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Greedy Type Bases in Banach Spaces

P. Wojtaszczyk ∗

The aim of this survey is to present recent results related to m-term
approximation with respect to biorthogonal systems in Banach spaces.
Special attention is focused on greedy approximation. The results of
many authors over the last few years have demonstrated that this is
the area where there is a fruitful interaction between abstract, Banach
space approach and concrete questions of approximation theory. We will
work in the framework of Banach spaces, but extensions to quasi-Banach
spaces are possible, see e.g. [21].

1. General Framework

Let X be a Banach space. We will consider only Banach spaces over the real
scalars R. All our results remain valid for complex scalars but some constants
may be different. For a general introduction to Banach spaces the reader may
consult e.g. [24]. A countable system of vectors Φ = (xn, x

∗
n)n∈A ⊂ X ×X∗ is

called a biorthogonal system if for n,m ∈ A we have

x∗n(xm) =

{
1, if n = m

0, if n 6= m.
(1.1)

Always in this paper we will assume that

0 < inf
n∈A
‖xn‖ ≤ sup

n∈A
‖xn‖ <∞, (1.2)

0 < inf
n∈A
‖x∗n‖ ≤ sup

n∈A
‖x∗n‖ <∞, (1.3)

span {xn}n∈A = X. (1.4)

A biorthogonal system satisfying (1.2)–(1.4) will be called natural. We will
usually assume that ‖xn‖ = 1 for all n ∈ A. If (1.4) holds, then the functionals
(x∗n)n∈A are uniquely determined by the set {xn}n∈A, so sometimes we will
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abuse the language and speak about (xn)n∈A being a biorthogonal system. If
the above assumptions (1.1)–(1.4) are satisfied, then for each x ∈ X we can
assign a formal series ∑

n∈A
x∗n(x)xn. (1.5)

We do not assume anything about the convergence of this series, but we should
note that element x ∈ X is determined by the values

(
x∗n(x)

)
n∈A (i.e., by the

above series) and that x∗n(x) → 0 for every x ∈ X. For a subset B ⊂ A we
denote PB(x) =

∑
j∈B x

∗
j (x)xj whenever this makes sense. Clearly it is well

defined for finite B.
For each m = 0, 1, 2, . . . we define Σm as

Σm =
{
y =

∑
j∈B

ajxj : B ⊂ A, |B| = m, aj ’s are scalars
}
,

so Σm is the set of all linear combinations of length m of elements (xn)n∈A. For
x ∈ X we define the best m-term approximation (with respect to the system
Φ) of x as

σm{Φ}(x) = σm(x) = inf {‖x− y‖ : y ∈ Σm}

for m = 0, 1, 2, . . . . If the system Φ is clear from the context we will suppress
it from the above notation.

It follows from (1.4) that for each x ∈ X we have limm→∞ σm(x) = 0.
Generally speaking our task is to provide an “algorithm” which for each x

and m = 0, 1, 2, . . . in terms of series (1.5) gives an element ym ∈ Σm such that
‖x− ym‖ ≤ Cσm(x), where C is an absolute constant. The most obvious and
in some sense natural attempt to define such an “algorithm” is to put

Gm{Φ}(x) = Gm(x) =
∑
j∈B

x∗j (x)xj

where the set B ⊂ A is chosen in such a way that |B| = m and |x∗j (x)| ≥ |x∗k(x)|
whenever j ∈ B and k /∈ B.

Let us make some comments about the operators Gm(x).

1. It may happen that for some x and m the element Gm(x) (i.e., the set
B) is not uniquely defined by the above conditions. In such case we take
any set B.

2. The operator Gm is not linear (even if appropriate sets are uniquely de-
fined).

3. The operator Gm is discontinuous. To see it let us fix two subsetsB,C ⊂ A
such that B ∩ C = ∅ and |B| = |C| = m. We define two sequences of



138 Greedy Bases

vectors

zn =
n+ 1

n

∑
j∈B

xj +
∑
k∈C

xk,

yn =
∑
j∈B

xj +
n+ 1

n

∑
k∈C

xk.

Clearly both zn and yn converge to
∑
j∈B∪C xj , but

Gm(xn) =
n+ 1

n

∑
j∈B

xj →
∑
j∈B

xj

and

Gm(yn) =
n+ 1

n

∑
k∈C

xk →
∑
k∈C

xk.

Modifying the above example one can show that the operator Gm is con-
tinuous at the point x ∈ X if and only if the set B used in the definition
of Gm(x) is uniquely defined.

Now let us introduce few definitions which are fundamental for our consid-
erations.

Definition 1. A natural biorthogonal system Φ is called a greedy basis if
there exists a constant C such that for all x ∈ X and m = 0, 1, 2, . . . we have

‖x− Gm{Φ}(x)‖ ≤ Cσm{Φ}(x).

The smallest such constant C will be called the greedy constant of Φ.

Definition 2. A natural biorthogonal system Φ is called a quasi-greedy
basis if for every x ∈ X the norm limit limm→∞ Gm{Φ}(x) exists (and equals
x).

