z)| ≤ max{M , M ′} in the closed
upper half-plane. Now, note that M ′ cannot be larger than M since, oth-
erwise |Fε(z)| would have a local maximum at i y′, without Fε being a con-
stant. We conclude that |Fε(z)| ≤M in the upper half-plane. In other words,
|f(z)| ≤ M e(τ+ε)ℑz if ℑz ≥ 0. Letting ε → 0, we see that |f(z)| ≤ M eτ |ℑz|
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in the upper halp-plane. The same estimate holds in the lower half-plane since
the function f (z) also satisfies the conditions of Proposition 1.1.

If f belongs to C1,0, then hf (π/2) ≤ 0 and (1.1) shows that |f(z)| ≤M in

the upper half-plane. However, the function f (z) also belongs to C1,0, which
implies that |f(z)| ≤M in the lower half-plane too. Thus, |f(z)| ≤M in the
entire complex plane and so must be a constant, by Liouville’s theorem. �

If p is a polynomial of degree at most n such that |p(z)| ≤M on the unit
circle, then f(z) := p

(
e−iz

)
satisfies the conditions of Proposition 1.1 with

τ := n and is thus seen to contain the following familiar result.

Corollary 1.1. Let p be a polynomial of degree at most n such that
|p(z)| ≤M on the unit circle. Then,

|p(z)| ≤MRn (|z| ≤ R , R > 1) . �
As we shall see next, Proposition 1.1 also plays a crucial role in the proof

of an important interpolation formula for the derivative of an entire function
of exponential type.

Proposition 1.2. Let f be an entire function of exponential type τ bounded
on the real axis. Then,

f ′(x) =
4τ

π2

∞∑
k=−∞

(−1)k
1

(2k + 1)2
f

(
x+

(2k + 1)π

2τ

)
(x ∈ R) . (1.2)

Proof. We shall first suppose that f is of exponential type 1 and that
|f(x)| ≤ 1 on the real axis. Then, except for simple poles of the form

ζk :=
(2k + 1)π

2
(k = 0,±1,±2, . . . )

and a double pole at 0, the function F (z) := f(z)/
(
z2 cos z

)
is holomorphic

in the complex plane. The residue of F at ζk is (−1)k+1f(ζk)/ζ
2
k and the

residue at 0 is f ′(0). Hence, if Γn denotes the square contour whose corners
lie at the points (1 + i)πn, (1 − i)πn, (−1 + i)πn and (−1 − i)πn, then for
n = 1, 2, . . . ,

1

2πi

∫
Γn

F (z) dz = f ′(0)− 4

π2

n−1∑
k=−n

(−1)k
1

(2k + 1)2
f

(
(2k + 1)π

2

)
.

Clearly,

| cos (±nπ + iy)| = ey + e−y

2
>

1

2
e|y| (−∞ < y <∞) .

Besides, for any real x,

| cos (x± inπ)| ≥ eπn − e−πn

2
=

1

2
eπn

(
1− e−2πn

)
>

1

3
eπn (n = 1, 2, . . . ) .
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Thus, | cos z| > (1/3) e|ℑz| for any z ∈ Γn. On the other hand, since |f(x)| ≤ 1
on the real axis, Proposition 1.1 implies that

|f(z)| ≤ e|ℑz| (z ∈ C) ,

and so |F (z)| < 3/|z|2 for any z ∈ Γn. Hence,
∫
Γn
F (z) dz → 0 as n → ∞.

Thus, if f is an entire function of exponential type 1 such that |f(x)| ≤ 1 on
the real axis, then

f ′(0) =
4

π2

∞∑
k=−∞

(−1)k
1

(2k + 1)2
f

(
(2k + 1)π

2

)
.

If t is a given real number, then the preceding formula may be aplied to
f(·+ t) to conclude that for any entire function f of exponential type 1 such
that |f(x)| ≤ 1 on the real axis, we have

f ′(t) =
4

π2

∞∑
k=−∞

(−1)k
1

(2k + 1)2
f

(
t+

(2k + 1)π

2

)
(t ∈ R) .

If f is an entire function of exponential type τ > 0 such that |f(x)| ≤ M

on the real axis, then z 7→ 1

M
f
( z
τ

)
is an entire function of exponential type

to which the preceding formula applies. After some simplification, we obtain
(1.2). �

Remark 1.1. Applying Proposition 1.2, to the function f(z) := sin τz and
taking x = 0 in (1.2), we obtain the well-known formula

4

π2

∞∑
ν=−∞

1

(2k + 1)2
= 1 .

Proposition 1.2 in conjunction with the preceding remark readily implies
the following result known as Bernstein’s inequality for entire functions of ex-
ponential type.

Theorem 1.1. Let f be an entire function of exponential type τ such that
|f(x)| ≤M for −∞ < x <∞. Then |f ′(x)| ≤Mτ for −∞ < x <∞. �

If f is as in Theorem 1.1, then for any two points x1 and x2 on the real
axis, we have

|f(x2)− f(x1)| =
∣∣∣∣∫ x2

x1

f ′(x) dx

∣∣∣∣ ≤M τ |x2 − x1| .

Thus, as a consequence of Theorem 1.1, we obtain the following property of
entire functions of exponential type bounded on the real axis.
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Corollary 1.2. An entire function of exponential type bounded on R is
uniformly continuous on R. �

Replacing x by z in t(x) :=
∑n

ν=−n cνe
iνx we see that a trigonometric

polynomial of degree at most n is the restriction of an entire function of expo-
nential type n to the real axis. Theorem 1.1 can be used to show that an entire
function of exponential type which is 2π-periodic is necessarily a trigonometric
polynomial.

Corollary 1.3. Let f be a 2π-periodic entire function of exponential τ .
Then, f has the form

f(z) :=

n∑
ν=−n

cνe
iνz (n = ⌊τ⌋) .

In other words, the restriction of f to the real axis is a trigonometric polyno-
mial of degree not exceeding ⌊τ⌋.

Proof. Let
∑∞

ν=−∞ cνe
iνz be the Fourier series of f . Then, for any ν ∈ Z,

∣∣νkcν∣∣2 ≤
∞∑

ν=−∞

∣∣νkcν∣∣2 =
1

2π

∫ π

−π

|f (k)(t)|2 dt (k = 0, 1, 2, . . . ) .

If |f(x)| ≤M on the real axis, then Theorem 1.1 implies that |f (k)(t)| ≤M τk

for any real t, and so

|ν|2k|cν |2 ≤
(
M τk

)2
(k = 0, 1, 2, . . . ) ,

that is, |cν | ≤M (τ/|ν|)k for k = 0,±1,±2, . . . Thus, by taking k sufficiently
large, |cν | is seen to be smaller than any positive number provided that |ν| > τ .
Hence, cν must be zero except possibly for ν = 0, . . . ,±⌊τ⌋. �

Knowing fully well that a non-constant continuous function g bounded on
the real axis cannot be approximated arbitrarily closely by polynomials it is
natural to ask for the smallest class Cρ,τ which, for any given ε > 0, contains
a function f such that sup{|g(x)− f(x)| : x ∈ R} < ε ? By Proposition 1.1,
the class C1,0 does not have this property.

Let us go one step further and take a number τ > 0. Given any non-
constant function g, continuous and bounded on the real axis, and any ε > 0,
can we find a function f ∈ C1,τ such that |g(x)− f(x)| < ε for all real x ? The
answer is again “no” . To see this, let us consider the function g(z) := cosσz
with σ > τ . It vanishes at the points (2k + 1)π/2σ for k = 0,±1,±2, . . .
Now, let us assume that f is an entire function of exponential type τ such that
sup{|g(x) − f(x)| : −∞ < x < ∞} < ε. Then,

∣∣f((2k + 1)π/2σ
)∣∣ < ε for

k = 0,±1,±2, . . . Thus, the function f
(
(2z + 1)π/2σ

)
is of exponential type
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b := πτ/σ < π, and its modulus is less than ε at the integers. By a theorem
of M. L. Cartwright [8, p. 180],

sup
−∞<x<∞

|f(x)| ≤
(
4 + 2 e log

π

π − b

)
ε

<
1

4

(
0 < ε <

(
16 + 8 e log

π

π − b

)−1

<
1

16

)
.

Hence, if 0 < ε <

(
16 + 8e log

π

π − b

)−1

, then |g (kπ/σ)− f (kπ/σ)| > 3/4 > ε

for k = 0,±1,±2, . . . , which is a contradiction. It is not without interest that
the function g(z) := cosσz is itself an entire function, though of order 1 type
σ > τ .

Now, let us go even further and consider the class
∪

τ>0 Cτ of all entire
functions of exponential type. Given any non-constant function g, continuous
and bounded on the real axis, and any ε > 0, can we find a function f of
exponential type such that |g(x) − f(x)| < ε for all real x ? The answer is
still “no”. To see this, let us consider the function g(z) := sin z2, which has
the points 0,±

√
π,±

√
2π,±

√
3π, . . . amongst its zeros. Now, let ε ∈ (0 , 1/10)

and suppose that fε is an entire function of exponential type τ such that
sup

−∞<x<∞
|g(x)− fε(x)| < ε. Then,

∣∣∣fε (±√
2kπ

)∣∣∣ < 1

10
(k = 0, 1, 2, . . . ) , (1.3)

whereas ∣∣∣∣∣fε
(
±
√

4k + 1

2
π

)∣∣∣∣∣ > 9

10
(k = 0, 1, 2, . . . ) . (1.4)

However, |fε(x)| < 11/10 for all real x, and so by Bernsteins’s inequality,
sup

−∞<x<∞
|f ′ε(x)| < (11/10) τ , and so

∣∣∣∣∣fε
(√

4k + 1

2
π

)
− fε

(√
2kπ

)∣∣∣∣∣ =
∣∣∣∣∣
∫ √

(4k+1)π/2

√
2kπ

f ′ε(t) dt

∣∣∣∣∣ < 1√
k

11
√
2π

80
τ → 0

as k → ∞. This is, clearly, incompatible with (1.3) and (1.4).
Not only is the function g(z) := sin z2 continuous and bounded on the real

axis, it is holomorphic throughout the complex plane. What could then be
the reason that we still cannot make supx∈R |g(x)− f(x)| arbitrarily small by
varying f in the class

∪
τ>0 C1 , τ of all entire functions of exponential type?

In view of the fact that the functions in
∪

τ>0 C1 , τ , which are unbounded on
the real axis, are irrelevant in the present situation, the following explanation
comes to mind: “whereas, any entire function of exponential type bounded on
R is uniformly continuous on R, the function g(x) := sinx2 is not”. In fact,
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we shall see in the next section that a function g, continuous and bounded on
R, can be approximated arbitrarily closely by entire functions of exponential
type if and only if it is uniformly continuous on R.

2. Best Approximation by Functions of Exponential
Type

To start with we shall recall some well-known results from the theory of
“best approximation by polynomials”.

Let us denote by Pn the class of all polynomials of degree at most n, and
for any given function g ∈ C[a , b], let

En = En(g) := inf
p∈Pn

max
a≤x≤b

|g(x)− p(x)| . (2.1)

Clearly, En(g) is a non-increasing function of n. In addition, it is useful to
know that if |g(x)| ≤M for a ≤ x ≤ b, then

En(g) ≤ max
a≤x≤b

|g(x)− 0| =M (2.2)

since the identically zero polynomial belongs to Pn for any n. Also, En(g) is
attained, that is, the following theorem holds.

Proposition C. For each n, there exists a polynomial p∗n belonging to Pn

such that max {|g(x)− p∗n(x)| : a ≤ x ≤ b} = En(g). �

The following theorem of P. L. Chebyshev gives a useful set of necessary
and sufficient conditions for a polynomial p ∈ Pn to be a polynomial of best
approximation to a continuous function g : [a , b] → R.

Theorem D. Let g ∈ C[a , b] and p ∈ Pn. Furthermore, let η := g − p.
Then, max{|η(x)| : a ≤ x ≤ b} = En(g) if and only if there exist n+2 points
x0 < . . . < xn+1 in [a , b] such that |η(xν)| = En(g) for ν = 0, . . . , n+1 and
η(xν)× η(xν+1) < 0 for ν = 0. . . . , n. �

In this connection we must also mention the following result of de la Vallée
Poussin, which gives a lower bound for En(g).

Theorem E. Let g ∈ C[a , b] and p a polynomial of degree at most n.
Denote by η the function g−p, and let there exist n+2 points x0 < . . . < xn+1

in [a , b] such that

1. η(xν) ̸= 0 for ν = 0, 1, . . . , n+ 1,

2. η(xν)× η(xν+1) < 0 for ν = 0, 1, . . . , n.

Then, En(g) ≥ min{|η(xν)| : 0 ≤ ν ≤ n}. �
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The behaviour of En(g) for large n is closely related to the “smoothness”
of g, which is often measured in terms of its modulus of continuity ω. For any
function ϕ defined on an interval I ⊆ R,

ω(δ) = ωϕ(δ) := sup
|x1−x2|≤δ

|ϕ(x1)− ϕ(x2)| (δ > 0 , x1 ∈ I, x2 ∈ I) . (2.3)

We refer the reader to ([34] or [35]) for a variety of results describing the
relationship between En(g) and the structural properties of f . Here is one
such result [35, p. 125].

Theorem F. Let g ∈ C[a , b]. Then,

En(g) ≤ 12 ω

(
b− a

2n

)
. (2.4)

�

2.1. Best Approximation by Entire Functions of Exponential
Type

Let Bτ denote the class of all entire functions of exponential type τ
bounded on the real axis. This class bears a clear analogy with the class Pn

of all polynomials of degree at most n. It plays the same role in the theory of
best approximation of bounded, uniformly continuous functions on R by entire
functions of exponential type, as Pn does in the theory of best approximation
of continuous functions on a compact interval by polynomials.

