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Orthogonal Expansions and Weighted
Approximation on the Unit Sphere

Yuan Xu ∗

We survey recent progress on weighted approximation and orthogonal
expansions on the unit sphere for a family of weight functions that are
invariant under reflection groups. The orthogonal expansions are given
with respect to h-harmonics, which are homogeneous orthogonal poly-
nomials with respect to a specified weight function on the sphere. We
discuss various means of h-harmonic expansions, define weighted modu-
lus of smoothness and K-functional on the sphere, show that they are
equivalent and use them to give direct and inverse theorems for weighted
best approximation by polynomials on the sphere.

1. Introduction

Let Sd−1 = {x : ‖x‖ = 1} be the unit sphere of Rd, where ‖x‖ denotes
the usual Euclidean norm. The theory of spherical harmonics is classical and
well documented; see, for example, [12, 24, 26]. Harmonic polynomials are
homogeneous polynomials that satisfy the Laplace equation ∆P = 0, where

∆ = ∂21 + · · ·+ ∂2d , ∂i = ∂/∂xi,

the spherical harmonics are the restrictions of harmonic polynomials on Sd−1.
They are orthogonal with respect to the surface (Lebesgue) measure dω on
Sd−1, which is the unique measure on the sphere that is invariant under the
rotation group. Approximation on Sd−1 is usually studied with the help of
spherical harmonics and approximation polynomials are often constructed using
harmonic expansions. The work in the literature is almost exclusively in the
setting of Lp space defined with respect to dω. We refer to [4, 5, 7, 15, 18, 16,
19, 20, 23] and the references therein.

Only rather recently has the theory of sphere harmonics been extended
beyond the setting of the Lebesgue measure. It was discovered by Dunkl
([10, 11], see [12] and the references therein) that there is an analogous theory
for measures invariant under reflection groups. The homogeneous orthogonal
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polynomials are called h-harmonics, they enjoy a theory comparable to the
theory of ordinary harmonics. Furthermore, as shown in more recent work
([17, 28, 34, 36, 37]), one can establish a theory of h-harmonic expansions
and weighted best approximation for the reflection invariant measures on the
sphere. The purpose of this paper is to report recent progress in this direction.

We will concentrate on the results of h-harmonic expansions and weighted
best approximation on the sphere. It should be mentioned, however, that
there is a close relation between h-spherical harmonics on Sd and orthogonal
polynomials on the unit ball Bd = {x ∈ Rd : ‖x‖ ≤ 1} of Rd ([29, 34, 35]) and
a further connection to orthogonal polynomials on the simplex T d = {x ∈ Rd :
x1 ≥ 0, . . . , xd ≥ 0, 1−x1− . . .−xd ≥ 0} ([30, 35]). Because of these relations,
the investigation on h-harmonics and the best approximation on the sphere
also lead to results about orthogonal expansions and the best approximation
on the ball and on the simplex. For results on Bd and T d, see [17, 31, 32, 37]
and the discussions there.

The paper is organized as follows: the next section contains preliminary
and background; Section 3 deals with summability of h-harmonic expansions,
including examples of Cesàro means and de la Vallée Poussin means; Section 4
discusses spherical means and weighted modulus of smoothness; Section 5 is
devoted to the relation between modulus of smoothness, K-functional and best
approximation.

2. Background

Throughout this paper we use the notation N0 to denote the set of natural
integers. For n ∈ N0, denote by Pdn the space of homogeneous polynomials
of degree n in d variables and Πd

n the space of polynomials of degree n in d
variables. It is known that

dimPdn =

(
n+ d− 1

d

)
and dim Πd

n =

(
n+ d

d

)
.

For x, y ∈ Rd, we denote by 〈x, y〉 =
∑d
i=1 xiyi the usual inner product of x

and y, and by ‖x‖ =
√
〈x, x〉 the usual Euclidean norm of x.

2.1. Ordinary Spherical Harmonics

Harmonic polynomials are homogeneous polynomials P that satisfy the
equation ∆P = 0, where ∆ is the usual Laplace operator. Their restriction
on the unit sphere Sd−1 is called the (ordinary) spherical harmonics. We use
Hdn to denote the space of ordinary harmonic polynomials of degree n.

The theory of spherical harmonics is well-known (see, for example, [12, 24,
26]) and much of it will appear below in the discussion of h-harmonics. We only
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mention that spherical harmonics are orthogonal with respect to the Lebesgue
measure dω on the sphere,

∫
Sd−1 PQdω = 0, P ∈ Hdn, Q ∈ Πd

n−1; furthermore

L2(Sd−1) =
∑∞
n=0

⊕
Hdn. The reproducing kernel Yn(x, y) of the space Hdn is

the so-called zonal harmonic, given in terms of the Gegenbauer polynomials
Cλn as

Yn(x, y) =
n+ λ

λ
Cλn(〈x, y〉), λ =

d− 2

2
. (2.1)

The Gegenbauer polynomials are orthogonal with respect to the weight function

wλ(t) = (1− t2)λ−1/2, −1 ≤ t ≤ 1. (2.2)

The fact that the orthogonal group acts transitively on the sphere plays an
important role in deriving the formula of Yn and in the theory of spherical
harmonics.

2.2. h-harmonics

The h-harmonics are defined by Dunkl recently ([10, 11], see [12] and the
references therein). They are associated with reflection groups instead of the
orthogonal group.

For a nonzero vector v ∈ Rd, let σv denote the reflection with respect to
the hyperplane perpendicular to v,

xσv := x− 2(〈x, v〉/‖v‖2)v, x ∈ Rd.

Let G be a finite reflection group on Rd with a fixed positive root system R+,
normalized so that 〈v, v〉 = 2 for all v ∈ R+. The group G is a subgroup of the
orthogonal group, it is generated by the reflections {σv : v ∈ R+}. A function
f defined on Rd is called invariant under G if f(xw) = f(x) for all w ∈ G.
Let κ be a nonnegative multiplicity function v 7→ κv defined on R+ with the
property that κu = κv whenever σu is conjugate to σv in G (that is, ug = v for
some g ∈ G). This defines a G-invariant function.