Clearly every greedy basis is quasi-greedy. Those concepts were formally
defined in [14], but they were implicit in earlier work of Temlyakov [17]–[19].

Now we will provide characterizations of the above concepts. To state them
we will need more definitions. Let us start with the following concept, which
is well known in Banach space theory, cf. [23], [24]:

Definition 3. A biorthogonal system Φ = (xn, x
∗
n)n∈A is unconditional if

there exists a constant K such that for all x ∈ X and finite sets B ⊂ A we
have ‖PB(x)‖ ≤ K‖x‖.

The smallest such constant K will be called unconditional constant of the
system Φ. It is well known that this definition is equivalent to requiring that
‖PB‖ ≤ K for all (not necessarily finite) B ⊂ A. One easily checks that for an
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unconditional system {xn, x∗n}n∈A and each x ∈ X the series
∑
n∈A x

∗
n(x)xn

converges unconditionally (in particular in any order) to x. This implies that
each unconditional system is quasi-greedy. Quite often in the sequel we will
assume that the unconditional system has unconditional constant equal to 1.
This is not an important restriction since given an unconditional system Φ in
X we can introduce a new norm

‖|x‖| = sup
|λn|≤1

‖
∑
n∈A

λnx
∗
n(x)xn‖.

It is clear by a standart extreme point argument that this is an equivalent norm
on X, more precisely ‖x‖ ≤ ‖|x‖| ≤ 2K‖x‖ for x ∈ X and Φ has unconditional
constant 1 in (X‖| · ‖|).

Remark 1. There is certain terminological confusion in this area. Gener-
ally the term greedy or quasi-greedy basis is used. However in Banach space
theory the term basis usually stands for Schauder basis, i.e., a biorthogonal
system satisfying (1.4) such that the set A equals N and for each x ∈ X the
series (1.5) converges to x. Thus, being a basis depends on the order while our
Definitions 1 and 2 do not. Actually the above remarks show that uncondi-
tional system is an unconditional basis, so (see Theorem 1) a greedy system
is automatically a basis. This explains the terminology established in Defini-
tion 1. For quasi-greedy systems, the term quasi-greedy basis will indicate that
the system is quasi greedy and a basis in some (preferably natural) order.

Definition 4 ([14]). A biorthogonal system Φ is called democratic if there
exists a constant D such that for any two finite subsets P,Q ⊂ A with |P | = |Q|
we have

‖
∑
n∈P

xn‖ ≤ D ‖
∑
n∈Q

xn‖.

The smallest such constant D will be called a democratic constant of Φ.
Clearly, it follows from Definition 4 that the norm ‖

∑
j∈B xj‖ is essentially a

function of |B|, not of the set B itself.
All the above concepts are, up to a certain extent, independent of the

normalization of the system. Namely, we have:

If (λn)n∈A is a sequence of numbers such that

0 < inf
n∈A
|λn| ≤ sup

n∈A
|λn| <∞

and Φ = (xn, x
∗
n)n∈A is a system which satisfies any of the Definitions 1–4,

then the system (λnxn, λ
−1
n x∗n)n∈A satisfies the same definition.

For unconditional and democratic this is routine, for quasi-greedy it was
proved in [21, Proposition 3] while for greedy it follows from Theorem 1 below.

Using the above concepts we can formulate the following important
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Theorem 1 ([14]). If the natural biorthogonal system Φ is greedy with the
greedy constant ≤ C, then it is unconditional with unconditional constant ≤
C and democratic with the democratic constant ≤ C2. Conversely, if it is
unconditional with constant K and democratic with constant D, then it is greedy
with greedy constant ≤ K +K3D.

Proof. Let us assume that Φ = (xn, x
∗
n)n∈A has greedy constant C. Let

us fix a finite set B ⊂ A of cardinality m, x ∈ X and a number N >
supn∈A |x∗n(x)|. We put y = x − PBx + N

∑
j∈B xj . Clearly σm(y) ≤ ‖x‖

and Gm(y) = N
∑
j∈B xj . Thus

‖x− PBx‖ = ‖y − Gm(y)‖ ≤ Cσm(y) ≤ C‖x‖. (1.6)

Now if S ⊂ A is an arbitrary set we take a sequence of finite sets B1 ⊂ B2 ⊂ . . .
such that

⋃
Bj = S. For each x =

∑
anxn, where the sum is finite, from (1.6)

we have

‖x− PSx‖ = lim
n→∞

‖x− PBn
x‖ ≤ C‖x‖.

Since such finite sums are dense in X we get ‖x−PSx‖ ≤ C‖x‖ for all S ⊂ A.
To show that Φ is democratic let us fix two subsets B,C ⊂ A with |B| =

|C| = m. Choose a third subset D ⊂ A such that |D| = m and B ∩D = ∅ =
C ∩D. For

x = (1 + ε)
∑
n∈B

xn +
∑
n∈D

xn

we have
σm(x) ≤ (1 + ε)‖

∑
n∈B

xn‖

and
‖
∑
n∈D

xn‖ = ‖x− Gm(x)‖ ≤ Cσm(x) ≤ C(1 + ε)‖
∑
n∈B

xn‖.