Let g : R → C be bounded on the real axis, and denote by Aτ (g) the
infimum of {|g(x)− f(x)| : −∞ < x <∞} as f varies in Bτ , that is

Aτ (g) := inf
f∈Bτ

sup
−∞<x<∞

|g(x)− f(x)| . (2.5)

By definition, the identically zero function is an entire function of exponen-
tial type τ for any τ . Hence, if |g(x)| ≤M on the real axis, then

Aτ (g) ≤ sup
∞<x<∞

|g(x)− 0| ≤M . (2.6)

The following result [6] may be compared with Proposition C.

Proposition 2.1. Let g be bounded on the real axis. Then, there exists an
entire function f∗ ∈ Bτ such that

sup
−∞<x<∞

|g(x)− f∗(x)| = Aτ (g) . (2.7)

For a proof of this result, we need to introduce the notion of a normal family
of functions.

Definition 2.1. A family F is said to be normal in a region Ω of the com-
plex plane if every sequence {fn} of functions fn ∈ F contains a subsequence
which converges uniformly on every compact subset of Ω.
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The following lemma [1, p. 216] contains a very useful criterion for a family
of entire functions to be normal.

Lemma 2.1. A family F of entire functions is normal if and only if the
functions in F are uniformly bounded on every compact set. �

Proof of Proposition 2.1. In view of the definition of Aτ (g) there exists, for
each n ∈ N, a function fn ∈ Bτ such that

|g(x)− fn(x)| < Aτ (g) +
1

n
(x ∈ R, n ∈ N) .

If |g(x)| ≤M on the real axis then, taking (2.6) into account, we see that

|fn(x)| < |g(x)|+Aτ (g) +
1

n
≤ 2M + 1 (x ∈ R, n ∈ N) .

By (1.1),

|fn(x+ iy)| ≤ (2M + 1) eτ |y| (y ∈ R, x ∈ R, n ∈ N) . (2.8)

This implies that the functions in the family F := {f1, f2, . . . } are uniformly
bounded on every compact set. Hence, F is a normal family of entire func-
tions, that is, there exists a subsequence fn1

, fn2
, . . . , fnk

, . . . of {fn} which
converges uniformly on every compact subset of C to a function f∗. It is clear
that f∗ must be an entire function of exponential type τ and that

sup
−∞<x<∞

|g(x)− f∗(x)| = Aτ (g) . �
Remark 2.1. From (2.6) and (2.7) it follows that if |g(x)| ≤ M for all

x ∈ R, then
|f∗(x)| ≤ 2M (x ∈ R) . (2.9)

Theorem 1.1 implies that the kth derivative of f∗ is bounded by 2Mτk for
k = 0, 1, 2, . . . . Hence, if f∗(z) :=

∑∞
k=0 b

∗
kz

k, then

|b∗k| ≤ 2M
τk

k!
(k = 0, 1, 2, . . . ) . (2.10)

Definition 2.2. For any τ > 0, let Cτ denote the class (family) of all
entire functions f(z) :=

∑∞
k=0 bkz

k of exponential type τ such that

|bk| ≤ 2M
τk

k!
(k = 0, 1, 2, . . . ) . (2.11)

In view of (2.10), the function f∗ belongs to Cτ .

Remark 2.2. From (2.11) it follows that if f belongs to Cτ , then

|f(z)| ≤ 2M eτR (|z| ≤ R) .
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Hence, by Lemma 2.1, the family Cτ is normal.

Remark 2.3. As an addendum to Proposition 2.1 we wish to mention that
if g : R → C is 2π- periodic then, there exists a 2π- periodic entire function
F ∈ Bτ such that

sup
−∞<x<∞

|g(x)− F (x)| = Aτ (g) .

To see this, it may be noted that if f∗ is as in Proposition 2.1, then for any
ν ∈ Z, we have

|g(x)− f∗(x+ 2νπ)| = |g(x+ 2νπ)− f∗(x+ 2νπ)| ≤ Aτ (g) (x ∈ R) .

Consequently, if

Fn(x) :=
1

2n+ 1

n∑
ν=−n

f∗(x+ 2νπ) (n = 1, 2, . . . ) ,

then

sup
−∞<x<∞

|g(x)− Fn(x)| ≤ Aτ (f) (n = 1, 2, . . . ) .

It is clear that we can find a subsequence Fn1 , Fn2 , . . . , Fnj , . . . which, as
j → ∞, converges to an entire function F of exponential type τ such that
|g(x)− F (x)| ≤ Aτ (g) for all real x. Hence, in fact

sup
−∞<x<∞

|g(x)− F (x)| = Aτ (g) .

The function F , so obtained, is 2π- periodic. To see this, let us suppose that
|g(x)| ≤M on the real axis. Then, as indicated in Remark 2.1, |f∗(x)| ≤ 2M
for all real x, and so the difference

Fn(x+ 2π)− Fn(x) =
1

2n+ 1

{
f∗
(
x+ (2n+ 2)π

)
− f∗

(
x− 2nπ

)}
tends uniformly to 0 as n→ 0, from which it follows that F (x+2π)−F (x) = 0
for any real x. By Corollary 1.3, the restriction of F to the real axis must be
a trigonometric polynomial of degree at most ⌊τ⌋. Hence, the following result
[6] holds.

Proposition 2.2. Let g be periodic with period 2π. Then

Aτ (g) = E∗
⌊τ⌋(g) ,

where E∗
⌊τ⌋(g) denotes the error of a best approximation to g by trigonometric

polynomials of degree at most ⌊τ⌋. �

For a familiar reason, Theorem A may be formulated as follows: A function
g defined and bounded on a compact interval I := [a , b] can be approximated
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arbitrarily closely in the uniform norm by polynomials if and only if it is uni-
formly continuous on I. The following result [6] can then be seen as its ana-
logue for uniform approximation of a bounded function g : R → C by entire
functions of exponential type.

Theorem 2.1. Let g : R → C be bounded on the real axis. Then Aτ (g),
as defined in (2.5), tends to zero as τ → ∞ if and only if g is uniformly
continuous on R.

We start with the following auxiliary result.

Lemma 2.2. Let Tm(x) :=
∑m

µ=0 tm,µ x
µ be the Chebyshev polynomial of

the first kind of degree m. Then

|tm,µ| ≤ mµ

µ!
(µ = 0, 1, . . . ,m) .

Proof. We know that Tm(0) is 0 or 1 according as m is odd or even,
respectively. Since Tm(cos θ) = cosmθ, we also see easily that |T ′

m(0)| is equal
to m if m is odd and 0 otherwise. So, our assertion certainly holds for µ = 0
and µ = 1. We shall use induction to prove it for other values of µ. For this
we recall that Tm satisfies the differential equation

(1− x2)T
′′

m(x)− xT ′
m(x) +m2 Tm(x) = 0 ,

from which we readily deduce that

T (j+2)
m (0) + (m2 − j2)T (j)

m (0) = 0 (j = 0, 1, . . . ) ,

that is,

|tm,j+2| =
m2 − j2

(j + 2)(j + 1)
|tm,j | (j = 0, 1, . . . ) .

Hence,

|tm,j+2| =


(m2−j2)(m2−(j−2)2)···(m2−02)

(j+2)! |tm,0| if j is even

(m2−j2)(m2−(j−2)2)···(m2−12)

(j+2)! |tm,1| if j is odd

≤


(m2)(j+2)/2

(j+2)! if j is even

(m2)(j+1)/2

(j+2)! if j is odd
≤ mj+2

(j + 2)!
.

�

Proof of Theorem 2.1. First we shall show that if Aτ (g) → 0 as τ → ∞
then g must be uniformly continuous on R. Let |g(x)| ≤ M . Then, in view
of (2.7), (2.9) and Theorem 1.1, we have

|g(x+ h)−g(x)| ≤ 2Aτ (g) + |f∗(x+ h)− f∗(x)| = 2Aτ (g) +

∣∣∣∣∣
∫ x+h

x

df∗

dt
dt

∣∣∣∣∣
≤ 2Aτ (g) + 2Mτ |h| (x ∈ R , h ∈ R) .
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Now, for any ε > 0 we may choose τ so large that Aτ (g) < ε/4, and then

|g(x+ h)− g(x)| < ε

2
+
ε

2
= ε

(
x ∈ R , h ∈ R , |h| < ε

4Mτ

)
.

Hence, g is uniformly continuous on R
In order to prove the converse, we suppose that g is uniformly continuous,

that is, its modulus of continuity

ω(δ) = ωg(δ) := sup
|x1−x2|≤δ

|g(x1)− g(x2)| (δ > 0 , x1 ∈ R, x2 ∈ R)

tends to zero as δ tends to zero. As above, let f∗ be a function of best
(uniform) approximation to g amongst all functions in Bτ . We recall that if
|g(x)| ≤M on the real axis, then |f∗(x)| ≤ 2M for all real x and f∗ ∈ Cτ .

Now, let λn := n/τ for n = 1, 2, . . . , and denote by Aτ (λn; g) the best
approximation to g on the segment [−λn , λn] by functions belonging to Cτ .
Furthermore, let pn(x ; λn) :=

∑n
k=0 bk,λnx

k be the polynomial of best ap-
proximation of degree at most n to g on the segment [−λn , λn]. Then, the
polynomial pn(λnx;λn) =

∑n
k=0 λ

k
n bk,λnx

k is the polynomial of best approx-
imation of degree at most n to the function G(x) := g(λnx) on the segment
[−1 , 1]. Since |g(x)| ≤M on the real axis, it follows that for any x ∈ [−1 , 1],

|pn(λnx ; λn)| ≤ 2M .

Setting ak := λkn bk,λn for k = 0, 1, . . . , n, we see that p(x) :=
∑n

k=0 ak x
k

is a polynomial of degree at most n such that |p(x)| ≤ 2M for −1 ≤ x ≤ 1.
Hence, by a classical result of W. Markov [35, p. 56],

λkn |bk,λn | = |ak| ≤

{
2M |tn,k| if n− k is even

2M |tn−1,k| if n− k is odd .

Using Lemma 2.2 we conclude that

|bk,λn | ≤ 2M

(
n

λn

)k
1

k!
= 2M

τk

k!
(k = 0, 1, . . . ) .

Thus, pn(. ; λn) belongs to the class Cτ . It follows that if En(λn ; g) denotes
the best approximation to g on the segment [−λn , λn] by polynomials of
degree at most n, then

Aτ (λn ; g) ≤ En(λn ; g)
(
λn =

n

τ

)
.

By Theorem F, if G(x) := g(λnx), then En(1 , G) ≤ 12 ωG

(
1

n

)
. Thus,

Aτ (λn ; g) ≤ En(λn ; g) = En(1 , G) ≤ 12 ωG

(
1

n

)
= 12 ωg

(
1

τ

)
,
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that is, Aτ (λn ; g) ≤ 12 ωg(1/τ) for n = 1, 2, 3, . . . Clearly,

Aτ (λ1 ; g) ≤ Aτ (λ2 ; g) ≤ · · · ≤ Aτ (λn ; g) ≤ · · · .

Hence, Aτ (λn ; g) tends to a finite limit, say Aτ (∞ ; g), as n → ∞. Since
Aτ (λn ; g) ≤ Aτ (g) for n = 1, 2, . . . , the limit Aτ (∞ ; g) cannot be larger
than Aτ (g). We claim that it cannot be smaller than Aτ (g) either. For sake
of argument let us assume that it is. For each n ∈ N, let f∗n ∈ Cτ be such that

sup
−λn≤x≤λn

|g(x)− f∗n(x)| = Aτ (λn ; g) .

The family Cτ being normal in C, there exists a subsequence of {f∗n}, which
converges uniformly on every compact subset of C to a function f∗∗ such that

sup
−∞<x<∞

|g(x)− f∗∗(x)| = Aτ (∞ ; g) < Aτ (g) .

This is a contradiction since f∗∗ must belong to Cτ ∩ Bτ . Thus,
Aτ (λn ; g) ≥ Aτ (g)− εn, where εn → 0 as n = λnτ → ∞. We see that

12 ωg

(
1

τ

)
≥ En(λn ; g) ≥ Aτ (λn ; g) ≥ Aτ (g)− εn ,

where εn can be smaller than any positive number we may think of. Hence,

Aτ (g) ≤ 12 ωg

(
1

τ

)
. (2.12)

However, ωg

(
1/τ
)
→ 0 as τ → ∞ since, for this part of the proof, the function

g is supposed to be uniformly continuous. Thus, we see that Aτ (g) → 0 as
τ → ∞. �

The next theorem [7] gives a set of necessary and sufficient conditions for an
entire function f∗ of exponential type τ to be a function of best approximation
to a given function g on the whole real axis, in the sense that

L := sup
−∞<x<∞

|g(x)− f∗(x)| = Aτ (g) := inf
f∈Bτ

sup
−∞<x<∞

|g(x)− f∗(x)| .

Note the analogy with Theorem D which gives a set of necessary and sufficient
conditions for a polynomial of degree at most n to be a polynomial of best
approximation to a given function on a compact interval.

Theorem 2.2. Let g ̸∈ Bτ be defined and bounded on the real axis. In
addition, let f∗, belong to Bτ , that is, we suppose f∗ to be an entire function
of exponential type τ bounded on the real axis. With

L := sup
−∞<x<∞

|g(x)− f∗(x)| > 0 ,



D.P. Dryanov, M.A. Qazi, and Q. I. Rahman 101

and ε ∈ (0 , L), let

Sε :=
{
ξ ∈ R : L− ε ≤ |g(ξ)− f∗(ξ)| ≤ L

}
.