The essential ingredient of the theory of h-harmonics is a family of first-
order differential-difference operators, Di (Dunkl’s operators), defined by ([10])

Dif(x) = ∂if(x) +
∑
v∈R+

kv
f(x)− f(xσv)

〈x, v〉
〈v, εi〉, 1 ≤ i ≤ d,

where {ε1, . . . , εd} is the standard unit basis of Rd. These operators generate
a commutative algebra; that is, they satisfy DiDj = DjDi. The h-Laplacian
is defined by ∆h = D2

1 + · · · + D2
d. Keeping the notation ∆ for the ordinary

Laplacian, then ∆h is equal to

∆hf(x) = ∆f(x) +
∑
v∈R+

κv

[
2〈∇f(x), v〉
〈x, v〉

− f(x)− f(xσv)

〈x, v〉2

]
.
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The h-Laplacian plays the role similar to that of the ordinary Laplacian. An
h-harmonic P is a homogeneous polynomial satisfying the equation ∆hP = 0.
It turns out that

∆hP = 0 if and only if

∫
Sd−1

PQh2κ dω = 0, P ∈ Pdn, Q ∈ Πd
n−1,

in which hκ is a positive homogeneous function defined by

hκ(x) =
∏
v∈R+

|〈x, v〉|κv , x ∈ Rd. (2.3)

Let us denote by Hdn(h2κ) the space of h-harmonic polynomials of degree n. It
is known that dimHdn(h2κ) = dimPdn − dimPdn−2. Throughout this paper, we
denote

λλ := γκ +
d− 2

2
with γκ =

∑
v∈R+

κv. (2.4)

The number γκ is the homogeneous degree of hκ.
The spherical h-harmonics are the restriction of h-harmonics on the unit

sphere. In terms of the polar coordinates y = ry′, r = ‖y‖, the operator ∆h

takes the form

∆h =
∂2

∂r2
+
d+ 2γκ

r
· ∂
∂r

+
1

r2
∆h,0, (2.5)

where ∆h,0 is the (Laplace-Beltrami) operator on the sphere. An application
of ∆h,0 to the h-harmonics Y ∈ Hn(h2κ) with Y (y) = rnY (y′) shows that the
spherical h-harmonics are eigenfunctions of ∆h,0; that is,

∆h,0Yn(x) = −n(n+ 2λκ)Yn(x), x ∈ Sd−1, Yn ∈ Hdn(h2κ).

2.3. Examples of Weight Functions

We give several examples of weight functions hκ in (2.3). The simplest case
is G = Zd2, the group of sign changes, for which

hκ(x) =

d∏
i=1

|xi|κi , κi ≥ 0. (2.6)

For symmetric group of d objects,

hκ(x) =
∏

1≤i,j≤d

|xi − xj |κ, κ ≥ 0.

For hyperoctahedral group, the group generated by the reflections in the hy-
perplanes xi = 0, 1 ≤ i ≤ d and xi ± xj = 0, 1 ≤ i, j ≤ d,

hκ(x) =

d∏
i=1

|xi|κ0

∏
1≤i,j≤d

|x2i − x2j |κ1 , κ0, κ1 ≥ 0. (2.7)
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2.4. Lp Space

Let aκ denote the normalization constant of hκ, a−1κ =
∫
Sd−1 h

2
κ dω. Let us

denote by Lp(h2κ), 1 ≤ p ≤ ∞, the space of functions defined on Sd−1 with the
finite norm

‖f‖κ,p =
(
aκ

∫
Sd−1

|f(y)|ph2κ(y) dω(y)
)1/p

, 1 ≤ p <∞,

and for p = ∞ we assume that L∞ is replaced by C(Sd−1) with the usual
uniform norm ‖f‖∞. The surface measure dω has a normalization constant
σd−1 =

∫
Sd−1 dω = 2πd/2/Γ(d/2), which is the surface area. We also define the

inner product

〈f, g〉κ = aκ

∫
Sd−1

f(y)g(y)h2κ(y) dω.

We will also need the weighted Lp space on the real line with respect to
wλ in (2.2), which we denote by Lp(wλ). Let ‖g‖wλ,p denote the weighted Lp

norm for functions defined on [−1, 1],

‖g‖wλ,p =
(
cλ

∫ 1

−1
|g(t)|pwλ(t) dt

)1/p
for 1 ≤ p <∞ and ‖g‖wλ,∞ = ‖g‖∞ being the usual uniform norm on [−1, 1].

2.5. Intertwining Operator

Some properties of h-harmonics can be derived using the intertwining oper-
ator between the commutative algebra generated by the partial derivatives and
the one generated by Dunkl’s operators. This operator, Vκ, is a linear operator
determined uniquely by

VκPdn ⊂ Pdn, Vκ1 = 1, DiVκ = Vκ∂i, 1 ≤ i ≤ d.

Note that Vκ maps Hdn onto Hdn(h2κ) by definition. An explicit formula of Vκ
is known only in the case of symmetric group S3 for three variables and in the
case of the Abelian group Zd2. In the latter case, Vκ is an integral operator,

Vκf(x) = cκ

∫
[−1,1]d

f(x1t1, . . . , xdtd)

d∏
i=1

(1 + ti)(1− t2i )κi−1dt, (2.8)

where cκ denotes the constant

cκ = bκ1
. . . bκd , and br =

(∫ 1

−1
(1− t2)r−1dt

)−1
.

If some κi = 0, then the formula holds under the limit relation

lim
λ→0

bλ

∫ 1

−1
f(t)(1− t)λ−1dt = [f(1) + f(−1)]/2.
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One important property of the intertwining operator is that it is positive ([21]),
that is, Vκp ≥ 0 if p ≥ 0. Another important property shows that the integral
of Vκf can be explicitly evaluated, even though a compact formula of Vκ itself
is unknown in general. The following theorem is proved in [28].