Analogously we get

‖
∑
n∈C

xn‖ ≤ C(1 + ε)‖
∑
n∈D

xn‖

and the conclusion follows.
Now we will prove the converse. Fix x ∈ X and m = 1, 2, . . . Choose

pm =
∑
n∈B anxn with |B| = m and ‖x− pm‖ ≤ σm(x) + ε. Clearly

Gm(x) =
∑
n∈C

x∗n(x)xn = PCx

for appropriate C ⊂ A with |C| = m. We write

‖x− Gm(x)‖ = ‖x− PCx+ PBx− PBx‖ = ‖x− PBx+ PB\Cx− PC\Bx‖.
(1.7)
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Using unconditionality we get

‖x− PBx− PC\Bx‖ = ‖x− PB∪Cx‖ = ‖PA\(B∪C)(x− pm)‖
≤ K(σm(x) + ε), (1.8)

and analogously

‖PC\Bx‖ ≤ K(σm(x) + ε).

From the definition of Gm we infer that

α = min
j∈C\B

|x∗j (x)| ≥ max
j∈B\C

|x∗j (x)| = β,

so from unconditionality we get

K‖PC\Bx‖ ≥ α‖
∑

j∈C\B

xj‖ (1.9)

and

‖PB\Cx‖ ≥ Kβ‖
∑

j∈B\C

xj‖. (1.10)

Since |B \ C| = |C \B| from (1.9) and (1.10) and democracy we get

‖PB\Cx‖ ≤ K2D‖PC\Bx‖. (1.11)

From (1.7), (1.8) and (1.11) we get (ε is arbitrary)

‖x− Gm(x)‖ ≤ (K +K3D)σm(x).

�

Remark 2. The above proof is taken from [14]. However the arguments
except the proof that greedy implies unconditional, were already in previous
papers [18] and [21].

If we disregard constants Theorem 1 says that a system is greedy if and only
if it is unconditional and democratic. The isometric situation is not so clear.
Naturally from Theorem 1 follows that a system with greedy constant 1 have
both unconditional and democratic constant equal to 1. However this is not
a characterization of system with greedy constant 1. Let E denotes R2 with
the norm whose unit ball is a regular octagon with vertices (±2−1/2,±2−1/2),
(±1, 0) and (0,±1) and let F denotes R2 with the usual euclidean norm. For
X = (E ⊕ F )2 the unit vectors have unconditional and democratic constants
equal to 1. The greedy constant of this basis is > 1. To see it consider vectors
x =

(
(1, .5), (1 + ε, .5)

)
. Since ‖(1, .5)‖E > ‖(1, .5)‖F we infer that for small

ε > 0 ∥∥∥((0, .5), (1 + ε, .5)
)∥∥∥
X
<
∥∥∥((1, .5), (0, .5)

)∥∥∥
X
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which gives

σ1(x) < ‖x− G1(x)‖X .

One can remark (and it is an easy two dimensional exercise) that if (xn)n∈A is
a system in a Hilbert space with greedy constant 1, then it is orthogonal and
‖xn‖ = ‖xm‖ for all n,m ∈ A. This suggest

Problem 1. Characterize system with greedy constant 1.

Theorem 2 ([21]). A natural biorthogonal system Φ is quasi-greedy if and
only if there exists a constant C such that for every x ∈ X and m = 1, 2, . . .
we have

‖Gm{Φ}(x)‖ ≤ C‖x‖.

The smallest constant C in the above theorem will be called quasi-greedy
constant of the system Φ. Theorem 2 is a version of the uniform boundedness
principle. The proof in [21] is by direct construction.

Problem 2. It would be nice to have a category type proof.

In order to discuss various properties of biorthogonal systems related to
“greediness” let us introduce the following quantities:

ϕ(m) = sup {‖
∑
n∈A

xn‖ : |A| ≤ m},

ψ(m) = inf {‖
∑
n∈A

xn‖ : |A| ≥ m},

em = sup
x∈X, x 6=0

‖x− Gm(x)‖
σm(x)

,

µm = sup
k≤m

sup {‖
∑
n∈B xn‖ : |B| = k}

inf {‖
∑
n∈B xn‖ : |B| = k}

.

2. Examples of Systems

In this report we are mainly interested in concrete spaces and concrete
systems. However we will also present results dealing with general (abstract)
systems in general Banach spaces.

The most natural scale of spaces is the scale of Lp spaces, 1 ≤ p ≤ ∞, but we
may also consider Hardy space H1, or the space VMO of function of vanishing
mean oscillation, or the space BV of functions of Bounded Variation. As for
the systems we will be mainly interested in wavelet type systems, especially
the Haar system or similar, and trigonometric or Walsh system. Let us recall
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the definition and notations connected with the Haar system. We start with
the function

h(t) =


1, if 0 ≤ t < 1/2

−1, if 1/2 ≤ t < 1

0, otherwise.