Then, for f∗ to be a best approximation to g it is necessary and sufficient that
any entire function φ of exponential type τ satisfying

φ(ξ) {g(ξ)− f∗(ξ)} > 0 , |φ(ξ)| ≥ 1 (ξ ∈ Sε) , (2.13)

is unbounded on the real axis, for all small ε.

Proof.We shall first prove the sufficiency of the condition. So, let us suppose
that any entire function φ of exponential type τ for which (2.13) holds is
necessarily unbounded on the real axis. We have to show that f∗ must then
be a best approximation to g. Assume not. Then, there exists f∗ ∈ Bτ such
that sup

−∞<x<∞
|g(x)− f∗(x)| ≤ L− 2ε for some ε > 0. Now, let us take, in

particular, the function φ∗(z) :=
1

ε
{f∗(z)− f∗(z)} which, clearly, belongs to

Bτ . However, at any point ξ ∈ Sε, we have

φ∗(ξ) {g(ξ)− f∗(ξ)} =
1

ε

[
{g(ξ)− f∗(ξ)}2 − {g(ξ)− f∗(ξ)} {g(ξ)− f∗(ξ)}

]
≥ 1

ε

{
(L− ε)2 − (L− 2ε)L

}
= ε > 0

and also

|φ∗(ξ)| = 1

ε
|g(ξ)− f∗(ξ)− {g(ξ)− f∗(ξ)}| ≥ 1

ε
{(L− ε)− (L− 2ε)} = 1 .

Thus, φ = φ∗ is an entire function of exponential type τ for which (2.13) is
satisfied although it is not unbounded on the real axis. We have been led to
this contradiction since we had assumed that f∗ was not a function of best
approximation to g.

Now, let us turn to the necessity of the condition. This time we suppose
that for some ε > 0, say ε0, there exists a function φ ∈ Bτ for which (2.13) is
satisfied. Then, (2.13) holds for all ε ∈ (0 , ε0). We have to show that in such
a case the function f∗ cannot be a function of best approximation to g.

Let |φ(x)| ≤ H on the real axis. Then, for any x ∈ Sε,

φ(x)

g(x)− f∗(x)
=

|φ(x)|
|g(x)− f∗(x)|

≤ H

L− ε
.

Hence, for all sufficiently small λ > 0,∣∣∣∣1− λ
φ(x)

g(x)− f∗(x)

∣∣∣∣ = 1− λ
|φ(x)|

|g(x)− f∗(x)|
(x ∈ Sε) ,

and so for any such λ and all x ∈ Sε, we have

|g(x)− {f∗(x) + λφ(x)}| = |g(x)− f∗(x)| − λ |φ(x)| ≤ L− λ < L .
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Now, let x ̸∈ Sε. Then

|g(x)− {f∗(x) + λφ(x)}| ≤ |g(x)− f∗(x)|+ λ |φ(x)| ≤ L− ε+ λH

≤ L− ε+
εH

H + 1
= L− ε

H + 1

if 0 < λ ≤ ε/(H + 1).
Thus, if there exists an entire function φ belonging to Bτ for which (2.13)

is satisfied then, for all sufficiently small λ > 0,

sup
−∞<x<∞

|g(x)− {f∗(x) + λφ(x)}| < sup
−∞<x<∞

|g(x)− f∗(x)| ,

that is, f∗ cannot be a function of best approximation to g. �
We mention the following result [7] as an addendum to Theorem 2.2.

Theorem 2.2′. Let g be defined and bounded on the real axis. Also, let f∗
be an entire function of exponential type τ bounded on the real axis, and set

L := sup
−∞<x<∞

|g(x)− f∗(x)| .

Furthermore, let
S := {ξ ∈ R : |g(ξ)− f∗(ξ)| = L} ,

and suppose that any entire function of exponential type τ , such that

ψ(ξ) {g(ξ)− f∗(ξ)} > 0, |ψ(ξ)| ≥ 1 (ξ ∈ S) , (2.14)

is necessarily unbounded on the real axis. Then, the function f∗ is a best
approximation to g in the sense that

sup
−∞<x<∞

|g(x)− f∗(x)| = inf
f∈Bτ

sup
−∞<x<∞

|g(x)− f(x)| .

Proof. For a proof by contradiction, let us assume that f∗ is not a function
of best approximation to g. Then, there must exist a function f∗ ∈ Bτ

such that |g(x) − f∗(x)| ≤ L − ε < L for all x ∈ R. Clearly, the function
ψ∗(z) := {f∗(z)− f∗(z)}/ε belongs to Bτ . Furthermore, for any ξ ∈ S,

ψ∗(ξ) {g(ξ)− f∗(ξ)} =
1

ε

[
{g(ξ)− f∗(ξ)}2 − {g(ξ)− f∗(ξ)} {g(ξ)− f∗(ξ)}

]
≥ 1

ε

{
L2 − (L− ε)L

}
= L > 0 ,

and

|ψ∗(ξ)| = 1

ε
|g(ξ)− f∗(ξ)− {g(ξ)− f∗(ξ)}| ≥ 1

ε
{L− (L− ε)} = 1 .

Thus, ψ = ψ∗ is an entire function of exponential type τ for which (2.14) is
satisfied although it is not unbounded on the real axis. We have been led to
this contradiction since we had assumed that f∗ was not a function of best
approximation to g. �
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2.2. An Analogue of de la Vallée Poussin’s Theorem

We start with a definition.

Definition 2.3. We say that the set of points

· · · < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 < · · ·

is a set of degree τ if any entire function φ of exponential type τ , such that

(−1)kφ(ξk) > 0 , |φ(ξk)| ≥ 1 (k = 0, ±1, ±2, . . . ) , (2.15)

is unbounded on the real axis.

Example 2.1. The points 0, ±π, ±2π, . . . form a set of degree τ for any
τ < 1. For this, we note that if τ < 1 then ⌊τ⌋ = 0 and so by Proposition 2.2,
the identically zero function minimizes sup{| cosx− f(x)| : −∞ < x <∞} as
f varies in the class Bτ of all entire functions of exponential type τ bounded
on the real axis. However, this could not be true if there was an entire function
φ ∈ Bτ such that

(−1)kφ(kπ) > 0 , |φ(kπ)| ≥ 1 (k = 0, ±1, ±2, . . . ) (2.16)

since the quantity sup{| cosx−εφ(x)| : −∞ < x <∞} would then be smaller
than 1 = sup{| cosx− 0| : −∞ < x <∞} for all sufficiently small ε > 0.

The following analogue [7] of Theorem E gives a lower bound for the quan-
tity Aτ (g) defined in (2.5).

Theorem 2.3. Let g be defined and bounded on the real axis. Furthermore,
let · · · < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 < · · · be a set of degree τ and f◦ an entire
function of exponential type τ bounded on the real axis such that

|g(ξk)− f◦(ξk)| ≥ L , (−1)k
(
g(ξk)−f◦(ξk)

)
> 0 (k = 0,±1,±2, . . . ) . (2.17)

Then,
Aτ (g) := inf

f∈Bτ

sup
−∞<x<∞

|g(x)− f(x)| ≥ L .

Proof. For a proof by contradiction let us assume that Aτ (g) = L−ε, where
ε > 0. Then, there must exist a function f◦ ∈ Bτ such that

|g(ξk)− f◦(ξk)| ≤ L− ε . (2.18)

Hence, writing f◦(ξk)− f◦(ξk) = g(ξk)− f◦(ξk)−
(
g(ξk)− f◦(ξk)

)
we see that

(
g(ξk)−f◦(ξk)

)(
f◦(ξk)−f◦(ξk)

)
=
(
g(ξk)− f◦(ξk)

)2(
1− g(ξk)− f◦(ξk)

g(ξk)− f◦(ξk)

)
≥ L2− (L−ε)L > 0 (k = 0, ±1, ±2, . . . ) ,
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and so also

(−1)k
(
g(ξk)− f◦(ξk)

)
(−1)k

(
f◦(ξk)−f◦(ξk)

)
> 0 (k = 0, ±1, ±2, . . . ) .

Taking note of the second inequality in (2.17), we conclude that

(−1)k
(
f◦(ξk)−f◦(ξk)

)
> 0 (k = 0, ±1, ±2, . . . ) . (2.19)

Besides,

|f◦(ξk)− f◦(ξk)| ≥ |g(ξk)− f◦(ξk)| − |g(ξk)− f◦(ξk)| ,

and so, using the first inequality in (2.17) to estimate |g(ξk)− f◦(ξk)| from
below by L, and (2.18) to estimate |g(ξk)− f◦(ξk)| from above by L − ε, we
see that

|f◦(ξk)− f◦(ξk)| ≥ ε (k = 0, ±1, ±2, . . . ) . (2.20)

Inequalities (2.19) and (2.20) together say that the entire function φ := f◦−f◦
which is clearly of exponential type τ satisfies (2.15) at all the points of a set
of degree τ in spite of being bounded on the real axis. This is a contradiction
which proves the result. �

In the course of proving Theorem 2.1 we have also proved the following
result analogous to Theorem F.

Proposition 2.3. Let g be continuous and bounded on the real axis. Then,

Aτ (g) := inf
f∈Bτ

sup
−∞<x<∞

|g(x)− f(x)| ≤ 12 ωg

(
1

τ

)
.

�

3. Hermite Interpolation by Functions of Exponential
Type and Uniform Approximation on R

As we have remarked earlier, Theorem A holds for functions in C[a , b] if
and only if it holds for those in C[0 , 1]. It was proved by S. Bernstein that if
g ∈ C[0 , 1] and

Bn(x) :=

n∑
k=0

g

(
k

n

)(
n

k

)
xk(1− x)n−k ,

then limn→∞Bn(x) = g(x) uniformly in [0 , 1].
Theorem A has been proved in numerous other ways. It would be natural

to think that if we were given an infinite triangular matrix A whose nth row
consisted of the points

x1,n > x2,n > · · · > xn,n (3.1)
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in (−1 , 1) such that

lim
n→∞

max
0≤ν≤n

(xν,n − xν+1,n) = 0 (x0,n = 1 , xn+1,n = −1) ,

then, for any function g ∈ C[−1 , 1] the associated sequence of Lagrange inter-
polating polynomials

Ln−1(x ; A ; g) :=
n∑

ν=1

ωn(x)

(x− xν,n) ω′
n(xν,n)

g(xν,n) (n = 1, 2, . . . ) , (3.2)

where ωn(x) :=
∏n

ν=1(x − xν,n), would converge uniformly to g on [−1 , 1].
However, this is not true. In fact, Faber [18] proved the following surprising
result.

Theorem G. Given any matrix A as above, there exists a continuous
function gA : [−1 , 1] → R such that the associated sequence of Lagrange
interpolating polynomials {Ln−1(x ; A ; gA)} does not converge uniformly to
gA on [−1 , 1]. �

The situation changes significantly if we consider Hermite interpolation and
take for A the triangular matrix whose n-th row consists of the zeros of Tn.
In fact, Fejér [19] made the following remarkable discovery.

Theorem H-1. Let

xν = xν,n = cos
2ν − 1

2n
π (ν = 1, 2, . . . , n) ,

and g a function continuous on [−1 , 1]. Furthermore, let

Aν,n :=

{
Tn(x)

n(x− xν)

}2

(1− xxν) (ν = 1, 2, . . . , n) .

Then,

H2n−1(x) :=
n∑

ν=1

g(xν)Aν,n(x)

is a polynomial of degree at most 2n− 1 such that

H2n−1(xν) = g(xν), H ′
2n−1(xν) = 0 (ν = 1, 2, . . . , n) ,

and limn→∞H2n−1(x) = g(x) uniformly on [−1 , 1]. �
An analogous result about 2π- periodic functions was proved much earlier.

The Fejér kernel

kn(u) :=
2

n+ 1

{
sin 1

2 (n+ 1)u

2 sin 1
2u

}2
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vanishes at the points 2πν/(n+ 1) for ν = 1, 2, . . . , n and equals (n+1)/2 at
u = 0. Thus, if t0, t1, . . . , tn are any n+1 points equally spaced over [0 , 2π),
for example

tν := t0 +
2πν

n+ 1
(ν = 0, 1, . . . , n) ,

then the trigonometric polynomial

Jn(x) = Jn(x ; g) :=
2

n+ 1

n∑
ν=0

g(tν) kn(x− tν) ,

which was introduced by Jackson [28], is of degree at most n and coincides
with g at these points. Since k′n(u) = 0 for u = 2πν/(n+ 1), the derivative
J ′
n(x ; g) vanishes at the points tν . Thus, as observed by Bernstein [5], Jn(. ; g)

is a trigonometric polynomial of degree at most n coinciding with g at the
points tν and having a vanishing derivative there.

Note the analogy between Theorem G and the following result about the
uniform convergence of the sequence {Jn(. ; g)} of Hermite interpolating trigono-
metric polynomials in equally spaced points to a 2π-periodic function.

Theorem H-2. Let g be bounded and 2π-periodic. Then (i) Jn(. ; g)
remains within the same bounds as g; (ii) Jn(x ; g) converges to g(x) at
every point x of continuity of g as n → ∞. The convergence is uniform on
every closed interval [α , β] of continuity. �

Now, we turn to uniform approximation of non-periodic functions on R
via Hermite interpolation by entire functions of exponential type. As in the
periodic case, the simplest interpolation points

λν,τ :=
νπ

τ
(ν = 0,±1,±2, . . . ) (3.3)

turn out to be the most convenient. The functions

hn,τ (z) :=

{
sin τz

τz − nπ

}2

(n = 0,±1,±2, . . . )

play a fundamental role. It is clear that hn,τ is of exponential type 2τ , vanishes
at all the points in (3.3) except λn,τ , assumes the value 1 at λn,τ , has a
vanishing derivative at the points (3.3), and is bounded on the real axis.