Proposition 1. Let Vκ be the intertwining operator. Then∫
Sd−1

Vκf(x)h2κ(x) dω = Aκ

∫
Bd
f(x)(1− ‖x‖2)γκ−1dt,

for f ∈ L2(h2κ;Sd−1) such that both integrals are finite; in particular, if g :
R 7→ R is a function such that all integrals below are defined, then∫

Sd−1

Vκg(〈x, ·〉)(y)h2κ(y) dω(y) = Bκ

∫ 1

−1
g(t‖x‖)(1− t2)γκ−1dt,

where Aκ and Bκ are constants whose values can be determined by setting
f(x) = 1 and g(t) = 1, respectively.

This proposition plays an important role in studying h-harmonic expansions
and weighted best approximation. We emphasize that it is non-trivial even in
the case of Vκ given in (2.8) for the product weight function (2.6).

3. Summability of h-harmonic Expansions

Let hκ be the reflection invariant weight function defined in (2.3). Recall
the definition of λκ in (2.4). We often write λ = λκ in this section.

3.1. h-harmonic Expansions

The standard Hilbert space theory shows that

L2(h2κ) =

∞∑
n=0

⊕
Hdn(h2κ).

That is, with each f ∈ L2(h2κ) we can associate its h-harmonic expansion

f(x) =

∞∑
n=0

Yn(h2κ; f, x), x ∈ Sd−1,

in L2(h2κ) norm. For the surface measure (κ = 0), such a series is called
the Laplace series (cf. [13, Chapt. 12]). The orthogonal projection Yn(h2κ) :
L2(h2κ) 7→ Hdn(h2κ) takes the form

Yn(h2κ; f, x) :=

∫
Sd−1

f(y)Pn(h2κ;x, y)h2κ(y) dω(y). (3.1)
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The kernel Pn(h2κ;x, y) is the reproducing kernel of the space of h-harmonics
Hdn(h2κ) in L2(h2κ). The reproducing kernel Pn(h2κ;x, y) enjoys a compact for-
mula in terms of the intertwining operator Vκ ([28])

Pn(h2κ;x, y) =
n+ λκ
λκ

V [Cλκn (〈·, y〉)](x).

If all κv = 0, Vκ becomes the identity operator and the above formula becomes
(2.1). Note that in the case of G = Zd2, the explicit formula of Vκ in (2.7) gives
a compact formula

Pn(h2κ;x, y) = cκ
n+ λ

λ

×
∫
[−1,1]d

Cλn(x1y1t1 + · · ·+ xdydtd)

d∏
i=1

(1 + ti)(1− t2i )κi−1dt,

where λ = κ1 + · · · + κd + (d − 2)/2. The first proof of this formula ([27])
used an explicit orthonormal basis of Hdn(h2κ) and the addition formula of the
Gegenbauer polynomials.

As seen from (2.1), the kernel functions for the ordinary harmonic expan-
sions are of the form φ(〈x, y〉), where φ : [−1, 1] 7→ R, a fact that plays an
essential role in the theory of ordinary harmonics. The function G(x, y) =
Vκ[φ(〈x, ·〉)](y) plays a similar role for the h-harmonics. We define an integral
operator for functions on Sd−1 whose kernel has the form of G(x, y).

Definition 1. For f ∈ Lp(h2κ) and g ∈ L1(wλ; [−1, 1]) with λ = λκ,

(f ?κ g)(x) := aκ

∫
Sd−1

f(y)Vκ[g(〈x, · 〉)](y)h2κ(y) dω.

The operation f ?κ g defines a sort of convolution of the functions f on
Sd−1 and g on [−1, 1]. For the surface measure (Vκ = id), it is called spherical
convolution in [8]. Using this notion, we can write

Yn(h2κ; f) = f ?κ p(wλ) with p(wλ; t) =
n+ λ

λ
Cλn(t). (3.2)

Here and in the following, we write λ = λκ. The operation f ?κ g satisfies
many properties of the usual convolution in Rd. In particular, using the second
equation in Proposition 1, one can prove the familiar Young’s inequality:

Proposition 2. Let p, q, r ≥ 1 and p−1 = r−1 + q−1 − 1. For f ∈ Lq(h2κ)
and g ∈ Lr(wλ; [−1, 1]),

‖f ?κ g‖κ,p ≤ ‖f‖κ,q‖g‖wλ,r.
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The expression of Yn(h2κ; f) in terms of ?κ shows that the h-harmonic ex-
pansions are closely related to the Gegenbauer expansions. For a function
g ∈ L2(wλ), its Gegenbauer expansion takes the form

g(t) =

∞∑
n=0

Pn(wλ; g) with Pn(wλ; g, t) = cλ

∫ 1

−1
g(s)pn(wλ; s, t)wλ(s) ds,

in which the kernel is defined by

pn(wλ; s, t) =
n+ λ

λ
· C

λ
n(s)Cλn(t)

Cλn(1)
,

using the fact that ‖Cλn‖2wλ,2 = Cλn(1)λ/(n + λ) (cf. [25, p. 80]). Note that
pn(wλ; t) = pn(wλ; 1, t).

Hence, h-harmonic expansions are related to the Gegenbauer expansions at
the point t = 1, just as in the case of ordinary harmonic expansions. This fact
has been used to prove a number of results about summability of h-harmonic
expansions. We start with a general result.

Let bn := {bk,n} be a sequence of real numbers such that
∑∞
k=0 bk,n = 1

for each n. It induces a summability method for the Gegenbauer expansions
defined by

Mn({bn}; g, t) =

∞∑
k=0

bk,nPk(wλ; g, t) = cλ

∫ 1

−1
g(s)mn({bn}; s, t)wλ(s) ds.

(3.3)

The kernel of the expansion is mn({bn}; s, t) =
∑∞
k=0 bk,npk(wλ; s, t). Again,

we write mn({bn}; t) = mn({bn}; 1, t). The sequence {bk,n} also induces a
similar summability method for h-harmonic expansions,

Mn(h2κ; f) :=

∞∑
k=0

bk,nYk(h2κ; f) = f ?κ mn({bn}), (3.4)

in which the second equal sign follows from (3.2). As a consequence of Propo-
sition 2 with r = 1, we have the following theorem:

Theorem 1. Let Mn({bn}; g), defined in (3.3), converge to g at t = 1.
Assume that the means Mn(h2κ; f) in (3.4) converge to f in Lp(h2κ) norm for
polynomials f . Then for f ∈ Lp(h2κ), 1 ≤ p ≤ ∞, the means Mn(h2κ; f)
converge to f in Lp(h2κ) norm.