(2.1)

Clearly supph = [0, 1). For a pair (j, k) ∈ Z2 we define the function hj,k(t) =
h(2jt− k). The support of hj,k is the dyadic interval I = I(j, k) = [k2−j , (k +
1)2−j). Quite often we will index Haar functions by dyadic intervals I and write
hI instead of hj,k. The set of all dyadic subintervals of R will be denoted by D.
It is well known and easy to check that the system {hj,k}(j,k)∈Z2 = {hI}I∈D
is a complete orthogonal system in L2(R). When we consider the Haar system
in a specified function space X on R we will consider the normalized system
hI/‖hI‖X . In function spaces in Rd we will consider two Haar systems:

1. The tensored Haar system defined as follows: If J = I1 × · · · × Id where
I1, . . . , Id ∈ D, then we put hJ(t1, . . . , td) = hI1(t1) . . . hId(td). One easily
checks that the system {hJ}J∈Dd is a complete, orthogonal system in
L2(Rd). We will consider this system normalized in Lp with 1 ≤ p ≤ ∞
and we will denote it by hpd, i.e., hpd = {hpJ}J∈Dd where hpJ = ‖hJ‖−1

p hJ.

The feature of this system is that supports of the functions are dyadic
parallelograms with arbitrary sides.

2. The Haar system defined as follows: Let us denote by h1(t) the function
h(t) defined in (2.1). Let us denote h0(t) = 1[0,1]. For a fixed d = 1, 2, . . .
let E denotes the set of sequences ε = (ε1, . . . , εd) such that εj = 0 or 1

and
∑d
j=1 εj > 0. For ε ∈ E, j ∈ Z and k ∈ Zd we define a function on

Rd by the formula

hεj,k(t1, . . . , td) = 2jd/2
d∏
j=1

hεj (2jx− kj). (2.2)

It is easily checked that the system (hεj,k) where ε varies over E, j varies

over Z and k varies over Zd is a complete orthonormal system in L2(Rd).
The full set of indices of this system, i.e., E× Z× Zd will be denoted by
I(d). The Haar system normalized in Lp(Rd) with 1 ≤ p ≤ ∞ will be
denoted by Hpd, i.e., Hpd = {Hp

α}α∈I(d) where for α = (ε, j, k) ∈ I(d) we
have Hp

α = ‖hεj,k‖−1
p hεj,k.

The feature of this system is that supports of the functions are all dyadic
cubes. We can restrict the Haar system Hpd to the unit cube [0, 1]d. We
simply consider all Haar functions whose support is contained in [0, 1]d

plus the constant function. In this way we get a system in Lp[0, 1]d.
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Analogous procedures can be applied to general wavelet bases. Suppose that
ϕ0(t) is a scaling function of a multiresolution on R and ϕ1(t) is an associated
wavelet in L2(R). We assume that both ϕ0 and ϕ1 have sufficient decay to
ensure that ϕ0, ϕ1 ∈ L1(R)∩L∞(R). The function 1[0,1] is the simplest example
of a scaling function and the function h(t) is the simplest example of a wavelet.
Formula (2.2) with h replaced by ϕ defines a wavelet basis on Rd. We may also
define a tensored wavelet basis as defined in 1. above, but we will not discuss it
in this survey. The detailed information on wavelets can be found e.g. in [23]
and the detailed description of the above procedures is in Section 5.1.

3. Estimates for Unconditional Bases

In this section we will concentrate on estimates dealing with approximation
properties of unconditional bases. This restriction is justified by the fact that
very often unconditional bases provide right tools for approximation cf. e.g.
[10]. Since in each space with an unconditional basis we can introduce an
equivalent norm in which this basis will have unconditional constant equal to
1, we will always assume this in this section.

It follows from Theorem 1 that for an unconditional system the sequence
em is bounded if and only if the sequence µm is bounded. Actually, more is
true.

Theorem 3. If Φ is a natural biorthogonal system with unconditional con-
stant 1, then 1

2µm{Φ} ≤ em{Φ} ≤ 2µm{Φ}.

This result we quote from [21] but it was already well established for con-
crete systems in [18]. More elaborate results of this type are presented in [16].

Let us also state explicitly an easy but interesting fact which is established
in the first four lines of the proof of this theorem as presented in [21].

Proposition 1. Let Φ = (xn, x
∗
n)n∈A be a natural biorthogonal system with

unconditional constant 1. Then for each x ∈ X and each m = 1, 2, . . . there
exists a subset B ⊂ A of cardinality m such that

‖x−
∑
n∈B

x∗n(x)xn‖ = σm(x).

The question of existence of best m-term approximation for a given natural
system is an interesting one. It was discussed (even in a more general setting)
by Baishanski in [1]. A more detailed study in our context can be found in [25].

Theorem 4. Let Φ be a natural biorthogonal system with unconditional
constant 1. Suppose that s(m) is a function such that for some c > 0

ψ(s(m)) ≥ cϕ(m) for m = 1, 2, . . . (3.1)
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Then

‖x− Gm+s(m)(x)‖ ≤ Cσm(x)

for some constant C and m = 1, 2, . . .

