Exact Jackson Inequality in $\boldsymbol{L}_{\mathbf{2}}$

Vitalii V. Arestov*

Abstract

We consider Jackson inequalities between the best approximation of periodic functions by trigonometric polynomials, as well as the best approximation of functions in the space $L^{2}(-\infty, \infty)$ by entire functions, and the generalized modulus of continuity (in particular, the classical modulus of continuity of order $r \geq 1$) of the functions. We discuss properties of the best constant in the Jackson inequality as a function of the argument of the modulus of continuity.

1. The Jackson Inequality for Approximation of Periodic Functions by Trigonometric Polynomials in $L_{2 \pi}^{2}$

Let $L_{2 \pi}^{2}$ be the classical space of complex-valued, 2π-periodic, measurable, squared summable over the period functions, equipped with the norm

$$
\|f\|_{L_{2 \pi}^{2}}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x\right)^{1 / 2}
$$

We denote by $\mathcal{T}_{n}, n \geq 0$, the set of trigonometric polynomials

$$
g(x)=\sum_{k=-n}^{n} c_{k} e^{i k x}
$$

of order (at most) n with complex coefficients. For a function $f \in L_{2 \pi}^{2}$, the quantity

$$
E_{n}(f)=\inf \left\{\|f-g\|_{L_{2 \pi}^{2}}: g \in \mathcal{T}_{n}\right\}
$$

is the best approximation of the function by the set \mathcal{T}_{n}.

[^0]The first difference with step $h \in(-\infty, \infty)$ is the operator $\Delta_{h}=\Delta_{h}^{1}$ defined by the formula $\left(\Delta_{h} f\right)(x)=f(x+h)-f(x)$. For an integer $r \geq 1$, the r-th power Δ_{h}^{r} of the operator Δ_{h} is called the r-th difference. It holds

$$
\Delta_{h}^{r} f(x)=\sum_{\nu=0}^{r}(-1)^{r-\nu}\binom{r}{\nu} f(x+\nu h)
$$

For a function $f \in L_{2 \pi}^{2}$, the function

$$
\omega_{r}(\delta, f)=\max \left\{\left\|\Delta_{h}^{r} f\right\|_{L_{2 \pi}^{2}}:|h| \leq \delta\right\}, \quad \delta \in[0, \infty)
$$

is the modulus of continuity of f of order r. Inequalities of the form

$$
\begin{equation*}
E_{n-1}(f) \leq K_{n, r}(\delta) \omega_{r}(\delta, f), \quad f \in L_{2 \pi}^{2} \tag{1}
\end{equation*}
$$

with constants which do not depend on the function $f \in L_{2 \pi}^{2}$ are called Jackson inequalities. In what follows we shall use the notation $K_{n, r}(\delta)$ always for the best (the least) constants in these inequalities.

Chernykh [4], [5] proved that for any $n \geq 1$ and $\delta \geq \frac{\pi}{n}$ the exact inequality

$$
\begin{equation*}
E_{n-1}(f)<\frac{1}{\sqrt{2}} \omega_{1}(\delta, f), \quad f \in L_{2 \pi}^{2}, f \not \equiv \text { const } \tag{2}
\end{equation*}
$$

takes place. He proved also [2] that inequality (2) with the constant $1 / \sqrt{2}$ does not hold for $0<\delta<\frac{\pi}{n}$. Thus,

$$
\begin{equation*}
K_{n, 1}(\delta)=\frac{1}{\sqrt{2}}, \quad \delta \geq \frac{\pi}{n} ; \quad K_{n, 1}(\delta)>\frac{1}{\sqrt{2}}, \quad 0<\delta<\frac{\pi}{n} \tag{3}
\end{equation*}
$$

Chernykh obtained a similar result for moduli of continuity of higher order, too. Namely, he proved [5] that the inequality

$$
\begin{equation*}
E_{n-1}(f)<\sqrt{1 /\binom{2 r}{r}} \omega_{r}(\delta, f), \quad f \in L_{2 \pi}^{2}, \quad f \not \equiv \text { const } \tag{4}
\end{equation*}
$$

holds for any $n \geq 1, r \geq 2$ and $\delta \geq \frac{2 \pi}{n}$. Moreover, if $n>r \geq 2, \frac{2 \pi}{n} \leq \delta<\frac{2 \pi}{r}$, then (4) is sharp.