Let g : R → C be non-periodic but uniformly continuous and bounded.
Then

Hτ (z ; g) :=
∞∑

n=−∞
g(λn,τ )hn,τ (z) (τ > 0) (3.4)

is an entire function of exponential type 2τ having the four properties:

(a) it is bounded on the real axis;

(b) it interpolates g in the points λn,τ ;
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(c) its derivative vanishes at these points;

(d) |Hτ (iy ; g)| = O
(
|y|−1e2τ |y|

)
as y → ±∞.

The following proposition [23, p. 148] shows that Hτ (. ; g) is the only entire
function of exponential type 2τ for which (a), (b), (c) and (d) are satisfied.

Proposition 3.1. Let f be an entire function of exponential type 2τ such
that f (k π/τ) = f ′ (k π/τ) = 0 for k = 0, ±1, ±2, . . . , and |f(x)| is bounded
on the real axis, then f(z) := c sin2 τz, where c is a constant.

Proof. Without loss of generality we may suppose that τ is equal to 1 and
that |f(x)| ≤ 1 on the real axis.

Consider the entire function F (z) := f(z)/(sin2 z). Clearly,∣∣∣∣sin(±(n− 1

2

)
π + iy)

∣∣∣∣ = ey + e−y

2
>

1

2
e|y| (n ∈ N , y ∈ R) .

Besides,∣∣∣∣sin(x± i

(
n− 1

2

)
π

)∣∣∣∣ ≥ e(n−
1
2 )π − e−(n−

1
2 )π

2
=

1

2
e(n−

1
2 )π
(
1− e−(2n−1)π

)
>

1

3
e(n−

1
2 )π (x ∈ R , n ∈ N) .

Thus, | sin z|2 > (1/9) e2 |ℑz| for any z lying on the square contour Γ∗
n, whose

corners lie at the points

(±1± i)

(
n− 1

2

)
π (n ∈ N) .

Now, note that by Proposition 1.1,

|f(z)| ≤ e2 |ℑz| (z ∈ C) .

Hence, |F (z)| < 9 for any z ∈ Γ∗
n, where n is an arbitrary positive integer.

Thus, |F | is bounded throughout the complex plane. By Liouville’s theorem,
the entire function F must be a constant, that is, f(z) ≡ c sin2 z, where c is
a constant. �

In analogy with Theorems H-1 and H-2 we have the following result about
the uniform convergence of Hermite interpolating entire functions of exponen-
tial type ([23]; also see [14]).

Theorem 3.1. Let g : R → C be uniformly continuous and bounded.
Furthermore, let Hτ (. ; g) be as in (3.4). Then

sup
−∞<x<∞

|g(x)−Hτ (x ; g)| → 0 as τ → ∞ .
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Proof. Applying Proposition 3.1 to the function H(z) := 1−
∑∞

n=−∞ hn,τ (z)

and observing that H(iy) = O
(
|y|−1e2τ |y|

)
as y → ±∞, we conclude that

∞∑
n=−∞

hn,τ (z) ≡ 1 . (3.5)

Let |g(x)| ≤M on the real axis. If ω(. ; g) is the modulus of continuity of g,
then for any ε > 0 there exists δ > 0 such that ω(δ ; g) < ε/2, and so for any
real x, we have

|g(x)−Hτ (x ; g)| ≤
( ∑
|nπ

τ −x|<δ

+
∑

|nπ
τ −x|≥δ

) ∣∣∣g(x)− g
(nπ
τ

)∣∣∣ hn,τ (x)
≤ ω(δ ; g)

∞∑
n=−∞

hn,τ (x) +
2M

τ2

∑
|nπ

τ −x|≥δ

1(
x− nπ

τ

)2
≤ ω(δ ; g) +

2M

τ2
2

δ2

{
1 +

∞∑
n=1

1(
1 + nπ

δτ

)2
}

≤ ω(δ ; g) +
2M

τ2
2

δ2

{
1 +

δτ

π

∫ ∞

0

1

(1 + x)2
dx

}
= ω(δ ; g) +

4M

τδ

(
1

τδ
+

1

π

)
< ε

for all sufficiently large τ . �

4. (0 , m) - interpolation by Functions of Exponential
Type and Approximation on R

P. Turán and others investigated the behaviour of (0 , m) - interpolating
polynomials, that is, polynomials Rn(. ; g) of degree ≤ 2n−1, which duplicate
the function g at the n points xn,1 > · · · > xn,n in [−1, 1] and whose m-th

derivative assumes prescribed values y
(m)
ν,n at these points. Even in the case

where m = 2 the polynomials Rn(. ; g) do not necessarily exist and may not
be unique if they exist. If n is even and the points xν,n are taken to be the
zeros of the polynomial πn(x) := (1−x2)P ′

n−1(x), where Pn−1 is the Legendre
polynomial of degree n−1, the (0 , 2) - interpolating polynomials Rn(. ; g) ex-
ist and are unique. Furthermore, if g is ‘continuously differentiable’ in [−1 , 1]
with the modulus of continuity ω(t , g′) of g′ such that

∫
0
t−1 ω(t , g′) dt ex-

ists and the numbers y
(2)
ν,n satisfy max1≤ν≤n |y(2)ν,n| = o(n), then the sequence

{Rn(. ; g)} converges uniformly to g on [−1 , 1] as n tends to ∞ taking even
integral values.

O. Kiš, A. Sharma, A. K. Varma, and others obtained similar results for
(0 , m)- interpolation of 2π- periodic functions, by trigonometric polynomials.
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Consideration of (0 , m) - interpolation by entire functions of exponen-
tial type raises serious questions of uniqueness which need to be answered
first. For example, to what extent is an entire function of exponential type
< τ determined by its values and those of its second derivative at the points
0, ±2π/τ, ±4π/τ, . . . ? Here, without loss of generality, we may take τ = 2π
and the points 0, ±1, ±2, . . . as nodes. Then the ‘question of uniqueness’ just
asked is answered by the following theorem [22].

Theorem 4.1. Let f be an entire function of exponential type < 2π such
that

f(n) = f ′′(n) = 0 (n = 0, ±1, ±2, . . . ) .

Then f(z) = c sinπz, where c is a constant. Here, functions of order 1 type
2π are not admissible as the example sin 2πz shows. �

Gervais and Rahman [22] also proved the next three uniqueness theorems.

Theorem 4.2. Let m be an even integer ≥ 4. Furthermore, let f be an
entire function of exponential type τ < π sec (π/m) such that

f(n) = f (m)(n) = 0 (n = 0, ±1, ±2, . . . ) .

Then, f(z) = c sinπz, where c is a constant. Here, τ = π sec (π/m) is
inadmissible as the example f(z) := exp

(
zπ tan (π/m)

)
sinπz shows. �

Theorem 4.3. Let m be an odd integer ≥ 3. Furthermore, let f be an
entire function of exponential type τ < π sec

(
π/2m

)
such that

f(n) = f (m)(n) = 0 (n = 0, ±1, ±2, . . . ) .

Then f(z) ≡ 0. The example f(z) := exp
(
zπ tan (π/2m)

)
sinπz shows that

here τ = π sec (π/2m) is inadmissible. �
Since the function g, which we wish to interpolate and approximate, is

supposed to be bounded on the real axis, we should see what more can be said
in Theorems 4.1–4.3 if f is bounded on the real axis.

Theorem 4.4. Let m be an integer ≥ 2 and λ an arbitrary number in
[0 , 1). Furthermore, let f be an entire function of exponential type 2π such
that |f(x)| ≤ α + β |x|λ on the real axis for certain constants α and β, and
suppose that

f(n) = f (m)(n) = 0 (n = 0, ±1, ±2, . . . ) .

Then,

f(z) :=

{
c1 sinπz + c2 sin 2πz if m is even
c sin2 πz if m is odd . �

Now, we wish to mention some contributions of Liu Yongping [30], which
we find very interesting and noteworthy.
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Theorem 4.5. Let P be an odd polynomial with only real coefficients, and
suppose that P (i t) ̸= 0 for t ∈ (0 , 2τ ]. Then, there exists a unique entire
function Aτ of exponential type 2τ belonging to L2(R) such that

Aτ

(
kπ

τ

)
=

{
1 if k = 0
0 if k = ±1,±2, . . .

(4.1)

and

(P (D)Aτ )

(
kπ

τ

)
= 0 (k = 0,±1,±2, . . . ) . (4.2)

It is given by the formula

Aτ (x) =
1

τ

∫ 2τ

0

P
(
i (2τ − t)

)
P (i t) + P

(
i (2τ − t)

) cos txdt . (4.3)

Also, there exists an entire function Bτ of exponential type 2τ belonging to
L2(R) such that

(P (D)Bτ )

(
kπ

τ

)
=

{
1 if k = 0
0 if k = ±1,±2, . . .

(4.4)

and

Bτ

(
kπ

τ

)
= 0 (k = 0,±1,±2, . . . ) . (4.5)

It is given by the formula

Bτ (x) =
1

τ

∫ 2τ

0

i

P (i t)) + P
(
i (2τ − t)

) sin txdt . (4.6)

�

Remark 4.1. Using the restrictions imposed upon P , we readily see that
P (i t) + P

(
i (2τ − t)

)
̸= 0 on [0 , 2τ ].

In the case where P (t) := t2j+1, Theorem 4.5 combined with Theorem 4.4
gives the following result.

Corollary 4.1. (i) Let Uτ be an entire function of exponential type 2τ such
that

Uτ

(
kπ

τ

)
=

{
1 if k = 0
0 if k = ±1, ±2, . . . ,

and U (2j+1)
τ

(
kπ

τ

)
= 0 for all k ∈ Z .

Then, there exists a constant γ1 such that

Uτ (z) =
1

τ

∫ 2τ

0

(2τ − t)2j+1

t2j+1 + (2τ − t)2j+1
cos tz dt+ γ1 sin2 τz .
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(ii) Let Vτ be an entire function of exponential type 2τ such that

Vτ

(
kπ

τ

)
= 0 for all k ∈ Z, and V (2j+1)

τ

(
kπ

τ

)
=

{
1 if k = 0
0 if k = ±1, ±2, . . .

Then, there exists a constant γ2 such that

Vτ (z) =
1

τ

∫ 2τ

0

(−1)j

t2j+1 + (2τ − t)2j+1
sin tz dt+ γ2 sin2 τz .

�
The proof of Theorem 4.5 uses the Poisson Summation Formula (PSF for

short) and some other results from the theory of Fourier integral. It also uses
certain results about entire functions of exponential type belonging to Lp(R),
like the Paley–Wiener theorem [8, Theorem 6.8.1]. In view of its relevance here
and also in the next §, we wish to include the statement of PSF, starting with
some preparatory remarks.

The Fourier transform g∧ of g ∈ L1(R) is defined by

g∧(x) :=
1√
2π

∫ ∞

−∞
g(t) e−ixt dt (x ∈ R) ,

and of g ∈ L2(R) by the limit in the L2(R)-norm of
1√
2π

∫ ρ

−ρ

g(t) e−ixt dt as

ρ → ∞. If g belonging to L1(R) or to L2(R) is such that g∧ belongs to
L1(R), then at each point of continuity of g,

g(x) :=
1√
2π

∫ ∞

−∞
g∧(t) eixt dt .

Lemma 4.1 (Poisson Summation Formula). Let g ∈ L1(R)∩BV (R). Then
[11, p. 202],

∞∑
k=−∞

g(βk) =

√
2π

β

∞∑
k=−∞

g∧
(
2kπ

β

)
(β > 0) .

In particular, this formula holds if g ∈ L1(R)∩AC(R) or if “ g ∈ L1(R)∩C(R)
and g∧ ∈ L1(R) ∩AC(R)”. �

In order to prove Theorem 4.5, Liu Yongping first made the following useful
observation for which he used the Paley–Wiener representation of an entire
function of exponential type belonging to L2(R), and the Poisson Summation
Formula.

Lemma 4.2. Let U be an entire function of exponential type 2τ belonging
to L2(R). Then

U

(
kπ

τ

)
=

{
1 if k = 0
0 if k = ±1,±2, . . .
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if and only if U∧(t) + U∧(2τ + t) =
(√

π/2
)
/τ a.e. in (−2τ , 0) . �

The next result due to Liu Yongping contains some useful estimates for the
functions Aτ and Bτ of Theorem 4.5.

Lemma 4.3. Let P be an odd polynomial with only real coefficients, and

suppose that P (i t) ̸= 0 for t ∈ (0 , ∞). Then,
∞∑

k=−∞

Aτ

(
x− kπ

τ

)
≡ 1, and

for any δ > 0, ∑
|x− kπ

τ |>δ

∣∣∣∣Aτ

(
x− kπ

τ

)∣∣∣∣ ≤ c1
1 + δ

δ2 τ
,

Furthermore,
∫∞
−∞ |Aτ (x)| dx ≤ c2/τ for some constant c2 independent of τ .

Also, there exists a constant c3 independent of τ such that for any p > 1,(∫ ∞

−∞
|Bτ (x)|p dx

)1/p
≤ c3

1

|P (iτ)|

(
1

τ

∫ ∞

−∞

∣∣∣∣1− cosu

u

∣∣∣∣p du

)1/p
.

�
The estimates for Aτ and Bτ contained in Lemma 4.3 allowed Liu Yongping

to obtain the following convergence theorem.

Theorem 4.6. Let P be an odd polynomial with only real coefficients, and
suppose that P (i t) ̸= 0 for t ∈ (0 , ∞). Also, let Aτ and Bτ be as in (4.3)
and (4.6), respectively. Furthermore, for any bounded function g : R → C, let

Rτ (x) :=

∞∑
k=−∞

g

(
kπ

τ

)
Aτ

(
x− kπ

τ

)
+

∞∑
k=−∞

βk Bτ

(
x− kπ

τ

)
,

where, for some p > 1,(
τ

∞∑
k=−∞

|βk|q
)1/q

= o
(
P (iτ)

) (
1

p
+

1

q
= 1

)
.