Proof. Let us fix x ∈ X with ‖x‖ = 1 and m = 1, 2, . . . Using Proposition 1,
let us fix a subset B ⊂ A of cardinality m such that

σm(x) = ‖x− PB(x)‖,

and C ⊂ A a subset of cardinality s(m) + m such that Gs(m)+m(x) = PC(x).
Using unconditionality of the system we get

‖x− PB(x)‖ ≥ max
{
‖x− PB∪C(x)‖, ‖PC\B(x)‖

}
,

‖x− PC(x)‖ ≤ ‖x− PB∪C(x)‖+ ‖PB\C(x).

Let ξ = infj∈C |x∗j (x)|. Then from unconditionality we get

‖PC\B(x)‖ ≥ ‖ξ
∑

j∈C\B

xj‖ ≥ ξψ(s(m)). (3.2)

Since for j ∈ B \ C we have |x∗j (x)| ≤ ξ, we get

‖PB\C(x)‖ ≤ ξ‖
∑

j∈B\C

xj‖ ≤ ξϕ(m). (3.3)

From (3.2), (3.3) and (3.1) we get

‖PB\C(x)‖ ≤ C‖PC\B(x)‖

so

‖x− Gs(m)+m(x)‖ = ‖x− PC(x)‖ ≤ C
(
‖x− PB∪C(x)‖+ ‖PC\B(x)‖

)
≤ 2C‖x− PB(x)‖ ≤ 2Cσm(x).

�

Let Φ = (xn, x
∗
n)n∈A be a biorthogonal system. The system (x∗n, xn)n∈A

considered as a system in X∗ (we identify xn’s with elements of X∗∗) may not
satisfy (1.4). However, if we consider it as a system in span{x∗n}n∈A ⊂ X∗, then
it will satisfy all our assumptions, we will denote it by Φ∗. If Φ is unconditional
then so is Φ∗.

Theorem 5. Let Φ be a natural biorthogonal system with unconditional
constant 1. Then

µm{Φ∗} ≤ 2 logmµm{Φ}

for m = 2, 3, . . .
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Proof. Let us fix m, k ≤ m, and a set B ⊂ A of cardinality k. We have

‖
∑
j∈B

x∗j‖ ≥ k‖
∑
j∈B

xj‖−1 ≥ k

ϕ(k)
. (3.4)

On the other hand we can find x ∈ X with ‖x‖ = 1 such that

‖
∑
j∈B

x∗j‖ ≤ 2
∑
j∈B
|x∗j (x)| ≤ 2

k∑
j=1

ϕ(j)−1. (3.5)

Thus from (3.4) and (3.5), using the fact that ϕ(k)
k is decreasing, we get

µm{Φ∗} ≤ 2 sup
k≤m

1

k

k∑
j=1

ϕ(k)

ψ(j)
≤ 2 sup

k≤m

k∑
j=1

1

j

ϕ(j)

ψ(j)
(3.6)

≤ 2 logm sup
j≤m

ϕ(j)

ψ(j)
≤ 2 logmµm{Φ}.

�

Theorems 4 and 5 are formally new, but the arguments are easy modifica-
tions of arguments from [7]. Similar results are also stated without proof in
[15] and atributed to Kamont and Temlyakov.

Corollary 1. Suppose that Φ is a greedy basis and that ϕ(m) ∼ nα with
0 < α < 1. Then Φ∗ is also greedy.

Proof. From Theorem 1 we know that Φ is unconditional, so we can renorm
it to be 1-unconditional. Also, because Φ is greedy we have ϕ(m) ∼ ψ(m). We
repeat the proof of Theorem 5 but in (3.6) we explicitly calculate as follows:

µm{Φ∗} ≤ 2C sup
k≤m

1

k

k∑
j=1

kα

jα
≤ const.

so Φ∗ is greedy. �

This is a special case of Theorem 5.1 from [7].

Let us recall that it was proved in [11] that each unconditional basis in Lp,
1 < p <∞, has a subsequence equivalent to the unit vectors basis in `p, so for
each greedy basis Φ in Lp we have ϕ{Φ}(m) ∼ m1/p. Thus we get

Corollary 2. If Φ is a greedy basis in Lp, 1 < p <∞, then Φ∗ is a greedy
basis in Lq, 1/p+ 1/q = 1.
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Let us remark, although this does not belong to this Section, that for the
quasi-greedy basis in `1, constructed in [9], the dual basis is not unconditional
for constant coefficients, so is not quasi-greedy. On the other hand Corollary 4.5
and Theorem 5.4 from [7] show that the dual of a quasi-greedy basis in a Hilbert
space is also quasi-greedy. Otherwise not much is known about duality for
quasi-greedy bases.

Problem 3. Investigate the duality for quasi-greedy bases.

4. Examples of Quasi-greedy Systems

It is clear from our assumptions that each unconditional system is quasi-
greedy. This allows us to observe that for quasi-greedy system the greedy
approximation can be very inefficient. For the natural basis in `1 ⊕ c0, which
is clearly unconditional, we have em ∼ m.