Proof. The assumption on the convergence of Mn({bn}; g, 1) shows that

‖mn({bn})‖wλ,1 =

∫ 1

−1
|mn({bn}; s, 1)|wλ(s) ds <∞.

Hence, using Proposition 2, it follows that ‖Mn(h2κ; f)‖κ,p is bounded for p = 1
and p =∞. The usual Riesz interpolation theorem shows that the same holds
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for 1 < p < ∞. The stated result is a consequence of the triangle inequality
and the fact that Mn(h2κ; f) converges to polynomials f in Lp(h2κ).

As examples of the means, we consider the Cesàro means and the de la
Vallée Poussin means in the following two subsections. As we shall see, the
above theorem is very useful, but it may hide some difficulties in the process
since the reflection group does not act transitively on the sphere.

3.2. Cesàro (C, δ) Means

For δ > 0, the Cesàro (C, δ) means sδn of a sequence {cn} are defined by

sδn = (Aδn)−1
n∑
k=0

Aδn−kck, Aδn−k =

(
n− k + δ

n− k

)
.

We say that {cn} is Cesàro (C, δ) summable to s if sδn converges to s as n→∞.
For the Gegenbauer expansion with respect to wλ, the (C, δ) means of the
Gegenbauer expansion, denoted by Sδn(wλ; f), can be written as an integral
operator,

Sδn(wλ; f, t) = cλ

∫ 1

−1
f(s)pδn(wλ; s, t)wλ(s) ds,

where pδn(wλ; s, t) is the (C, δ) means of the sequence {pn(wλ; s, t)}. It is known
that Sδn(wλ; f) converges to f in Lp(wλ) norm if δ > λ.

We denote the n-th (C, δ) means of the h-harmonic expansion by Sδn(h2κ; f).
They are studied in [28, 34, 17]; we recount the main results below. These
means can be written as

Sδn(h2κ; f) = f ?κ p
δ
n(wλ), pδn(wλ, t) = pδn(wλ, 1, t).

The fact that Sδn(h2κ; f) converges to f for f being polynomials can be estab-
lished easily since for f ∈ Pdm,

Sδn(h2κ; f)− f = (Aδn)−1
n∑

k=n−m

Aδ−1n−k

( k∑
j=0

Yj(h
2
κ; f)− f

)
,

where we have used the fact that
∑k
j=0 Yj(h

2
κ; f) is the projection operator of

Πd
k, which preserves polynomials of degree ≤ k. Hence, as a consequence of

Theorem 1, we get the following result:

Theorem 2. Let f ∈ Lp(h2κ), 1 ≤ p < ∞, or f ∈ C(Sd−1). The Cesàro
(C, δ) means of the h-harmonic expansion of f converge to f in norm provided
δ > λκ. Furthermore, the (C, δ) means of the h-harmonic expansion define a
positive linear operator if δ ≥ 2λκ + 1.
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Recall that λκ is defined in (2.4). For the fact that (C, δ) means of the
Gegenbauer expansion with respect to wλ converge at t = 1 if and only if
δ > λ, see [25, p. 246]. The positivity of (C, 2λκ + 1) means follows from
the fact that Vκ is a positive operator and the (C, δ) kernel of the Gegenbauer
expansion with respect to wλ is positive if δ ≥ 2λ+ 1 (see [1, p. 71]).

The proof of this theorem reduces the convergence of the h-harmonic ex-
pansions to that of the Gegenbauer expansions. With the help of Proposition 2,
or Proposition 1, we eliminated the action of the reflection group hidden in Vκ
and the proof is similar to the usual one for the ordinary harmonics in the sense
that the convergence is reduced to the convergence at just one point. For the
ordinary harmonics, the underline group is the orthogonal group which acts
transitively on Sd−1, so the reduction to one point is to be expected. For the
weight function hκ, however, the underline reflection group is a subgroup of
the orthogonal group, which no longer acts transitively on Sd−1. In this case,
the reduction to one point seems to be artificial. In fact, doing so indeed costs
us something: it requires stronger condition than it is necessary; that is, the
condition on δ is not sharp, at least in the case of G = Zd2. Indeed, for the
weight function hκ in (2.6), we can use the explicit formula of the reproducing
kernel in (2.8) to conduct a more detailed analysis. The result is the following
sharp theorem proved in [17]:

Theorem 3. For hκ given in (2.6), the (C, δ) means of the h-harmonic
expansion of a function f converge to f in the Lp(h2κ;Sd−1) norm, 1 ≤ p <∞,
or C(Sd−1) norm for p =∞, provided

δ > λκ − min
1≤i≤d

κi, λκ = |κ|+ d− 2

2
.

Moreover, for p = 1 and p =∞, the condition is also necessary.

Instead of the simple proof of Theorem 2, the proof of this theorem involves
complicated estimate of the (C, δ) kernel Kδ

n(h2κ;x, y), which is made possible
by the explicit formula of Pn(h2κ;x, y) in (3.1). The central estimate is as
follows: for x, y ∈ Sd−1 and δ > (d− 2)/2,

|Kδ
n(h2κ;x, y)| ≤ c

[∏d
j=1(|xjyj |+ n−1|x̄− ȳ|+ n−2)−κj

nδ−(d−2)/2(|x̄− ȳ|+ n−1)δ+
d
2

+

∏d
j=1(|xjyj |+ |x̄− ȳ|2 + n−2)−κj

n(|x̄− ȳ|+ n−1)d

]
,

where x̄ = (|x1|, . . . , |xd|) and ȳ = (|y1|, . . . , |yd|). The right hand side of
this estimate is invariant under Zd2. For the ordinary harmonics, the estimate
of this kernel is essentially the estimate of the kernel for the Gegenbauer ex-
pansions, which is a function of a single variable; see [7], for example. For
the h-harmonics, the estimate is much more difficult, as can be seen from the
formula (2.8).
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The proof of the necessity of the theorem follows from evaluating In(x) at
the points of intersection of the great circles defined by the intersection of Sd−1

and the coordinate planes. In fact, these great circles are like boundaries on
Sd−1 and the proof of necessity shows that In(x) attains its maximum on this
boundary. Furthermore, let us define