Then Rτ (x) converges to g(x) at each point of continuity of g. The conver-
gence is uniform in the case where g is uniformly continuous and bounded on
the real axis. �

5. Gaussian Quadrature Formulae for Functions of Ex-
ponential Type and an Analogue of Turán’s Formula

A polynomial f(x) :=
∑n−1

ν=0 aνx
ν of degree < n is completely determined

by its values at any set of n distinct points. However, the integral over [−1 , 1]
of any polynomial of degree < 2n, can be correctly evaluated by a formula of
Gauss if we know the values of the polynomial at a special set of n points,
namely the n zeros of the Legendre polynomial of degree n.
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It is known [8, Corollary 9.4.4] that if f1 and f2 are two entire functions
of exponential type, both o

(
eσ|z|

)
as |z| → ∞, agree at the points

0, ±π
σ
, ±2π

σ
, . . . ,

then they must be identical. This means that an entire function f of exponen-
tial type is completely determined by its values at these points provided that
f(z) = o

(
eσ|z|

)
as |z| → ∞. As explained in the second paragraph of the proof

of Theorem 1 in [26], if f is entire function of exponential type σ belonging
to L1(−∞ , ∞), then f(z) = o

(
eτ |z|

)
as |z| → ∞. Thus, an entire function of

exponential type τ belonging to L1(−∞ , ∞) is completely determined by its
values at the points 0, ±π/σ, ±2π/σ, . . . if τ ≤ σ. The same cannot be said
for any τ > σ. To see this, let τ > σ. Then, the functions

fε(z) :=

(
sin εz

z

)2

sinσz

(
0 < ε <

τ − σ

2

)
are all of exponenential type τ , belong to L1(−∞ , ∞) and agree with each
other at all the points 0, ±π/σ, ±2π/σ, . . . without being identical.

Using the Paley–Wiener Theorem [8, Theorem 6.8.1] in conjunction with
the Poisson Summation Formula (Lemma 4.1), Boas [9] concluded that the
integral of a function f of exponential type 2π belonging to L1(−∞ , ∞) can
be correctly evaluated if we know the values of f at the integers. In fact, the
conclusion can be formulated in the following more general form.

Theorem 5.1. Let f be an entire function of exponential type 2σ belonging
to L1(−∞ , ∞). Then,∫ ∞

−∞
f(x) dx =

π

σ

∞∑
ν=−∞

f
(νπ
σ

)
=
π

σ

∞∑
ν=−∞

f

(
(2ν − 1)π

2σ

)
. (5.1)

�
It may be note that (5.1) uses the values of the function only at the points

0, ±π/σ, ±2π/σ, . . . , but still it correctly evaluates the integral of any entire
function of exponential type 2 times σ belonging to L1(−∞ , ∞). We there-
fore see it as a Gaussian quadrature formula.

The utility of formula (5.1) is compromised by the requirement that f
belong to L1(−∞ , ∞) since it excludes the possibility of evaluating many

familiar integrals like lim
R→∞

∫ R

−R

sinx

x
dx. With this in mind Frappier and Rah-

man [21] looked for conditions under which (5.1) would remain true if the
integral was taken in the sense of Cauchy. Let us recall that a function f is
said to be integrable in the sense of Cauchy on (−∞ , ∞) if it is integrable on

(0 , R) and (−R , 0) for every R > 0, and if I1 := limR→∞
∫ R

0
f(x) dx and

I2 := limR→∞
∫ 0

−R
f(x) dx exist. The sum of I1 and I2 is called the integral
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of f in the sense of Cauchy and is usually denoted by
∫→∞
→−∞ f(x) dx. Frappier

and Rahman [21, Theorem 1] proved the following companion to Theorem 5.1.

Theorem 5.1′. Let f be an entire function of exponential type τ < 2σ.
Then, ∫ →∞

→−∞
f(x) dx =

π

σ

∞∑
ν=−∞

f
(νπ
σ

)
(5.1′)

provided that the integral and the series in (5.1′) are convergent. �
Example 5.1. Applying (5.1′) to the entire function

(
sinσz

)
/z, which is

of exponential type σ, we obtain∫ ∞

−∞

sinσx

x
dx =

π

σ
lim
z→0

sinσz

z
= π .

Example 5.2. Now, let f(z) :=
(
sin 2σz

)
/z. Then,∫ ∞

−∞
f(x) dx = π whereas

π

σ

∞∑
ν=−∞

f
(νπ
σ

)
=
π

σ
f(0) = 2π ,

that is,
∫→∞
→−∞ f(x) dx ̸= π

σ

∞∑
ν=−∞

f
(νπ
σ

)
. This shows that τ = 2σ is not

admissible in (5.1′).

Remark 5.1. Writing

Rσ[f ] :=

∫ ∞

−∞
f(x) dx− π

σ

∞∑
ν=−∞

f
(νπ
σ

)
we see that, by Theorem 5.1, Rσ[f ] is zero for any entire function of exponential
type 2σ belonging to L2(R). If fh(z) := f(z + h), then also Rσ[fh] is zero
for any real h. For a converse of this result see [15, Theorem 3.1].

5.1. Turán’s Formula and its Analogue for Functions of Expo-
nential Type

Generalizing the quadrature formula of Gauss, it was proved by Turán [41]
that the formula ∫ 1

−1

f(x) dx =

n∑
ν=1

m−1∑
µ=0

λ(µ)ν f (µ)(xν)

holds for every polynomial of degree < (m + 1)n if m is odd and the nodes
x1, . . . , xn are the zeros of the (monic) polynomial πn,m+1 which minimizes

the integral
∫ 1

−1
|π(x)|m+1 dx amongst all monic polynomials of degree n. In

the case m = 1, this agrees with the fact that the zeros of the Legendre
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polynomial of degree n minimize the integral
∫ 1

−1
|
∏n

ν=1 (x− xν)|
2
dx over all

vectors (x1, . . . , xn) ∈ Rn.

The following result (see [36]; also see [29] and [33]) contains a quadrature
formula for entire functions of exponential type that is completely analogous
to the preceding formula of Turán.

Theorem 5.2. Let m be an odd positive integer and σ > 0. Furthermore.
let a0,0 = 1 and for m > 1, 0 ≤ µ ≤ m− 1 let aµ,m−1 be defined by

Qm(z) :=

(m−1)/2∏
µ=1

(
1 +

z2

µ2

)
=

m−1∑
µ=0

aµ,m−1 z
µ .

Then, ∫ →∞

→−∞
f(x) dx =

π

σ

(m−1)/2∑
µ=0

1

(2σ)2µ
a2µ,m−1

∞∑
ν=−∞

f (2µ)
(νπ
σ

)
(5.2)

holds for any entire function of exponential type τ less than (m + 1)σ if the
integral on the left (taken in the sense of Cauchy) and the (m + 1)/2 series
on the right are convergent. �

Example 5.3. If f(z) :=
sinm σz

z
(1− cosσz), then

∫ →∞

→−∞
f(x) dx =

(
m

m+1
2

)
whereas

(m−1)/2∑
µ=0

1

(2σ)2µ
a2µ,m−1

∞∑
ν=−∞

f (2µ)
(νπ
σ

)
= 0 .

Thus, τ = (m+ 1)σ is inadmissible in Theorem 5.2.

Remark 5.2. Olivier and Rahman [36, Theorem 2] also proved that if
f ∈ L1(−∞ , ∞), then

∫ ∞

−∞
f(x) dx =

π

σ

(m−1)/2∑
µ=0

1

(2σ)2µ
a2µ,m−1

∞∑
ν=−∞

f (2µ)
(νπ
σ

)
(5.2′)

not only for entire functions of exponential type less than (m + 1)σ but also
for those of order 1 type (m+ 1)σ.

Since we are dealing with entire functions of exponential type, it is natural
to wonder if the requirement about the convergence of the (m + 1)/2 series
in (5.2) was really necessary. The following result of Boas and Schaeffer [10],
applied to

∫ z

1/2
f(ζ) dζ, “suggests” that it might indeed be superfluous.

Proposition 5.1 Let f be an entire function of exponential type π. Then,
f(x) approaches a limit as x → ∞ if and only if

∑∞
k=1 f

′(k + x) converges
uniformly for 0 ≤ x ≤ 1. �
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It was shown by Rahman and Schmeisser [37] that the conclusion of Propo-
sition 5.1 remains true for any entire function of exponential type less than
2π. Thus, they proved that it was redundant to require the series in (5.1′)
to be convergent. As regards (5.2) they established [37, Theorem 4] that if
f is of exponential type less than (m + 1)σ and limx→∞

∫ x

1/2
f(t) dt exists,

then
π

σ

∞∑
ν=1

(m−1)/2∑
µ=0

1

(2σ)2µ
a2µ,m−1f

(2µ)
(νπ
σ

)
is necessarily convergent. In ad-

dition, they observed that the formula remains true even if the integral exists
only as a Cauchy principal value. Let us recall that

∫∞
−∞ f(x) dx exists as a

Cauchy principal value if
∫∞
0

{f(x) + f(−x)}dx exists in the sense of Cauchy,
and that

∑∞
n=−∞ an exists as a Cauchy principal value if

∑∞
n=1(an + a−n)

converges.
Rahman and Schmeisser [37, Corollary 4] proved that if f is of exponential

type less than (m+ 1)σ and
∫∞
−∞ f(x) dx exists as a Cauchy principal value,

then
π

σ

∞∑
ν=−∞

(m−1)/2∑
µ=0

1

(2σ)2µ
a2µ,m−1f

(2µ)
(νπ
σ

)
exists as a Cauchy principal

value. Furthermore,∫ →∞

0

(f(x)+f(−x)) dx =
π

σ

∞∑
ν=−∞

(m−1)/2∑
µ=0

1

(2σ)2µ
a2µ,m−1f

(2µ)
(νπ
σ

)
. (5.3)

5.2. A Characterization of the Nodes
{νπ
σ

}
ν∈Z

Appearing in

(5.2) and (5.2′)

For any odd m ∈ N, let Cσ,m denote the class of all entire functions of ex-
ponential type σ such that (i) g(0) = g′(0)−1 = 0, that is, the Maclaurin series
of g has the form z +

∑∞
ν=2 cν z

ν , and (ii)
∫∞
−∞ x−2 |g(x)|m+1 dx exists. We

shall prove that, analogously to the characterization of the nodes in the formula
of Turán, the nodes {νπ/σ}ν∈Z, appearing in (5.2) and (5.2′), are the zeros of
that function in Cσ,m, which minimizes the integral

∫∞
−∞ x−2 |g(x)|m+1 dx.

It suffices to show that if g(z) ̸≡ g∗(z) :=
(
sinσz

)
/σ, then∫ ∞

−∞
x−2|g(x)|m+1 dx>

∫ ∞

−∞
x−2|g∗(x)|m+1 dx=

∫ ∞

−∞
x−2

∣∣∣∣ sinσzσ

∣∣∣∣m+1

dx .

(5.4)
The function φ(z) := g(z) − g∗(z) is of exponential type σ and is not

identically zero. Furthermore,
∫∞
−∞ x−2|φ(x)|m+1 dx <∞ since

φ(0) = φ′(0) = 0 . (5.5)

Using Hölder’s inequality we conclude that the entire function

f(z) :=
1

z2
(g∗(z))

m
φ(z) , (5.6)
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which is clearly of exponential type (m+ 1)σ, belongs to L1(R).
Now, let us suppose that g(x) is real for real x, consider the entire function

F (z) :=
1

z2
(g(z))

m+1 − 1

z2
(g∗(z))

m+1 − (m+ 1)
1

z2
(g∗(z))

m
φ(z) .

It is of exponential type (m+1)σ, and belongs to L1(R). Bernoulli’s inequality
may be used to see that F (x) > 0 except at the zeros of g∗ and φ. Hence∫∞
−∞ F (x) dx > 0, that is,∫ ∞

−∞
x−2|g(x)|m+1 dx >

∫ ∞

−∞
x−2|g∗(x)|m+1 dx+ (m+ 1)

∫ ∞

−∞
f(x) dx ,

where f is as in (5.6). Taking (5.5) into account we see that

f
(νπ
σ

)
= · · · = f (m−1)

(νπ
σ

)
= 0 (ν = 0, ±1. ± 2, . . . ) .

Hence, by formula (5.2′),
∫∞
−∞ f(x) dx = 0, and so (5.4) holds.

5.3. Another Extension of Formula (5.1)

The Bessel function of the first kind of order α is defined by [42, p. 40]

Jα(z) :=

(
1

2
z

)α ∞∑
ν=0

(−1)ν
(z/2)2ν

ν! Γ(ν + α+ 1)
, (5.7)

Here, it may be added that by ζα, ζ ̸= 0 we mean exp (α log ζ), where the
logarithm has its principal value. From the coefficients in the expansion (5.7)
for Jα(z) it is easily seen that the function Gα(z) := z−αJα(z) is an even
entire function of order 1 type 1 and so is of exponential type 1. It is relevant
to mention that

Gα(z) =


√

2

π
cos z if α = −1

2√
2

π

sin z

z
if α =

1

2
.

According to a theorem of Lommel [42, p. 482], the zeros of Jα, for any
α > −1, are all real. They are all simple with the possible exception of z = 0.
Arranging the positive zeros of Jα in increasing order of magnitude, we denote
the kth zeros by jk,α or by jk for short. For any k ∈ N, the zero −jk,α of
Jα by j−k,α or simply by j−k.