Let us associate to a function $f \in L_{2 \pi}^{2}$ its Fourier series

$$
\sum_{k \in \mathbb{Z}} \hat{f}_{k} e^{i k t}, \quad \hat{f}_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i k t} d t, \quad k \in \mathbb{Z}
$$

Parseval equality $\|f\|_{L_{2 \pi}^{2}}^{2}=\sum_{k \in \mathbb{Z}}\left|\hat{f}_{k}\right|^{2}$ gives the following relation for the difference of order r with step h of a function f :

$$
\left\|\Delta_{h}^{r} f\right\|_{L_{2 \pi}^{2}}^{2}=\sum_{k \in \mathbb{Z}}\left|\hat{f}_{k}\right|^{2} \varphi_{r}(k h) ;
$$

here $\varphi_{r}(x)=2^{r}(1-\cos x)^{r}$. Thus,

$$
\begin{equation*}
\omega_{r}(\delta, f)=\max \left\{\left(\sum_{k \in \mathbb{Z}}\left|\hat{f}_{k}\right|^{2} \varphi_{r}(k h)\right)^{1 / 2}:|h| \leq \delta\right\}, \quad \delta \geq 0 \tag{5}
\end{equation*}
$$

Vasil'ev (see [11] and the references therein) introduced the following generalization of the modulus of continuity. Assume that a function φ is defined, bounded and non-negative on the real line. For a function $f \in L_{2 \pi}^{2}$ define the (generalized) modulus of continuity as
$\bar{\omega}(\delta, f)=\bar{\omega}_{\varphi}(\delta, f)=\max \left\{\left(\sum_{k \in \mathbb{Z}}\left|\hat{f}_{k}\right|^{2} \varphi(k h)\right)^{1 / 2}: 0 \leq|h| \leq \delta\right\}, \quad \delta \geq 0$.
We shall discuss the Jackson inequality with this modulus of continuity

$$
\begin{equation*}
E_{n-1}(f) \leq K_{n}(\delta, \varphi) \bar{\omega}(\delta, f), \quad f \in L_{2 \pi}^{2} \tag{7}
\end{equation*}
$$

Let $K_{n}(\delta, \varphi)$ be the least constant in this inequality.
We shall denote by $C_{2 \pi}^{+}$the set of continuous, 2π-periodic, non-negative functions. Further, we denote by Φ the set of even functions $\varphi \in C_{2 \pi}^{+}$which satisfy the properties:

1) $\varphi(0)=0$;
2) $\frac{1}{T} \int_{0}^{T} \varphi(t) d t \leq \frac{1}{\pi} \int_{0}^{\pi} \varphi(t) d t, 0<T<\pi$.

For a function $\varphi \in C_{2 \pi}^{+}$put $I(\varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(t) d t$. Vasil'ev [11] proved that if $\varphi \in \Phi$, then

$$
\begin{equation*}
K_{n}^{2}(\delta, \varphi) \leq \frac{1}{I(\varphi)}, \quad \delta \geq \frac{7 \pi}{5 n} \tag{8}
\end{equation*}
$$

The function φ_{r} belongs to the set Φ, and $I\left(\varphi_{r}\right)=\binom{2 r}{r}$. Hence, it follows from (8), in particular, that inequality (4) holds for $\delta \geq \frac{7 \pi}{5 n}$. Moreover, it is proved in [11] that inequality (4) is sharp for $n>0.7 \pi, \quad r \geq 2, \delta \geq \frac{7 \pi}{5 n}$. Jackson inequalities with different moduli of continuity were studied by Kozko and Rozhdestvenskii [8]. In particular, they proved that the estimate

$$
\begin{equation*}
K_{n}^{2}(\delta, \varphi) \geq \frac{1}{I(\varphi)}, \quad \delta>0 \tag{9}
\end{equation*}
$$

is valid for any function $\varphi \in C_{2 \pi}^{+}, \varphi \not \equiv 0$.
It is also of interest to study the least value

$$
\mathbf{K}_{n}(\varphi)=\min \left\{K_{n}(\delta, \varphi): \delta>0\right\}
$$