Sd−1int := Sd−1 \
d⋃
i=1

{x ∈ Sd−1 : xi = 0},

which is the interior region bounded by these boundaries on Sd−1. The points
on the planes {x : xi = 0} are exactly where the weight function h2κ in (2.3)
has singularity. We have the following result ([17]):

Theorem 4. Let f be continuous on Sd−1. If δ > (d − 2)/2, then the
(C, δ) means of the h-harmonic expansion of f for h2κ in (2.6) converge to f
for every x ∈ Sd−1int . Moreover, the convergence is uniform over each compact
set contained inside Sd−1int .

In other words, for the pointwise convergence away from the singularity of
hκ, the convergence holds if δ > (d−2)/2, which is the same as the critical index
for the ordinary harmonics. This phenomenon does not show up when we deal
with the ordinary harmonics, for which there is no difference in critical index
between uniform and pointwise convergence. According to this theorem, the
convergence of the (C, δ) means of the h-harmonic expansions is the same as the
ordinary harmonic expansions away from the great circles {x ∈ Sd−1 : xi = 0}
on the sphere.

One naturally expect that similar phenomenon should appear for h2κ asso-
ciated with other reflection groups. However, further study is hindered by the
lack of explicit formula for Vκ.

3.3. de la Vallée Poussin Means

For hκ defined in (2.3) and f ∈ L1(h2κ), these means are defined by

Mn(h2κ; f, x) :=

n∑
k=0

µλk,nYn(h2κ; f, x) = f ?κ mn(wλ),

where mn(wλ) is the de la Vallée Poussin means of the Gegenbauer polynomials,

mn(wλ; 1, t) =

n∑
k=0

µλk,n
k + λ

λ
Cλk (t), λ = λκ,

in which the multipliers µλk,n are given by

µλk,n =
n!

(n− k)!
· Γ(n+ 2λ+ 1)

Γ(n+ k + 2λ+ 1)
.
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The classical de la Vallée Poussin sum for the cosine functions has an extension
for the Gegenbauer polynomials (see, for example, [1, p. 11]),

n∑
k=0

n!

(n− k)!

Γ(n+ λ+ 1/2)

Γ(n+ k + 2λ+ 1)

k + λ

λ
Cλk (t) =

Γ(1/2)

22λΓ(λ+ 1)

(
1 + t

2

)n
.

These means were introduced by de la Vallèe Poussin for Fourier series. For the
Gegenbauer expansions (more generally, Jacobi expansions), they were studied
in [3, 6] and were also studied as the Bernstein-Durrmeyer polynomials by other
authors. For the ordinary harmonic expansions, they were studied in [15, 5].
Several their properties are common in all cases. For example, we know that
the means Mn(h2κ; f) are positive linear operators, self-adjoint with respect to
the inner product 〈f, g〉κ, and they converge for f being polynomials. Hence,
the convergence of Mn(h2κ; f) to f in Lp(h2κ) norm follows as a consequence of
Theorem 1.

What makes these means special is the following property satisfied by the
multiplier sequence µλk,n:

µλk,n − µλk,n−1 =
k(k + 2λ)

n(n+ 2λ)
µλk,n, 0 ≤ k ≤ n.

From these properties, the approximation behavior of the de la Vallée Poussin
means can be easily described using a K-functional. Define Dp(h2κ) as the set{

f ∈ Lp(h2κ) : −k(k + 2λκ)Yk(h2κ; f) = Yk(h2κ; g) for some g ∈ Lp(h2κ)
}
.

Recall the definition of spherical Laplacian ∆h,0 defined in (2.5). Since h-
spherical harmonics are eigenfunctions of ∆h,0, it follows that if ∆h,0f ∈
Lp(h2κ), then f ∈ Dp(h2κ), as we can take g = ∆h,0f . The Peetre K-functional
between Lp(h2κ) and Dp(h2κ) is defined by

K(f, t)κ,p := inf
{
‖f − g‖κ,p + t‖∆h,0 g‖κ,p, g ∈ Dp(h2κ)

}
.

Theorem 5. Let f ∈ Lp(h2κ). Then there are two constants c1 and c2 such
that

c1 max
k≥n
‖Mk(h2κ, f)− f‖κ,p ≤ K(f, n−1)κ,p ≤ c2 max

k≥n
‖Mk(h2κ, f)− f‖κ,p.

The proof of Theorem 5 is essentially the same as in the case of ordinary
spherical harmonics (see [5]). The similarity ends as soon as we start to depart
from these formal properties. For example, for ordinary harmonics, it is easy
to prove that for f ∈ L1, Mn(f, x) converges to f(x) for almost all x ∈ Sd−1
([5]), using the fact that the kernel is of the form φ(〈x, y〉) so that the estimate
of the kernel is essentially of one variable. For h-harmonics, however, such a
result has been proved only for f invariant under the group G and only for the
case of G = Zd2 ([36]).

We note that the K-functional appears naturally in the above result. Fur-
thermore, it is equivalent to a modulus of smoothness which is defined in the
following section.
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4. Spherical Means and Modulus of Smoothness

For the Lebesgue measure on Sd−1, there is a modulus of smoothness defined
via spherical means. The spherical means of f is defined by

Tθf(x) =
1

σd−2(sin θ)2λ

∫
〈x,y〉=cos θ

f(y) dω(y), 0 ≤ θ ≤ π.