The next extension of (5.1) is suggested by the following well-known gener-
alization [39] of the Gauss’ quadrature formula.

Theorem I. Let x1,n > · · · > xn,n be the zeros the Jacobi polynomial

P
(α,β)
n . Then, for any polynomial p of degree at most 2n− 1, we have∫ 1

−1

(1− x)α(1 + x)β p(x) dx =

n∑
ν=1

λν p(xν,n) (α > −1 , β > −1) , (5.8)
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where the numbers λ1, . . . , λn are all positive. �
According to a classical formula [40, Theorem 8.1.1],

lim
n→∞

(
1

n

)α

P (α,β)
n

(
cos

z

n

)
=

(
1

2
z

)−α

Jα(z) (α > −1 , β > −1) , (5.9)

uniformly in every bounded region of the complex plane. This implies that if

x1,n > · · · , > xn,n are the zeros of P
(α,β)
n and if we write xk,n = cos θk,n,

where 0 < θk,n < π, then for a fixed k ≥ 1,

lim
n→∞

n θk,n = jk .

The following formula, which is to be compared with (5.2′) and (5.3), was
proved by Frappier and Olivier [20].

Theorem 5.3. Let α > −1. Furthermore, let f be an entire function of
exponential type 2σ such that for some δ > 2α+ 2,

f(x) = O
(
|x|−δ

)
as x→ ±∞ .

Then,∫ ∞

0

x2α+1
(
f(x)+f(−x)

)
dx=

2

σ2α+2

∞∑
k=1

j2αk(
J ′
k(jk)

)2 (f (jkσ
)
+f

(
−jk
σ

))
. (5.10)

�
Motivated by Theorem 5.1 and 5.1′, Grozev and Rahman sought to relax the

restriction on the growth of f along the real axis and proved [25, Theorem 1,
Theorem 2] the following results.

Theorem 5.3′. Let α > −1. Furthermore, let f be an entire function
of exponential type 2σ such that x2α+1

(
f(x) + f(−x)

)
belongs to L1[0 , ∞).

Then (5.10) holds. �
Theorem 5.3′′. Let α > −1. Furthermore, let f be an entire function of

exponential type τ < 2σ such that x2α+1
(
f(x)+f(−x)

)
is integrable in the sense

of Cauchy on [0 , ∞). Then, formula (5.10) with
∫∞
0
x2α+1

(
f(x) + f(−x)

)
dx

replaced by
∫→∞
0

x2α+1
(
f(x) + f(−x)

)
dx, holds if the series on the right is

convergent. �
Remark 5.3. It was proved by Ben Ghanem [4] that in Theorem 5.3′′ the

assumption about the convergence of the series on the right-hand side of (5.10)
was superfluous. The reader will find some other extensions of Theorems 5.3′

and 5.3′′ in [4].
Theorem 5.3′ contains the following result. It is a direct generalization of

Theorem 5.1 to which it reduces in the case where α = −1/2.

Theorem 5.1∗. Let f be an entire function of exponential type 2σ such
that |x|2α+1f(x) ∈ L1(R) for some α > −1. Then∫ ∞

−∞
|x|2α+1f(x) dx =

2

σ2α+2

∞∑
ν=−∞
ν ̸=0

∣∣∣∣ 1

G′
α (|jα,ν |)

∣∣∣∣2 f (jα,νσ
)
. (5.1∗)

�
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6. Lagrange Interpolation and Mean Convergence

According to Theorem G, no triangular matrix A has the property that,
for any continuous function g : [−1 , 1] → R, the associated sequence of La-
grange interpolating polynomials {Ln−1(. ; A ; g)} , converges uniformly to g
on [−1 , 1]. However, it was shown by Marcinkiewicz [31] that if the points
x1,n, . . . , xn,n appearing in the n-th row of A are the zeros of Tn the Cheby-
shev polynomial of the first kind of degree n, then for each g ∈ C[−1 , 1], we
have

lim
n→∞

∫ 1

−1

1√
1− x2

|g(x)− Ln−1(x ; A ; g)|p dx = 0 (p > 0) ; (6.1)

so did Erdős and Feldheim [16] , at about the same time. The polynomials

T0, T1, . . . are orthogonal with respect to the weight function
1√

1− x2
. Given

any weight function w on [−1 , 1] let {pn(. ; w)} be the corresponding se-
quence of orthonormal polynomials. It was proved by Erdős and Turán [17]
that if the points x1,n, . . . , xnn in the nth row of A are the zeros of pn(. ; w),
then for each g ∈ C[−1 , 1],

lim
n→∞

∫ 1

−1

w(x) |g(x)− Ln−1(x ; A ; g)|p dx = 0 (0 < p ≤ 2) . (6.2)

As regards the restriction on p in (6.2), it was noted by Askey [2, p. 77] that,
for any given p > 2 there exists a weight function of the form (1− x)α(1+ x)β

such that
∫ 1

−1
w(x) |g(x)− Ln−1(x ; A ; g)|p dx does not tend to 0 as n→ ∞.

In the positive direction he proved [3, Theorem 10] the following result.

Theorem J. Let w(x) := (1−x)α(1+x)β and Pα,β
n be the corresponding

orthogonal (Jacobi) polynomial of degree n, and let the points in (3.1) be the
zeros of Pα,β

n . Furthermore, let 0 < p < 4(α + 1)/(2α+ 1). Then, for each
continuous function g : [−1, 1] → R,

lim
n→∞

∫ 1

−1

(1− x)α(1 + x)β |g(x)− Ln−1(x ; A ; g)|p dx = 0 (6.3)

when α , β ≥ −1/2 or when

|α− k| ≤ 1 + β, −1 < β < −1

2
, 2k = 2, 3, . . .

�
In the special case where α = β = −1/2, this result agrees with that of

Marcinkiewicz and of Erdős and Feldheim cited above.

Remark 6.1. Whatever the triangular matrix A of points in (−1 , 1) may
be, there exists a continuous function g such that the sequence {Ln−1(. ; A ; g)}
of Lagrange interpolating polynomials does not converge uniformly to g as
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n → ∞. Why then the matrix whose n-th row consists of the zeros of P
(α,β)
n

is fine for “weighted” Lp convergence, at least for some values of p ? The secret
seems to lie in the fundamental property of Gaussian quadrature illustrated in
Theorem I. This hypothesis is not simply speculative but has been put forward
by other authors (see for example [2], [44, Chapter X, p. 29]). Notice the form
in which the weight (1 − x)α(1 + x)β appears in (6.3) and in the quadrature
formula (5.8).

6.1. Mean Convergence of Lagrange Interpolating Functions of
Exponential Type

We start out by mentioning a result of Marcinkiewicz [31] about the mean
convergence of Lagrange interpolation trigonometric polynomials.

Theorem K . For any n ∈ N, let

θk,n :=
2kπ

2n+ 1
(k = 0, ±1, . . . , ±n) .

In addition, let g : R → C be continuous and 2π- periodic. Furthermore,
denote by tn(. ; g) the trigonometric interpolatory polynomial of degree not
exceeding n with tn (θk,n; g) = g (θk,n) for k = 0, ±1, . . . , ±n. Then,

lim
n→∞

∫ 2π

0

|g(θ)− tn(θ ; g)|p dθ = 0 (p > 0) . (6.4)

�
If g is continuous on [−1, 1], then g(cos θ) is defined for all real θ; it is

continuous as well as 2π- periodic, and so Theorem J applies giving (6.1) as
a corollary. This result is particulary interesting since supn→∞ |tn(θ ; g) = ∞
for every θ if the continuous and 2π- periodic function g is suitably chosen
(see [27] , [32]).

Now, we shall discuss Lagrange interpolation of non-periodic functions in
an infinite set of points on R.

A priori it is not clear what kind of points on R would be suitable for
interpolation by entire functions of exponential type so as to obtain a conver-
gence theorem like Theorem J of Askey and Theorem K of Marcinkiewicz. For
µ ∈ Z,

ℓµ,τ (z) :=


sin (τz − µπ)

τz − µπ
if z ̸= µπ

τ

1 if z =
µπ

τ

is an entire function of exponential type τ such that

ℓµ,τ

(νπ
τ

)
=

{
1 if ν = µ

0 if ν ̸= µ .
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To an arbitrary g : R → C, let us formally associate

Lτ (z ; g) :=

∞∑
ν=−∞

g
(νπ
τ

)
ℓν,τ (z) ,

which interpolates g in the points νπ/τ . However, this associated function may
not be defined at other points even if g is unformly continuous and bounded
on the real axis. If g is continuous and vanishes outside some compact interval
I, then Lτ (. ; g) does define an entire function of exponential type bounded on
the real axis. It can be shown [38, pp. 303–304] that given I there exists a
continuous function gI with support in I such that maxx∈I |gI(x)− Lτ (x ; gI)|
does not remain bounded as τ → ∞. This can be seen as an analogue of the
result of Grünwald [27] and Marcinkiewicz [32] in the periodic case. Is there
also an analogue of (6.4) in this case, and if so what it is? We would like that
for any p > 0 and a large class of functions g ∈ Lp(R),∫ ∞

−∞
|g(x)− Lτ (x ; g)|p dx→ 0 as τ → ∞ . (6.5)

Definition 6.1. For any p > 1 let Fp(δ) denote the set of all measurable

functions g : R → C such that (|x|+ 1)
1
p+δ g(x) is bounded on the real axis

for some δ > 0, and let Fp := ∪δ>0Fp(δ).

Clearly, Fp ⊂ Lp(R).

Definition 6.2. Let R denote the set of all functions g : R → C which
are Riemman integrable on every finite interval.

The following result, which may be seen as an analogue of Theorem J, was
proved by Rahman and Vértesi [38].

Theorem 6.1. For any p > 1, let Fp and R be as in Definition 6.1 and
Definition 6.2, respectively. Then, (6.5) holds if g ∈ Fp ∩R. �

The conditions imposed on g in Theorem 6.1 do not seem to us to be the
weakest possible. If g ∈ Fp ∩R for some p > 1, then [38, Lemma 13],

lim
τ→∞

π

τ

∞∑
ν=−∞

∣∣∣g (νπ
τ

)∣∣∣ = ∫ ∞

−∞
|g(x)|p dx . (6.6)

The proof of Theorem 6.1 required several auxiliary resluts, some known
and others new at the time. In it, a central role is played by the function

Sτ (z ; g) :=
1

π

∫ ∞

−∞
g(t)

sin τ(z − t)

z − t
dt (τ > 0) ,

which certainly exists if g : R → C belongs to Lp(R) for some p > 1. It is
easily seen that if g belongs to Lp(R) for some p > 1, then Sτ (z ; g) is an
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entire function of exponential type τ bounded on R. Also [38, Lemma 9],

lim
τ→∞

∫ ∞

−∞
|Sτ (x ; g)− g(x)|p dx = 0 .

The following result was mentioned there as Lemma 5 but its proof, though
non-trivial, was inadvertantly omitted. We take this opportunity to include
the details here.

Proposition 6.1. Let g ∈ Lp(R) for some p > 1. Then,∫ ∞

−∞
|Sτ (x ; g)|p dx ≤ Kp

∫ ∞

−∞
|g(x)|p dx ,

where Kp depends on p only.

Proof. Since g ∈ Lp(R), p > 1 , the Hilbert transform

g∼(x) :=
1

π

∫ ∞

−∞

g(t)

x− t
dt = − lim

ε→0

1

π

∫ ∞

ε

g(x+ t)− g(x− t)

t
dt

exists almost everywhere, and [44, p. 256]∫ ∞

−∞
|g∼(x)|p dx ≤ cp

∫ ∞

−∞
|g(x)|p dx ,

where cp depends on p only. If g1(x) := g(x) cos τx and g2(x) := g(x) sin τx,
then

|Sτ (x ; g)| = |(sin τx)g∼1 (x)− cos τx)g∼2 (x)| ≤ |g∼1 (x)|+ |g∼1 (x)|

and so(∫ ∞

−∞
|Sτ (x ; g)|p dx

)1/p
≤
(∫ ∞

−∞
|g∼1 (x)|

p
dx

)1/p
+

(∫ ∞

−∞
|g∼2 (x)|

p
dx

)1/p
≤ cp

(∫ ∞

−∞
|g1(x)|p dx

)1/p
+ cp

(∫ ∞

−∞
|g2(x)|p dx

)1/p
≤ 2 cp

(∫ ∞

−∞
|g(x)|p dx

)1/p
.

�

6.2. An Analogue of Theorem J

Let Jα be the Bessel function of order α > −1. Arranging the positive
zeros of Jα in increasing order as before, we use jα,k or simply jk to denote
the k-th one. Recall that Gα(z) := z−α Jα(z) is an entire function of order
1 type 1. Let τ > 0. To any g : R → C, let us formally associate

Lτ,α(z ; g) :=
∞∑

ν = −∞
ν ̸= 0

Gα(τz)

G′
α(jν) (σz − jν)

g

(
jν
τ

)
, (6.7)
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which interpolates g in the points jν/τ for ν ∈ Z\{0}. The following result
[26, Theorem 1] about the mean convergence of {Lσ,α(. ; g)}, as τ → ∞, can
be seen as an analogue of Theorem J. In the special case where α = −1/2, it
is equivalent to Theorem 6.1.

Theorem 6.2. Let α ≥ −1/2 and p > 1, or let −1 < α < −1/2 and
1 < p < 2/|2α+ 1|. Furthermore, let g : R → C be Riemann integrable on
every finite interval and satisfy

g(x) = O

(
1

(|x|+ 1)α+
1
2+

1
p+δ

)
(x ∈ R)

for some δ > 0. Then∫ ∞

−∞

∣∣∣xα+ 1
2

(
g(x)− Lτ,α(x ; g)

)∣∣∣p dx→ 0 as σ → ∞ . (6.8)

�
It may be added that if α ≥ −1/2, then supx∈R

∣∣∣xα+ 1
2

(
g(x)− Lτ,α(x ; g)

)∣∣∣
may not tend to zero as τ → ∞ even if the support of g lies in [0 , 1].