For quasi-greedy bases we have the following proposition which shows that
they are rather close to unconditional systems. We say that they are uncondi-
tional for constant coefficients, as formulated in the following

Proposition 2 ([21]). If Φ has a quasi-greedy constant C, then for every
(finite) subset B ⊂ A and every sequence of signs ε = (εj)j∈B we have

1

2C
‖
∑
j∈B

xj‖ ≤ ‖
∑
j∈B

εjxj‖ ≤ 2C‖
∑
j∈B

xj‖. (4.1)

Proof. The estimate (4.1) easily follows from the estimate

‖
∑
j∈B

xj‖ ≤ C‖
∑
j∈C

xj‖

for B ⊂ C ⊂ A. This follows from Theorem 2 applied to

xδ = (1 + δ)
∑
j∈B

xj +
∑

j∈C\B

xj

and taking the limit as δ ↘ 1. �

One should remark that Proposition 2 immediately shows that systems like
Walsh or trigonometric are quasi-greedy in Lp only for p = 2. To see this for
p < ∞ suppose that say trigonometric system satisfies (4.1). Then taking the
average over signs we get∫ 1

0

‖
N∑
j=1

rj(t)e
ijs‖ppdt

1/p

∼ ‖
N∑
j=1

eijs‖p.
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The symbol rj in the above denotes the Rademacher system. The right hand

side (which is the Lp norm of the Dirichlet kernel) is of order N1− 1
p if p >

1 and of order logN when p = 1. Changing the order of integration and
using the Kchintchine inequality we see that the left hand side is of order

√
N .

To decide the case p = ∞ we may recall that the well-known Rudin-Shapiro
polynomials are of the form pN (s) =

∑N
j=1±eijs for appropriate signs but

‖pN‖∞ ∼
√
N while the L∞ norm of the Dirichlet kernel is clearly equal to N .

This violates (4.1). Those results were proven in [17] and [3], see also [21].
In view of the above observations it is natural to look for examples of condi-

tional quasi-greedy bases, especially in spaces which do not have unconditional
bases. Some examples were given in [14] but the general treatment was pre-
sented in [21] and recently generalized in [6]. In both papers the approach is
quite abstract and uses the existence of good complemented subspaces. A very
general result (Corollary 7.3 from [6]) is as follows

Theorem 6 ([6]). If X has a basis and contains a complemented subspace
S with a symmetric basis, where S is not isomorphic to c0, then X has a
quasi-greedy basis.

On the other hand it is proved in [6] that spaces like C[0, 1] or the disc
algebra A do not have quasi-greedy bases.

Let me comment on one very special case of Theorem 6: The space L1[0, 1]
has a quasi-greedy basis. Since it is known that L1[0, 1] does not have uncon-
ditional (in particular greedy) this is a good basis. On the other hand it is not
one of classical systems. In particular the Haar basis (and other wavelet type
bases) are not quasi-greedy in L1(R). To see it note that for In = [0, 2−n],

n = 1, 2, . . . , N , we have ‖
∑N
n=1H

1
In
‖1 ∼ const. while ‖

∑N
n=1(−1)nH1

In
‖1 ∼

logN , so (4.1) is violated.

Problem 4. It would be very interesting to have a more analytical con-
struction of a quasi-greedy basis in L1[0, 1] which would allow to investigate
analytical properties of this basis.

5. Haar System in Lp

The basic tool to analyze unconditional systems in Lp is the following con-
sequence of Khintchine inequality.

Proposition 3. If Φ = (xn, x
∗
n)n∈A is an unconditional system in Lp,

1 < p <∞, then the expression(∫ (∑
n∈A
|x∗n(x)|2|xn(s)|2

)p/2
ds
)1/p

(5.1)

gives an equivalent norm on Lp.
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The above proposition fails for p = 1 but if we introduce the norm given
by (5.1) for p = 1 and the Haar system H1

1, then we get a new space denoted
as H1, in which the system H1

1 is unconditional. For the concise explanation of
those ideas the reader may consult [23, 7.3].

The following theorem was proved in [19] and was a starting point in the
investigation of greedy type bases.

Theorem 7 ([19]). The Haar system Hpd is a greedy basis in Lp(Rd) for
d = 1, 2, . . . and 1 < p <∞. The system H1

1 is greedy in H1.

For the proof we only have to check that those systems are democratic.

Lemma 1. The Haar system Hpd is democratic in Lp(Rd) for d = 1, 2, . . .
and 1 < p <∞ (and also in H1).

Proof. Let B ⊂ I(d) be a finite set. Note that if the cube Q is the support
of the Haar function Hp

α, then |Hp
α| = |Q|−1/p1Q. Thus, for each t ∈ Rd, the

non-zero values of the Haar functions Hp
α(t) belong to a geometric progression

with a ratio 2d. Also, for a given t ∈ Rd there is at most 2d− 1 Haar functions
which take a given non-zero value at this point. Thus, if we define M(t) by the
condition 2M(t) = maxα∈B |Hp

α(t)|p, we immediately see that

2M(t) ≥ c(d)
∑
α∈B
|Hp

α(t)|p

for some constant c(d) > 0. So(∫ (∑
α∈B
|Hp

α(t)|2
)p/2

dt
)1/p

≥
(∫

2M(t) dt
)1/p

≥
(∫

c(d)
∑
α∈B
|Hp

α(t)|p dt
)1/p

= c(d)1/p|B|1/p.