The properties of the spherical means are well-known; see [4, 19], for example.
Another expression for this means is

Tθf(x) =
1

σd−2

∫
S⊥x

f(x cos θ + sin θu) dω(u),

in which S⊥x denotes the equator in Sd−1 with respect to x, S⊥x = {y ∈ Sd−1 :
〈x, y〉 = 0}, it is isomorphic to the sphere Sd−2. For r > 0, the spherical
modulus of smoothness of order r is defined by

ωr(f, δ)p := sup
0<θ<δ

‖(I − Tθ)r/2f‖p, f ∈ Lp(Sd−1).

The modulus of smoothness ω2(f, δ)p was used in many papers in the literature,
so did the case of r being an even integer. For the case of r > 0, this definition is
given in [23]; the reason that r/2 appears in the right hand side instead of r will
become clear when we consider the equivalence of the modulus of smoothness
and K-functional.

These definitions have been extended to the setting that the integrals are
taken with respect to the weight function h2κ. The definition of the spherical
means was extended in [36]. It is given in an implicit way :

Definition 2. Let λ = λκ. For 0 ≤ θ ≤ π, the means Tκθ is defined by

cλ

∫ π

0

Tκθ (f, x)g(cos θ)(sin θ)2λdθ = aκ

∫
Sd−1

f(y)Vκg(〈x, y〉)h2κ(y) dω(y),
(4.1)

where g is any function [−1, 1] 7→ R such that the integral in the right hand
side is finite.

It is also possible to give a direct definition of Tκθ . Let us define χθ(t) by∫ π

0

χθ(cosφ)g(φ) dφ = g(θ),

a distribution function. It follows that the ordinary spherical means Tθf(x)
can be written as

Tθf(x) =
1

σd−1(sin θ)d−1

∫
Sd−1

f(y)χθ(〈x, y〉) dω(y),
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since χθ(〈x, y〉) is the characteristic function of the set {x ∈ Sd : 〈x, y〉 = cos θ}.
Using the function χθ, an integral representation of Tκθ f is given by

Tκθ f(x) =
1

cλ(sin θ)2λ
aκ

∫
Sd−1

f(y)Vκ[χθ(〈x, ·〉)](y)h2κ(y) dω.

This also shows that Tκθ is indeed an extension of the ordinary spherical means
Tθ. Furthermore, by the definition of f ?κ g, we can write (4.1) as

(f ?κ g)(x) = cλ

∫ π

0

Tκθ (f, x)g(cos θ)(sin θ)2λdθ. (4.2)

Recall that Yn(h2κ; f) denotes the projection of f to Hdn(h2κ). The properties
of Tκθ f are given in the following proposition ([36, 37], for ordinary spherical
means (κ = 0) see [4, 19]).

Proposition 3. The means Tκθ f satisfy the following properties:

1. Let f0(x) = 1, then Tκθ f0(x) = 1.

2. For f ∈ L1(h2κ),

Yn(h2κ;Tκθ f) =
Cλn(cos θ)

Cλn(1)
Yn(h2κ; f);

in particular, ∆h,0T
κ
θ f = Tκθ (∆h,0f) if ∆h,0f ∈ L1(h2κ) and

Tκθ f ∼
∞∑
n=0

Cλn(cos θ)

Cλn(1)
Yn(h2κ; f).

3. For 0 ≤ θ ≤ π,

Tκθ f − f =

∫ θ

0

(sin s)−2λds

∫ s

0

Tκt (∆h,0f)(sin t)2λdt.

4. For f ∈ Lp(h2κ), 1 ≤ p <∞, or f ∈ C(Sd−1),

‖Tκθ f‖κ,p ≤ ‖f‖κ,p and lim
θ→0
‖Tκθ f − f‖κ,p = 0.

Let us mention that the property (2) and (4.2) together give the following
Funk-Hecke formula for h-harmonics: For Y hn ∈ Hdn(h2κ), g : [−1, 1] 7→ R,∫

Sd−1

Vκf(〈x, ·〉)(y)Y hn (y)h2κ(y) dω = µn(f)Y hn (x), x ∈ Sd−1,

where, with λ = λκ, µn(f) is defined by

µn(f) = cλ
1

Cλn(1)

∫ 1

−1
f(t)Cλn(t)(1− t2)λ−

1
2 dt.
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This property was proved first in [33] and used in the proof of property (2) in
[36]. Also using the property (2) of the above proposition, we define, for r > 0,

(I − Tκθ )r/2f ∼
∞∑
n=0

(1−Rλn(cos θ))r/2Yn(h2κ; f), Rλk(t) := Cλk (t)/Cλk (1).

The property (4) of the Proposition 3 shows that the following definition of
weighted modulus of smoothness is meaningful.

Definition 3. Let r > 0. For f ∈ Lp(h2κ), 1 < p < ∞, or f ∈ C(Sd−1),
define

ωr(f, t)κ,p := sup
0≤θ≤t

‖(I − Tκθ )r/2‖κ,p.

For the Lebesgue measure (κ = 0) and r being an even integer, this defi-
nition appeared in several references; the case r > 0 for the Lebesgue measure
appeared in [23] (see the discussion in [23] for the historical account). Some
properties of ωr(f, t)κ,p are collected below.

Proposition 4. The modulus of smoothness ωr(f, t)κ,p satisfies:

1. ωr(f, t)κ,p → 0 if t→ 0;

2. ωr(f, t)κ,p is monotone nondecreasing on (0, π);

3. ωr(f + g, t)κ,p ≤ ωr(f, t)κ,p + ωr(g, t)κ,p;

4. For 0 < s < r,

ωr(f, t)κ,p ≤ 2[(r−s+1)/2]ωs(f, t)κ,p;

5. If (−∆h,0)k ∈ Lp(h2κ), k ∈ N, then for r > 2k

ωr(f, t)κ,p ≤ c t2kωr−2k((−∆h,0)kf, t)κ,p.

There are several definitions of modulus of smoothness on Sd−1 in the case
of the Lebesgue measure, most of them are equivalent, as shown in [22]. In the
weighted case, however, Definition 3 is the only one defined so far.