of the best constant in the Jackson inequality (7), and the least value $\delta_{n}(\varphi)=$ $\inf \left\{\delta>0: K_{n}(\delta, \varphi)=\mathbf{K}_{n}(\varphi)\right\}$ of arguments of the modulus of continuity in inequalities with the least value $\mathbf{K}_{n}(\varphi)$ of the best constant. The quantity $\delta_{n}(\varphi)$
is called the optimal point in the Jackson inequality. It follows from the results by Vasil'ev, Kozko, and Rozhdestvenskii cited above that if $\varphi \in \Phi, \varphi \not \equiv 0$, then

$$
\begin{equation*}
\mathbf{K}_{n}(\varphi)=\frac{1}{I(\varphi)}, \quad \delta_{n}(\varphi) \leq \frac{7 \pi}{5 n} \tag{10}
\end{equation*}
$$

Introduce the notations $\mathbf{K}_{n, r}=\mathbf{K}_{n}\left(\varphi_{r}\right), \delta_{n, r}=\delta_{n}\left(\varphi_{r}\right)$, for the corresponding quantities in the classical inequality (1). Chernykh's statement (3) means that

$$
\mathbf{K}_{n, 1}=\frac{1}{\sqrt{2}}, \quad \delta_{n, 1}=\frac{\pi}{n}
$$

The results by Chernykh (4) and by Vasil'ev, Kozko, and Rozhdestvenskii (10) imply that for $n \geq 1, r \geq 2$, we have

$$
\begin{equation*}
\mathbf{K}_{n, r}=\frac{1}{\sqrt{\binom{2 r}{r}}}, \quad \delta_{n, r} \leq \frac{1.4 \pi}{n} \tag{11}
\end{equation*}
$$

2. The Jackson Inequality for Approximation of Functions in the Space $L^{2}(-\infty, \infty)$ by Entire Functions

Results which are analogous to (1)-(11) are also known for approximation of functions in $L^{2}(-\infty, \infty)$ by entire functions. Let $L^{2}=L^{2}(-\infty, \infty)$ be the space of complex-valued, measurable, square summable over the real line functions. The space L^{2} is equipped with the norm

$$
\|f\|_{2}=\|f\|_{L_{2}}=\left(\int_{-\infty}^{\infty}|f(x)|^{2} d x\right)^{1 / 2}
$$

Useful means of studying problems of approximation theory in the space L^{2} are the Fourier transform

$$
\widehat{f}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i x t} d x
$$

and Parseval equality $\|f\|_{2}=\|\widehat{f}\|_{2}, f \in L^{2}$. Let $W(\sigma), \sigma>0$, be the set of functions $g \in L^{2}$ with Fourier transforms vanishing outside the interval $(-\sigma, \sigma)$. A function $g \in L^{2}$ belongs to the set $W(\sigma)$ if and only if it is a restriction to the real line of an entire function of exponential type σ. Let us denote by $\mathcal{K}_{r}(\delta, \sigma)$ the best constant in the Jackson inequality

$$
\begin{equation*}
E_{\sigma}(f) \leq \mathcal{K}_{r}(\delta, \sigma) \omega_{r}(\delta, f), \quad f \in L^{2} \tag{12}
\end{equation*}
$$

between the best approximation

$$
E_{\sigma}(f)=\inf \left\{\|f-g\|_{2}: g \in W(\sigma)\right\}
$$

of a function $f \in L^{2}$ by the space $W(\sigma)$ of entire functions of exponential type σ and its modulus of continuity of order r

$$
\begin{equation*}
\omega_{r}(\delta, f)=\max \left\{\left\|\Delta_{h}^{r} f\right\|_{L^{2}(-\infty, \infty)}:|h| \leq \delta\right\}, \quad \delta \in[0, \infty) \tag{13}
\end{equation*}
$$

Ibragimov and Nasibov [7] obtained the following result. For any $\sigma>0$ and any function $f \in L^{2}, f \not \equiv 0$, the following inequalities hold true

$$
E_{\sigma}(f)<\frac{1}{\sqrt{2}} \omega_{1}\left(\frac{\pi}{\sigma}, f\right), \quad E_{\sigma}(f)<\frac{1}{2} \omega_{2}\left(\frac{\pi}{\sigma}, f\right)
$$