On the other hand, by the same geometric consideration we see that for each
t ∈ Rd we have ∑

α∈B
|Hp

α(t)|2 ≤ C(d)|Hp
α0

(t)|2

for some constant C(d) <∞ and α0 ∈ B depending on t. Thus(∫ (∑
α∈B
|Hp

α(t)|2
)p/2

dt
)1/p

≤
(∫

C(d)
∑
α∈B
|Hp

α(t)|p dt
)1/p

≤ C(d)1/p|B|1/p.

Using Proposition 3 we get the claim. �

The above argument is basically contained in [12].
For the systems hpd the situation is quite different.
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Theorem 8. For d = 1, 2, . . . and 1 < p <∞ in Lp(Rd) we have

ϕ{hpd}(m) ∼ m1/p (5.2)

ψ{hpd}(m) ∼ m1/p
(

logm
)(1/2−1/p)(d−1)

(5.3)

for p ≤ 2, and

ϕ{hpd}(m) ∼ m1/p
(

logm
)(1/2−1/p)(d−1)

(5.4)

ψ{hpd}(m) ∼ m1/p (5.5)

for 2 ≤ p <∞. So we have

em{hpd} ∼ (logm)(d−1)| 12−
1
p |. (5.6)

This result was conjectured in [18] and proved in [21] using techniques from
[12].

Thus for d ≥ 2 and p 6= 2 the system hpd is not greedy. Thus the following
interesting problem arises.

Problem 5. Find an algorithm which for a given x ∈ Lp(Rd) gives its
near best m-term approximation with respect to the system hpd.

In view of Proposition 1, for a given x one has to find the set of “most
essential” coefficients. Observe that from (5.2)–(5.6) one easily calculates that

the system hpd satisfies (3.1) with s(m) ∼ m
(

logm
) |p−2|

2 (d−1)
so from Theo-

rem 4 we infer that it suffices to look for those m “essential coefficients” among

approximately m
(

logm
) |p−2|

2 (d−1)
biggest coefficients.

Now let us consider the system H1
1 in H1. The dual system (H1

1)∗ is the
system H∞1 considered in the space VMO. It was proved in [16] that em{H∞1 } ∼√

logm in the space VMO, so we have a natural example of a greedy system
whose dual is not greedy. Actually, one can prove that the space VMO does
not have any greedy system.

6. Examples of Greedy Bases

It is the obvious observation that being greedy (or quasi-greedy) is an iso-
morphic property. This means that if (xn)n∈A is a greedy system in Banach
space X and I : X → Y is a linear isomorphism, then

(
I(xn)

)
n∈A is a greedy

system in Y . There are at least two practically important instances of this fact.

A. If B is a good wavelet basis (cf. e.g. [23, Theorem 8.13]), then in Lp,
1 < p <∞, it is equivalent to the Haar system Hp. Thus, all such systems
are greedy.
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B. It is known (cf. e.g. [23, Chapter 9]) that good wavelet bases in Besov
space Bpα,p(R) when properly normalized are equivalent to the unit vector
basis in `p, thus greedy for 1 ≤ p < ∞. The same is true for Ciesielski
systems on [0, 1].

The above remarks explain the attention we pay to the Haar system H.
Now let us discuss other examples of greedy systems.

Let us start with the most important case of Hilbert space. Clearly every
orthonormal basis, and more generally, every Riesz basis is greedy in a Hilbert
space. Those are the only greedy systems in the Hilbert space, because they
are the only unconditional systems. This easily follows from Proposition 3.

In Lp for 1 < p < ∞, p 6= 2, the situation is not so simple. Kamont [13]
investigates generalized Haar systems on [0, 1]. Those are the systems obtained
as follows:

The first function is 1[0,1]. Next we divide [0, 1] into two subin-
tervals Il and Ir (nontrivial but generally not equal) and the next
function is of the form a1Il + b1Ir and is orthogonal to the pre-
vious function. We repeat this process on each of intervals Il and
Ir and continue in this manner.

If we make sure that the lengths of subintervals tend to zero the system
will span Lp[0, 1] for 1 ≤ p <∞. One of the main results of [13] says that each
generalized Haar system (normalized in Lp[0, 1]) is equivalent to a subsequence
of Hp1, so is greedy.

An example of a basis in Lp for p > 2 which is greedy and not equivalent to a
subsequence of the Haar system H was given in [21]. It follows from Corollary 2
that such an example exists also for 1 < p < 2.