5. K-functional, Modulus of Smoothness and Best
Approximation

Recall the definition of spherical Laplacian ∆h,0 defined in (2.5). Since h-
harmonics are eigenfunctions of ∆h,0 with eigenvalues −n(n + 2λκ), we can
define the fractional power of ∆h,0 by its harmonic expansion: for r > 0 define

(−∆h,0)r/2g ∼
∞∑
n=1

(n(n+ 2λ))r/2Yn(h2κ; g).
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Definition 4. Let r > 0. The function space Wp
r (h2κ) will be defined by

{f ∈ Lp(h2κ) : (k(k + 2λ))
r
2 Yk(h2κ; f) = Yk(h2κ; g) for some g ∈ Lp(h2κ)}.

The K-functional between Lp(h2κ) and Wp
r (h2κ) is defined by

Kr(f ; t)κ,p := inf
{
‖f − g‖κ,p + tr‖(−∆h,0)r/2 g‖κ,p, g ∈ Wp

r (h2κ)
}
.

If (−∆h,0)r/2f ∈ Lp(h2κ), then clearly the function f belongs to Wp
r (h2κ)

since we can take g = (−∆h,0)r/2f in the definition. If f ∈ Wp
r (h2κ), then g and

(−∆h,0)r/2f have the same coefficients in their h-harmonic expansions, so that
g = (−∆h,0)r/2f in the Lp(h2κ) norm, which shows that (−∆h,0)r/2f ∈ Lp(h2κ).
Thus, the K-functional is well-defined.

One of the main result in [37] is to show that Kr(f ; t)κ,p is equivalent to
the modulus of smoothness ωr(f ; t)κ,p.

Theorem 6. For f ∈ Lp(h2κ), 1 ≤ p ≤ ∞,

c1, ωr(f ; t)κ,p ≤ Kr(f ; t)κ,p ≤ c2 ωr(f ; t)κ,p.

Another main result of [37] is to use the modulus of smoothness or the K-
functional to characterize the weighted best approximation by polynomials on
the sphere. Define

En(f)κ,p := inf
{
‖f − P‖κ,p : P ∈ Πd

n

}
.

The following theorem contains both the direct and the inverse estimates.

Theorem 7. For f ∈ Lp(h2κ), 1 ≤ p ≤ ∞,

En(f)κ,p ≤ c ωr(f ;n−1)κ,p. (5.1)

On the other hand,

ωr(f, n
−1)κ,p ≤ c n−r

n∑
k=0

(k + 1)r−1Ek(f)κ,p. (5.2)

Here and in the following we shall use c to denote a generic constant, which
depends only on d, p, r and κ and whose value may be different from line to
line.

The proof of these two theorems are easy for r = 2 but rather difficult in the
general case of r > 0. In the case of the Lebesgue measure (κ = 0), the general
case was stated and proved in [23], preceded by various special cases settled
by several other authors. However, one of the key lemma in [23] (Lemma 3.9)
was put into question in [16] and a corrected proof was given in [16] which was
rather involved. The proof of these two theorems in the weighted case has been
given in [37], which follows the outline of the proof in [23] but does not depend
on Lemma 3.9 there.
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The inverse estimate (5.2) follows as a consequence of a Bernstein type
inequality, as usual. The main effort is to prove the Jackson type estimate
(5.1) and the equivalence in Theorem 5.1. The proof follows the following
order: one side of the equivalence, ωr(f ; t)κ,p ≤ cKr(f ; t)κ,p, is established first
and used to establish a Jackson type estimate,

En(f)κ,p ≤ c ωr(f ;π/(2(n+ λ)))κ,p, (5.3)

which is used to established the other direction of the equivalence Kr(f ; t)κ,p ≤
cωr(f ; t)κ,p. From the equivalence follows the inequality

ωr(f ; δt)κ,p ≤ c max{1, δr}ωr(f ; t)κ,p, (5.4)

which is used to complete the proof of the Jackson type estimate in Theorem 6.
Note that the inequality (5.4) is not an obvious consequence of the definition
of ωr(f ; t)κ,p.

The first part of the equivalence, ωr(f ; t)κ,p ≤ cKr(f ; t)κ,p, is essentially a
consequence of the following proposition.

Proposition 5. For f ∈ Wr
p(h2κ),

En(f)κ,p ≤ c n−r‖(−∆h,0)−r/2f‖κ,p.

For each r > 0, by a result of [2, Theorem 1 and Theorem 3], there is a
function φr(x) such that φr is continuous on [−1, 1), φr ∈ L1(wλ, [−1, 1]), and

φr(t) ∼
∞∑
n=1

(n(n+ 2λ))−r/2
n+ λ

λ
Cλn(t).

Using this fact, one can prove that, if f ∈ Wr
p(h2κ), f = (−∆h,0)r/2f ?κ φr

in Lp(h2κ). Let σ be a positive integer, σ > 2λ + 1, so that pσn(wλ;x, t) is
nonnegative. Using summation by parts repeatedly on the expansion of φr(t),
we can write

φr(t) =

∞∑
k=0

∆σ+1µ(k)

(
k + σ

k

)
pσk(wλ; t, 1), µ(k) = (k(k + 2λ))−r/2, k ≥ 1

and µ(0) = 0, where ∆mµ(k) denotes the m-th order finite difference, defined
by ∆µ(t) = µ(t)−µ(t+1) and ∆m+1 = ∆(∆m). The polynomial used to prove
Proposition 5 is constructed as f ?κ qn, where qn is the n-th partial sum of the
above expansion.

The idea of using summation by parts and the Cesàro means of sufficiently
higher order seems to appear first in [14]; it plays an important role in the
development of [23] which we followed closely in [37].

The proof of (5.3) uses the following construction: Let η ∈ C∞[0,+∞) be
a function defined by η(x) = 1 for 0 ≤ x ≤ 1 and η(x) = 0 if x ≥ 2. A sequence
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of operators ηn for n ∈ N is defined by

ηnf :=

∞∑
k=0

η
(k
n

)
Yk(h2κ; f) = f ?κ ηn(wλ), ηn(wλ, t) =

∞∑
n=0

η
(k
n

)
Pk(wλ; t).