Remark 6.2. We know [26, §3.4] that if α ≥ −1/2, then (6.8) can be
replaced by

lim
τ→∞

∫ ∞

−∞
|x|2α+1 |g(x)− Lτ,α(x ; g)|p dx = 0 (6.8′)

provided that p ≥ 2.

Remark 6.3. Refer to Remark 6.1, and then notice the form in which the
weight |x|2α+1 appears in (6.8′) and in the quadrature formula (5.1∗). This
may help understand the raison d’être of the weight |x|2α+1 in (6.8′).

7. Appendix

In this section, the reader will find with proof a theorem of Phragmén and Lindelöf,
which is of fundamental importance in the theory of entire functions of exponential
type, and so may be known to most of the potential readers. We also present a com-
plete proof of a result of Carleman furnishing certain nontrivial details he apparently
had no time for.

7.1. A Theorem of Phragmén and Lindelöf

The following result due to Phragmén and Lindelöf (see [40, pp. 176–178]) is of
great significance in the study of entire funtions of exponential type. It can be seen
as a generalization of the maximum modulus plinciple.

Proposition 7.1. Let f be holomorphic in the angle

Sθ0 :=
{
z = reiθ : 0 < r < ∞, |θ − θ0| <

π

2α

}
,
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continuous in the closed angle, |f(z)| ≤ M on the boundary, f
(
reiθ

)
= O

(
er

β
)
,

β < α, uniformly in θ, for r = rn → ∞. Then |f(z)| ≤ M throughout Sθ0 .

Proof. We take θ0 = 0 since there is no loss of generality in doing so. Let
F (z) := e−εzγf(z), where β < γ < α. Then∣∣∣F (

reiθ
)∣∣∣ = e−rγ cos γθ |f(z)| .

Hence, ∣∣∣F (
re±iπ/2α

)∣∣∣ ≤ e−εrγ cos (γπ/2α) M ≤ M .

Also on the arc |θ| < π/2α of the circle |z| = rn,

|F (z)| ≤ e−rγn cos γθ |f(z)| = O
(
er

β
n−εrγn cos (γπ/2α)

)
,

and the right-hand side tends to 0 as n → ∞. Hence, if n is sufficiently large,
|F (z)| ≤ M on the arc z = rn eiθ ,−π/2α ≤ θ ≤ π/2α. By the maximum modulus
principle, |f(z)| ≤ M throughout

S0,n :=
{
z = reiθ : 0 ≤ r ≤ rn , − π

2α
≤ θ ≤ π

2α

}
.

Letting n tend to ∞, we conclude that |F (z)| ≤ M in the closed angle

S0 :=
{
z = reiθ : 0 ≤ r < ∞ , − π

2α
≤ θ ≤ π

2α

}
.

Finally, making ε tend to 0 the desired result follows. �

7.2. A Theorem of Carleman

In order to make the presentation self-contained we include a proof of the fact
that any continuous function can be approximated arbitrarily closely on (−∞ , ∞)
by entire functions, though not necessarily by those of exponential type.

Theorem 7.1. Let g be continuous on the whole real axis. Then, for any ε > 0,
there exists an entire function f such that

sup
−∞<x<∞

|g(x)− f(x)| < ε .

This result is due to Carleman [12] and so is the proof we present. We do add
certain details he had chosen to omit but without which the reader might loose a
good deal of time scratching his/her head.

The proof makes use of the fact that for any prescribed set of points x1, . . . , xn

in [a , b] and given ε > 0, we can find a polynomial p such that |g(x) − p(x)| < ε
for a ≤ x ≤ b and p(xν) = g(xν) for ν = 1, . . . , n. In fact, the following result (see
[13, pp. 121–122]) holds.

Proposition 7.2. Let S be a compact subset of the complex plane C. Further-
more, let z1, . . . , zn be n distinct points in C. Suppose that g is defined on S and is
uniformly approximable by polynomials on that set. Then, for any given ε > 0, there
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exists a polynomial p such that |g(z)− p(z)| < ε for any z ∈ S, and p(zν) = g(zν)
for ν = 1, . . . , n.

Proof. Let ω(z) := (z − z1) · · · (z − zn) and

ℓν(z) :=
ω(z)

(z − zν)ω′(zν)
(ν = 1, . . . , n) .

Furthermore, let

m := max
z∈S

n∑
ν=1

|ℓν(z)| .

According to the hypothesis, we can find a polynomial pε such that

|g(z)− pε(z)| <
1

1 +m
ε (z ∈ S) .

Then, q(z) :=
∑n

ν=1

(
g(zν)−pε(zν)

)
ℓν(z) is the unique polynomial of degree at most

n− 1 such that q(zν) = g(zν)− pε(zν) for ν = 1, . . . , n, and

|q(z)| ≤ max
1≤ν≤n

|g(zν)− pε(zν)| max
z∈S

n∑
ν=1

|ℓν(z)| <
m

1 +m
ε (z ∈ S) .

Hence, setting p := pε + q we see that

|g(z)− p(z)| ≤ |g(z)− pε(z)|+ |q(z)| < 1

1 +m
ε+

m

1 +m
ε = ε (z ∈ S) ,

and p(zν) = g(zν) for ν = 1, . . . , n. �

The proof of Theorem 7.1 also uses the following result due to C. Runge, for
whose proof we refer the reader to [13, pp. 273 - 277].

Proposition 7.3. Let F be holomorphic in a bounded simply-connected domain
D . Then, there exists a sequence of polynomials p1, p2, . . . , which converges to F
in D, uniformly on compact sets. �

The basic idea of the proof of Theorem 7.1 is contained in the following lemma.

Lemma 7.1. For any two positive numbers R and d let g1 and g2 be continuous
on [R , R + d] and [−R − d , −R], respectively. In addition, let F be an entire
function such that F (R) = g1(R) and F (−R) = g2(−R). Then, to any ε > 0 there
corresponds a polynomial Gε such that

|F (z)−Gε(z)| ≤ ε (|z| ≤ R) ,

|g1(x)−Gε(x)| ≤ ε (R ≤ x ≤ R+ d) ,

|g2(x)−Gε(x)| ≤ ε (−R− d ≤ x ≤ −R) ,

and
Gε(R) = g1(R) , Gε(R+ d) = g1(R+ d) ,

Gε(−R) = g2(−R) , Gε(−R− d) = g2(−R− d) .

Proof. In view of Proposition 7.2, we can find a polynomial p1 such that

p1(R) = g1(R) , p1(R+ d) = g1(R+ d) (7.1)
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and
max

R≤x≤R+d
|p1(x)− g1(x)| <

ε

3
. (7.2)

We can also find a polynomial p2 such that

p2(−R) = g2(−R) , p2(−R− d) = g2(−R− d) (7.3)

and
max

−R−d≤x≤−R
|p2(x)− g2(x)| <

ε

3
. (7.4)

Denote by Uδ the union of the open sets {z : |z| < R+ δ},

O1 :=
∪

R≤t≤R+d

{z : |z − t| < δ} and O2 :=
∪

−R−d≤t≤−R

{z : |z − t| < δ} .

The boundary of Uδ is a Jordan curve which we denote by Γδ. We specify twelve
different points A1, A2, . . . , A12, lying on Γδ, as indicated in the figure.

For sake of clarity, we wish to specify the complex numbers these points corre-
spond to. The point A1 corresponds to the complex number ζ1 = (R+δ)e−iθ, where
θ ∈ (0 , π/2) and sin θ = δ/(R+ δ); A5 corresponds to ζ1; A7 to −ζ1 and A11

to −ζ1. The point A2 corresponds to ζ2 = R + d − iδ; A4 corresponds to ζ2; A8

to −ζ2 and a10 to −ζ2. The point A3 corresponds to ζ3 = R + d + δ and A9 to
−ζ3. The point A6 corresponds to ζ4 = i (R + δ) and A12 to ζ4. We shall find

it convenient to denote by γ1 the arc comprised of the directed line segment
−→

A1A2

followed by the semi-circular arc joining A2 to A4 via A3 and continued to A5

by the directed line segment
−→

A4A5 We use γ2 to denote the circular arc of radius
R+ δ having A5 as initial point, A7 as its final point and A6 as mid-point. By γ3

we mean the arc consisting of the directed line segment
−→

A7A8 followed first by the

semi-circular arc joining A8 to A10 via A9 and then by the line segment
−→

A10A11.
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Finally, we use γ4 to denote the circular arc of radius R + δ with A11 as initial
point, A1 as final point and A12 as mid-point.

Now, let

I1(z) :=
1

2πi

∫
γ1

p1(ζ)

ζ − z
dζ (z ̸∈ γ1) , I2(z) :=

1

2πi

∫
γ2

F (ζ)

ζ − z
dζ (z ̸∈ γ2) ,

I3(z) :=
1

2πi

∫
γ3

p2(ζ)

ζ − z
dζ (z ̸∈ γ3) , I4(z) :=

1

2πi

∫
γ4

F (ζ)

ζ − z
dζ (z ̸∈ γ4) ,

and Iδ(z) :=
∑4

j=1 Ij(z). For any j ∈ {1, 2, 3, 4}, the function Ij is holomorphic in
C\γj , and so Iδ is holomorphic inside the Jordan curve Γδ := γ1 + γ2 + γ3 + γ4.

Using Cauchy’s contour integration theorem we see that if γ′
1 is the circular arc

of radius R+ δ going from A1 to A5 via the point R+ δ, then

I1(z)=
1

2πi

∫
γ′
1

p1(ζ)

ζ−z
dζ=

1

2πi

∫
γ′
1

p1(ζ)−F (ζ)

ζ−z
dζ+

1

2πi

∫
γ′
1

F (ζ)

ζ−z
dζ (|z| < R+ δ) .

Similarly, if γ′
3 is the circular arc of radius R + δ going from A7 to A11 via the

point −R− δ, then

I3(z)=
1

2πi

∫
γ′
3

p2(ζ)

ζ−z
dζ=

1

2πi

∫
γ′
3

p2(ζ)−F (ζ)

ζ−z
dζ+

1

2πi

∫
γ′
3

F (ζ)

ζ−z
dζ (|z| < R+ δ) .

Thus, for any z in the open disk of radius R+ δ centred at the origin, we have

Iδ(z)=
1

2πi

∫
γ′
1+γ2+γ′

3+γ4

F (ζ)

ζ−z
dζ+

1

2πi

∫
γ′
1

p1(ζ)−F (ζ)

ζ−z
dζ+

1

2πi

∫
γ′
3

p2(ζ)−F (ζ)

ζ−z
dζ ,

that is,

Iδ(z)− F (z)=
1

2πi

∫
γ′
1

p1(ζ)−F (ζ)

ζ−z
dζ+

1

2πi

∫
γ′
3

p2(ζ)−F (ζ)

ζ−z
dζ (|z| < R+ δ) .

The function p1 − F is holomorphic in |ζ| < R + δ and vanishes at R. Hence,
p1(ζ)− F (ζ) = O(ζ −R) for ζ ∈ γ′

1 as δ → 0. Since the length of γ′
1 tends to zero

as δ → 0, we conclude that as δ → 0,

1

2πi

∫
γ′
1

p1(ζ)−F (ζ)

ζ−z
dζ → 0



128 Approximation by Entire Functions

uniformly for |z| ≤ R. The same can be said about the integral

1

2πi

∫
γ′
3

p2(ζ)−F (ζ)

ζ−z
dζ .

Thus, max|z|≤R |Iδ(z)− F (z)| → 0 as δ → 0.
We shall now show that

max
x∈[R ,R+d]∪[−R−d ,−R]

|Iδ(x)− p1(x)| → 0 as δ → 0 .

Let γ′′
1 denote that part of the circle centred at R which originates at A5, terminates

at A1 and does not intersect with the line segment [R , R+ d]. Furthermore, let γ′′
3

denote that part of the circle, centred at the point −R, which originates at A11,
terminates at A7 and does not intersect with the line segment [−R− d , −R]. Then,
for x ∈ [R , R+ d], we have

I2(x) + I4(x) =
1

2πi

∫
γ′′
1

F (ζ)

ζ−x
dζ+

1

2πi

∫
γ′′
3

F (ζ)

ζ−x
dζ

=
1

2πi

∫
γ′′
1

F (ζ)−p1(ζ)

ζ−x
dζ+

1

2πi

∫
γ′′
1

p1(ζ)

ζ−x
dζ

+
1

2πi

∫
γ′′
3

F (ζ)−p2(ζ)

ζ−x
dζ+

1

2πi

∫
γ′′
3

p2(ζ)

ζ−x
dζ ,

and so

Iδ(x) =
1

2πi

∫
γ′′
1

F (ζ)−p1(ζ)

ζ−x
dζ+

1

2πi

∫
γ′′
3

F (ζ)−p2(ζ)

ζ−x
dζ

+
1

2πi

∫
γ1+γ′′

1

p1(ζ)

ζ−x
dζ+

1

2πi

∫
γ3+γ′′

3

p2(ζ)

ζ−x
dζ .

By Cauchy’s integral formula, the value of the third integral is p1(x), and that of the
fourth is 0 by Cauchy’s contour integration theorem. Hence,

Iδ(x)−p1(x) =
1

2πi

∫
γ′′
1

F (ζ)−p1(ζ)

ζ−x
dζ+

1

2πi

∫
γ′′
3

F (ζ)−p2(ζ)

ζ−x
dζ (R ≤ x ≤ R+d) .