7. Functions of Bounded Variation

Let Ω ⊂ Rd be an open subset. Let us recall that a function f ∈ L1(Ω)
has bounded variation if all its distributional derivatives ∂f

∂xj
are measures of

bounded variation. The space of all such functions equipped with the norm

|f |BV(Ω) =

d∑
j=1

∥∥ ∂f
∂xj

∥∥
is denoted by BV (Ω).

This function space plays a very important role in geometric measure theory,
calculus of variations, image processing and other areas. Recently the problem
of m-term approximation with respect to the Haar system Hpd of a function in
BV (Rd) in the Lp norm with p = d/(d − 1) was investigated in [2] and [22].
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Among other things it was proved there (cf. [22, Theorem 10]) that

|Gm{Hpd}(f)|BV ≤ C|f |BV (7.1)

for all f ∈ BV (Rd). One has to note that BV (Rd) is a non-separable space so
it cannot have any countable system satisfying (1.4). However, from Theorem 2

we infer that Hpd is a quasi-greedy system in span {Hpd} in the | · |BV norm. This

is not a very satisfactory result since span {Hpd} is not a very natural space.
A natural separable subspace of BV (Rd) is the Sobolev space W 1

1 (Rd), i.e.,
the space of all f ∈ BV (Rd) such that ∂f

∂xj
are absolutely continuous measures

for j = 1, 2, . . . , d. A natural and interesting problem which appears in this
context is

Problem 6. Prove that (7.1) holds with Haar system replaced by a good,
smooth wavelet basis, or only show that a good, smooth wavelet basis is a quasi-
greedy basis in W 1

1 (Rd).

Let me remark that it is known that W 1
1 (Rd) does not have unconditional

basis, so it does not have a greedy basis. On the other hand, it is an immediate
corollary from Theorem 6 that W 1

1 (Rd) has a quasi-greedy basis.

8. Subsequences

It is a natural general mathematical question, although probably without
much practical importance, what subsequences of a natural system are greedy
or quasi-greedy. In [14] it was observed that a subsequence of a trigonometric
system in Lp, 1 ≤ p ≤ ∞, is a greedy basis in its linear span if and only if it is
unconditional. Thus in Lp, 1 ≤ p ≤ ∞, they are equivalent to the unit vector
basis in `2 while for p = ∞ they are equivalent to the unit vector basis in `1.
The following seems to be unknown.

Problem 7. Find a description of quasi-greedy subsequences of the trigono-
metric system.

But it is only one of many possible questions of this type. Some quasi-greedy
subsequences of the Haar system H1

1 in L1[0, 1] were exhibited in [8].

9. Greedy Bases in Lp

From recent work [5] and [22] it became apparent that greedy basis in Lp is
a natural substitute for an orthonormal basis in a Hilbert space. Let us explain
briefly what we have in mind. In [5] the following general problem is discussed.
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Let F be certain Banach space continuously embedded into Lp and let F0 be
its unit ball. For a given basis B = (bk) in Lp we introduce the quantities

σm{B}(F) = sup
x∈F0

σm{B}(x).

We are looking for a basis B which gives the best order of decay of the quantities
σm{B}(F). It is natural to expect that the “best” basis has to have close
connection with the class F . We say that a basis B is aligned with F if B
is unconditional in F , i.e., if whenever f ∈ F equals

∑
k ak(f)bk, then any

g =
∑
ak(g)bk such that |ak(g)| ≤ |ak(f)| for all k is also in F . The following

is proved in [5]: Suppose that B = (b̄k) is a greedy basis in Lp aligned with F .
If for some basis B unconditional in Lp we have σm{B}(F) = o(n−α) for some
α > 0, then also σm{B}(F) = o(n−α). For approximation in L2 this result was
proved by Donoho [10].

It is a very nice result but it leaves some open questions.

Problem 8. It seems likely that greedy aligned basis is “best” in the above
sense among all bases in Lp, not only unconditional.

Problem 9. Results of [5] do not exclude a situation that for some other

unconditional basis B we have limm→∞ σm{B}(F)
(
σm{B}(F)

)−1
= 0. I do

not know any example that it happens and I conjecture that it is impossible.

In [22] we consider the approximation of functions of bounded variation on
Rd with d ≥ 2 in Lp(Rd) where p = d/(d − 1) is the critical exponent, by the
Haar system. Earlier, the case d = 2 which gives p = 2 was studied in detail
in [2]. Some of those results are discussed in Section 7. The extension from
d = 2 to d > 2 required two ingredients:

1. To prove the boundedness in BV (Rd) of certain averaging operators;

2. To replace the approximation arguments in Hilbert space setting by ap-
proximation in Lp.

In this second ingredient we extensively use the fact that the Haar system
is greedy in Lp and various estimates following from this fact.

10. General Remarks

From the point of view of Approximation Theory the subject of greedy type
bases is a part of a larger area of non-linear approximation and in particular
greedy approximation. The nice survey [4] deals with non-linear approximation
in general and shows the greedy bases well in its context. The survey [20] also
deals with greedy bases.

Acknowledgment: I would like to thank Prof. V. N. Temlyakov for read-
ing the earlier version of this survey and making several useful remarks.
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