Since η(k/n) = 0 if k ≥ 2n, the infinite series terminates at k = 2n− 1 so that
ηn is a spherical polynomial of degree at most 2n − 1. Furthermore, if P is a
spherical polynomial of degree at most n, then Yk(h2κ;P ) = P for k ≥ n and
the definition of η shows that ηnP = P . The main properties of ηn are given
in the following proposition.

Proposition 6. Let f ∈ Lp(h2κ), 1 ≤ p ≤ ∞. For n ∈ N,

1. ηnf ∈ Πd
n and ηnP = P for P ∈ Πd

n;

2. ‖ηnf‖κ,p ≤ c‖f‖κ,p;

3. ‖f − ηnf‖κ,p ≤ cEn(f)κ,p.

This operator is an analog of de la Vallée Poussin’s delay operator for the
Fourier series. There is another operator having a similar property, which is
defined by

Ln,m(h2κ; f) =
1

nm

m∑
j=0

(2jn)m

m∏
i=0,i6=j

1

2j − 2i
Sm2jn−1(h2κ; f),

where (a)m = a(a − 1) . . . (a −m + 1). When m = 1, Ln,1 = 2S2n−1 − Sn−1
is the de la Vallée Poussin operator in the classical Fourier analysis. It is easy
to see that Ln,m also satisfies the properties in Proposition 6. However, the
operators ηnf are more suitable for establishing the following proposition.

Proposition 7. Suppose 0 < t < π/(2(n+λ)). For f ∈ Lp(h2κ), 1 ≤ p ≤ ∞,

‖(−∆h,0)r/2ηnf‖κ,p ≤ c t−r‖(I − Tκθ )r/2f‖κ,p. (5.5)

Furthermore,

‖(I − Tκθ )r/2ηnf‖κ,p ≤ c tr‖(−∆h,0)r/2f‖κ,p.

The proof of this proposition is very technical, as in [23]. Using the idea of
the proof of Proposition 5, the essential part is to establish the estimates

2n−1∑
k=1

∣∣∣∆σ+1
[
η
(k
n

)
αθ(k)

]∣∣∣kσ ≤ c and

2n−1∑
k=1

∣∣∣∆σ+1
[
η
(k
n

)
βθ(k)

]∣∣∣kσ ≤ c,
where αθ(k) and βθ(k) are defined by αθ(k) = (k(k+2λ))r/2/(1−Rλk(cos θ))r/2

and βθ(k) = (1−Rλk(cos θ))r/2/(k(k + 2λ))r/2.
Together Proposition 6 and (5.5) lead to the following result.



174 Approximation on the Unit Sphere

Proposition 8. Suppose 0 < t < π/(2(n+ λ)). For any polynomial Pn ∈
Πd
n,

‖(−∆h,0)r/2Pn‖κ,p ≤ c t−r‖(I − Tκθ )r/2Pn‖κ,p.

This is called an inequality of Riesz-Bernstein-Nikolskii-Stechkin type in [23]
in the case of the Lebesgue measure. It implies, in particular, the Bernstein
type inequality

‖(−∆h,0)r/2Pn‖κ,p ≤ c nr‖Pn‖κ,p, (5.6)

which is the main tool for proving the inverse estimate (5.2).
Another important consequence of the inequality (3.1) is the estimate:

‖(−∆h,0)r/2ηnf‖κ,p ≤ c nrωr(f, π/(2(n+ λ)))κ,p (5.7)

for f ∈ Lp(h2κ), 1 ≤ p ≤ ∞. This is one of the main ingredients for the proof of
(5.3). The proof starts with defining a sequence nj , j = 0, 1, 2, . . . , as follows:

n0 = 1, nj+1 = inf{n : ωr(f ;π/(2(2n+ λ))) ≤ ωr(f ;π/(2(2nj + λ)))κ,p/2}

for j ≥ 0. The fact that ωr(f ; t)κ,p is monotone nondecreasing on (0, π) shows
that nj →∞ as j →∞. Writing

f =

∞∑
j=1

(ηnjf − ηnj−1
f) + η1f

leads to

E2nj (f)κ,p ≤
∞∑

k=j+1

‖ηnkf − ηnk−1
f‖κ,p.

Since ηn preserves polynomials of degree n and ηnηmf = ηmηnf by definition,
we can use Proposition 5 and (5.6) to obtain

‖ηnkf − ηnk−1
f‖κ,p ≤ cEnk−1

(η2nkf)κ,p

≤ c n−rk−1‖(−∆h,0)r/2η2nkf‖κ,p
≤ c (nk/nk−1)rωr(f ;π/(2(2nk + λ)))κ,p,

where the third inequality uses the fact that nk ≤ cnk−1. A limiting argument
based on (5.7) and the inequality ωr(f ; t)κ,p ≤ cKr(f ; t)κ,p shows that the
sequence nk/nk−1 is bounded by a constant c. The inequality

ωr(f ;π/(2(2nk + λ)))κ,p ≤ 2j−kωr(f ;π/(2(2nj + λ)))κ,p for k ≥ j

and the fact that ωr(f ; t)κ,p is monotonically nondecreasing completes the proof
of (5.3).
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Once (5.3) is proved, the inequality Kr(f ; t)κ,p ≤ cωr(f ; t)κ,p can be estab-
lished by choosing g = ηnf ∈ Wr

p(h2κ). We note that the proof shows that ηnf
satisfies

‖ηnf − f‖κ,p ≤ cωr(f ;n−1)κ,p and ‖(−∆h,0)r/2ηnf‖κ,p ≤ cnrωr(f ;n−1)κ,p.

As a final remark, let us mention that the weighted modulus of smoothness
ω(f, t)κ,p defined in Definition 3 is not entirely satisfactory, even though Theo-
rem 5.2 indeed justifies the definition. The main problem is the implicit nature
of the definition; also, there is no natural extension to the unit ball and to
the simplex (the results on these domains are stated in terms of K-functional
in [37]). It would be nice if one can find some other alternative definitions,
perhaps a modulus of smoothness defined using the divided differences on the
sphere.
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