Since

∣∣∣∣F (ζ)− p1(ζ)

ζ − x

∣∣∣∣ is uniformly bounded on γ′′
1 for all x ∈ [R , R + d], and the

length of the arc γ′′
1 tends to 0 as δ tends to zero, we see that

max
R≤x≤R+d

∣∣∣∣∣ 1

2πi

∫
γ′′
1

F (ζ)−p1(ζ)

ζ−x
dζ

∣∣∣∣∣ → 0 as δ → 0 .

For a similar reason

max
R≤x≤R+d

∣∣∣∣∣ 1

2πi

∫
γ′′
3

F (ζ)−p2(ζ)

ζ−x
dζ

∣∣∣∣∣ → 0 as δ → 0 .

Hence, maxR≤x≤R+d |Iδ(x)− p1(x)| → 0 as δ → 0.
We omit the proof of the fact that max−R≤x≤−R−d |Iδ(x)− p1(x)| → 0 as δ → 0.
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Thus, max|z|≤R |F (z)− Iδ(z)| together with

max
R≤x≤R+d

|p1(x)− Iδ(x)| and max
−R−d≤x≤−R

|p2(x)− Iδ(x)|

can be made as small as we like by taking δ sufficiently small. Now, note that

q1(z) :=
(z−R−d)(z+R)(z+R+d)

−d(2R)(2R+ d)
(7.5)

is the trinomial which takes the value 1 at R and vanishes at R+ d, −R, −R− d;

q2(z) :=
(z−R)(z+R)(z+R+d)

d(2R+ d))(2R+ 2d)
(7.6)

is the trinomial which takes the value 1 at R+ d and vanishes at R, −R, −R− d;

q3(z) :=
(z−R)(z−R−d)(z+R+d)

−2R(−2R− d)(d)
(7.7)

is the trinomial which takes the value 1 at −R and vanishes at R, R + d, −R − d;
and

q4(z) :=
(z+R)(z−R)(z−R−d)

−d(−2R− d))(−2R− 2d)
(7.8)

is the trinomial which takes the value 1 at −R − d and vanishes at R, R + d, −R.
Hence,

Qδ(z) := (p1(R)− Iδ(R)) q1(z) + (p1(R+ d)− Iδ(R+ d)) q2(z)

+ (p2(−R)− Iδ(−R)) q3(z) + (p2(−R− d)− Iδ(−R− d)) q4(z)

is the polynomial of degree 3, which agrees with p1 −Iδ at the points R , R+ δ and
with p2 − Iδ at the points −R , −R − d. It is clear that max|z|≤R |Qδ(z)| together
with maxR≤x≤R+d |Qδ(x)| and max−R−d≤x≤−R |Qδ(x)| can be made as small as we
like by taking δ sufficiently small. Thus, if Iδ := Iδ+Qδ, then there exists a positive
number ∆ such that

max
|z|≤R

|F (z)− Iδ(z)| , max
R≤x≤R+d

|p1(x)− Iδ(x)| and max
−R−d≤x≤−R

|p2(x)− Iδ(x)|

are all less than ε/3 for 0 < δ < 4∆. In addition,

Iδ(x) = p1(x) for x ∈ {R , R+ d} and Iδ(x) = p2(x) for x ∈ {−R , −R− d} .

Hence, taking (7.5) and (7.7) into account, we see that

max
|z|≤R

|F (z)− Iδ(z)| <
ε

3
,

max
R≤x≤R+d

|p1(x)− Iδ(x)| <
2ε

3
and max

−R−d≤x≤−R
|p2(x)− Iδ(x)| <

2ε

3

for 0 < δ < 4∆. Besides, in view of (7.1) and (7.3),

Iδ(x) = g1(x) for x ∈ {R , R+ d} and Iδ(x) = g2(x) for x ∈ {−R , −R− d} .
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In order to complete the proof of the lemma, it is now enough to prove the
existence of a polynomial Gε such that

|I3∆(z)−Gε(z)| <
ε

3
(z ∈ U∆) (7.9)

and
Gε(x) = I3∆(x) (x ∈ {−R, −R− d, R, R+ d}) . (7.10)

The existence of such a polynomial Gε is clear from Propositions 7.2 and 7.3.
However, in the case at hand, the simply-connected domain to which Runge’s theorem
is applied happens to be “starlike” with respect to the origin. This helps us to simplify
the argument, a little. So, for sake of completeness and as a service to the reader we
are going to present the details which remain difficult to grasp. We shall present it
in two steps.

Step I. For the trinomials q1, q2, q3 and q4 introduced in (7.5), (7.6), (7.7) and
(7.8), respectively, let

mj := sup
z∈Γ∆

|qj(z)| (j = 1, 2, 3, 4) and M :=

4∑
j=1

mj . (7.11)

For sake of simplicity, we shall write I for I3∆. The function I is holomorphic inside
Γ3∆ and so, in particular,

I(z) =
1

2πi

∫
Γ3∆

I(w)

w − z
dw (z ∈ U∆) . (7.12)

Let ℓ(Γ3∆) denote the length of Γ3∆. For any z in U∆, and w′, w′′ on Γ3∆,
we clearly have

∣∣∣∣ I(w′′)

w′′ − z
− I(w′)

w′ − z

∣∣∣∣ =

∣∣∣∣I(w′′)− I(w′)

w′′ − z
+ I(w′)

(
1

w′′ − z
− 1

w′ − z

)∣∣∣∣
≤ 1

∆

∣∣I(w′′)− I(w′)
∣∣+ |I(w′)| 1

∆2
|w′′ − w′| .

Hence, there exists a positive number δ′ such that∣∣∣∣ I(w′′)

w′′ − z
− I(w′)

w′ − z

∣∣∣∣ < π

3 ℓ(Γ3∆) (1 +M)
ε

if |w′′ − w′| < δ′. Determine sufficiently many points w1, w2, . . . , wN = w1 on Γ3∆

so that |w − wν | < δ′ for w in the arc wνwν+1, where ν = 1, . . . , N . Then clearly,∣∣∣∣∣
∫
Γ3∆

I(w)

w−z
dw −

N∑
ν=1

I(wν)

wν−z
(wν+1−wν)

∣∣∣∣∣ =

∣∣∣∣∣
N∑

ν=1

∫ wν+1

wν

(
I(w)

w−z
− I(wν)

wν−z

)
dw

∣∣∣∣∣
≤

N∑
ν=1

∫ wν+1

wν

∣∣∣∣ I(w)

w−z
− I(wν)

wν−z

∣∣∣∣ |dw|

<
π

3 ℓ(Γ3∆) (1 +M)
ε

N∑
ν=1

∫ wν+1

wν

|dw|

=
π

3 (1 +M)
ε .
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Hence, in view of (7.12), we obtain∣∣∣∣∣I(z)−
N∑

ν=1

I(wν) (wν+1 − wν)

2πi

1

wν − z

∣∣∣∣∣ < 1

6 (1 +M)
ε (z ∈ U∆) . (7.13)

Step II. Let m := ⌊ d

∆
⌋+ 1. Furthermore, for ν = 1, . . . , N , let

wνµ := wν + µ∆
wν

|wν |
(µ = 0, . . . ,m) .

Note that wν0 = wν , and that

1

wν − z
=

1

wν1 − z
− wν0 − wν1

(wν1 − z)2
+

(wν0 − wν1)
2

(wν1 − z)3
− · · · ,

where the series converges uniformly for all z inside and on Γ∆ since

∣∣∣∣wν0 − wν1

wν1 − z

∣∣∣∣ ≤ 1

2
.

We can therefore find a rational function Rν1(z) :=
∑

0≤κ≤kν1

αν1,κ

(wν1 − z)κ
such that

∣∣∣∣I(wν) (wν2 − w1)

2πi

1

wν − z
−Rν1(z)

∣∣∣∣ < 1

6 (1 +M)Nm
ε (z ∈ Γ∆ ∪ U∆) .

Working with
1

(wν1 − z)κ
for any given κ, we can similarly find a rational function

Rν2(z) :=
∑

0≤κ≤kν2

αν2,κ

(wν2 − z)κ
such that

|Rν1(z)−Rν2(z)| <
1

6 (1 +M)Nm
ε (z ∈ Γ∆ ∪ U∆) .

Thus,∣∣∣∣I(wν) (wν2 − w1)

2πi

1

wν − z
−Rν2(z)

∣∣∣∣ < 2
1

6 (1 +M)Nm
ε (z ∈ Γ∆ ∪ U∆) .

This procedure can be continued leading us to a rational function

Rνm(z) :=
∑

0≤κ≤kνm

ανm,κ

(wνm − z)κ

such that∣∣∣∣I(wν) (wν2 − w1)

2πi

1

wν − z
−Rνm(z)

∣∣∣∣ < 1

6 (1 +M)N
ε (z ∈ Γ∆ ∪ U∆) .

Now, note that |wνm| ≥ R + d + 2∆, and so Rνm is holomorphic in the disc
|z| < R+ d+ 2δ. There exists therefore a polynomial ℘ν such that

|Rνm(z)− ℘ν(z)| <
1

6 (1 +M)N
ε (|z| < R+ d+ 2δ) .
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Thus,∣∣∣∣I(wν) (wν2 − w1)

2πi

1

wν − z
− ℘ν(z)

∣∣∣∣ < 1

3 (1 +M)N
ε (z ∈ Γ∆ ∪ U∆) ,

and from (7.16) we see that ℘ :=
∑N

ν=1 ℘ν is a polynomial such that

|I(z)− ℘(z)| < 1

3 (1 +M)
ε (z ∈ U∆) . (7.14)

If q1, q2, q3 and q4 are as in (7.5), (7.6), (7.7), and (7.8), respectively, then the
trinomial

Q(z) := (I(R)− ℘(R)) q1(z) + (I(R+ d)− ℘(R+ d)) q2(z)

+ (I(−R)− ℘(−R)) q3(z) + (I(−R− d)− ℘(−R− d)) q4(z)

takes the same values as the function I−℘ in the points R, R+ d, −R and −R− d,
and in view of (7.11) and (7.14),

|Q(z)| < M

3 (1 +M)
ε (z ∈ U∆) . (7.15)

Hence, Gε := ℘+Q has the properties required in (7.9) and (7.10). �
Proof of Theorem 7.1. Let α1, α2, . . . be an infinite sequence of positive numbers

with
∑∞

n=1 αn < ε. Proposition 7.2 allows us to choose a polynomial P1 such that
P1(±1) = g(±1) and |g(x) − P1(x)| < α1 for −1 ≤ x ≤ 1. Using the preceding
lemma we may inductively find a sequence of polynomials P2, P3, . . . satisfying the
conditions

max
|z|≤n−1

|Pn(z)− Pn−1(z)| < αn , (7.16)

|Pn(x)− g(x)| < αn

(
x ∈ [−n , −n+ 1] ∪ [n− 1 , n]

)
, (7.17)

and
Pn

(
±(n− 1)

)
= g

(
±(n− 1)

)
, Pn(±n) = g(±n) .

From (7.16) it follows that for any given R and any ε′ > 0, there exists a positive
integer N such that∣∣∣∣∣

N+k∑
ν=N

(
Pν+1(z)− Pν(z)

)∣∣∣∣∣ < ε′ (k = 0, 1, 2, . . . ) .

Hence, the series P1(z) +
∑∞

ν=1

(
Pν+1(z)− Pν(z)

)
is uniformly convergent on every

compact subset of C, and so defines an entire function f . It may be noted that

f(z) = Pm(z) +

∞∑
ν=m

(
Pν+1(z)− Pν(z)

)
(m = 1, 2, . . . ) . (7.18)

In view of (7.16) and (7.17), we have

|g(x)− f(x)| ≤ |f(x)− Pm(x)|+
∞∑

ν=m

∣∣(Pν+1(z)− Pν(z)
)∣∣

< αm + αm+1 + · · · < ε
(
x ∈ [m− 1 , m] ∪ [−m, −m+ 1]

)
.

Hence, (7.18) allows us to conclude that |g(x)− f(x)| < ε for all real values of x. �
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[12] T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astr. Fys. 20 B
(1927), 5 pages.

[13] P. J. Davis, “Interpolation and Approxmation”, Blaisdell Publishing Company,
New York, 1963.

[14] D.P. Dryanov, On the convergence and saturation problem of a class of discrete
linear operators of entire exponential type in Lp(−∞,∞) spaces, in “Construc-
tive Theory of Functions’84”, pp. 312–318, Sofia, 1984.

[15] D.P. Dryanov, Q. I. Rahman, and G. Schmeisser, Converse Theorems in
the Theory of Approximate Integration, Constr. Approx. 6 (1990), 321–334.
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[27] G. Grünwald, Über Divergenzerscheinungen der Lagrangeschen Interpolation-
spolynome stetiger Funktionen, Ann. of Math. 37 (1936), 908–918.

[28] D. Jackson, A formula for trigonometric interpolation, Rend. Circ. Mat.
Palermo 37 (1914), 371–375.

[29] R. Kress, On the general Hermite cardinal interpolation, Math. Comp. 26
(1972), 925–933.

[30] Liu Yongping, On the trigonometric interpolation and the entire interpolation,
Approx. Theory Appl. 6 (1990), 85–106.

[31] J. Marcinkiewicz, Sur l’interpolation (I), Studia Math. 6 (1936), 1–17.

[32] J. Marcinkiewicz, Sur la divergence des polynômes d’interpolation, Acta Lit-
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Montréal H3C 3J7
CANADA

M.A. Qazi

Department of Mathematics
Tuskegee University
Tuskegee
Alabama 36088
U. S.A.

Q. I. Rahman

Département de Mathématiques et de Statistique
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