The next result was obtained by Popov [10] independently from the result cited above. Let $\sigma>0$. Then, for any nonzero function $f \in L^{2}(-\infty, \infty)$,

$$
\begin{gathered}
E_{\sigma}(f)<\frac{1}{\sqrt{2}} \omega_{1}\left(\frac{\delta}{\sigma}, f\right), \quad \delta \geq \pi \\
E_{\sigma}(f)<\sqrt{1 /\binom{2 r}{r}} \omega_{r}\left(\frac{\delta}{\sigma}, f\right), \quad \delta \geq 2 \pi, \quad r \geq 2
\end{gathered}
$$

These inequalities are sharp. Thus, for the best constant $\mathcal{K}_{r}(\delta, \sigma)$ in (12) we have

$$
\begin{gather*}
\mathcal{K}_{1}\left(\frac{\delta}{\sigma}, \sigma\right)=\frac{1}{\sqrt{2}} \quad \text { if } \quad \delta \geq \pi \tag{14}\\
\mathcal{K}_{r}\left(\frac{\delta}{\sigma}, \sigma\right)=\sqrt{1 /\binom{2 r}{r}} \quad \text { if } \quad \delta \geq 2 \pi, \quad r \geq 2 \tag{15}
\end{gather*}
$$

In addition to (14) one may state that $\mathcal{K}_{1}\left(\frac{\delta}{\sigma}, \sigma\right)>\frac{1}{\sqrt{2}}$ for $0<\delta<\pi$. This follows from Chernykh's result (3) for the periodic case; this follows also from a later result by Logan [9]. The results of Vasil'ev's paper [11] related to the periodic case yield, as a particular case, that inequality (15) holds for $\delta \geq 1.4 \pi$.

Introduce the notations

$$
\underline{\mathcal{K}}_{r}(\sigma)=\inf \left\{\mathcal{K}_{r}(\delta, \sigma): \delta>0\right\}, \quad \delta_{r}(\sigma)=\inf \left\{\delta>0: \mathcal{K}_{r}(\delta, \sigma)=\underline{\mathcal{K}}_{r}(\sigma)\right\}
$$

for the least value of the best constant and for the optimal point in the Jackson inequality (12). It follows from results by Chernykh, Ibragimov, Nasibov, Popov, and Vasil'ev that

$$
\begin{equation*}
\underline{\mathcal{K}}_{r}(\sigma)=\sqrt{1 /\binom{2 r}{r}}, r \geq 1 ; \quad \delta_{1}(\sigma)=\frac{\pi}{\sigma} ; \quad \delta_{r}(\sigma) \leq \frac{1.4 \pi}{\sigma}, r>1 \tag{16}
\end{equation*}
$$

Chernykh conjectured in 1998 that $\delta_{2}(\sigma)=\frac{\pi}{\sigma}$. However, Arestov and Babenko showed recently that in fact

$$
\delta_{2}(\sigma)>\frac{\pi}{\sigma}
$$

As early as in 1984, the author discussed with S. B. Stechkin the question on continuity of the constant $K_{n, 1}(\delta)$ in inequality (1) with respect to $\delta \in(0, \pi]$ for $r=1$. That time we only knew that the constant is right continuous. The fact that the constant $\mathcal{K}_{r}(\delta, \sigma)$ is right continuous with respect to $\delta \in(0,+\infty)$ was also mentioned in [3, p.346], [6, Remark on p.45]. Nowadays continuity of the constants $\mathcal{K}_{r}(\delta, \sigma)$ and $K_{n, r}(\delta)$ is known for all $r \geq 1$.

Theorem 1 (Arestov and Babenko [1]). For any $r \geq 1, \sigma>0$, the best constant $\mathcal{K}_{r}(\delta, \sigma)$ in inequality (12) is continuous with respect to $\delta \in(0, \infty)$.

Balaganskii proved recently by a different method that the best constant $K_{n, r}(\delta)$ in inequality (1) is continuous with respect to $\delta \in(0, \pi]$ for any n and r.

3. The Jackson Inequality with the Generalized Modulus of Continuity in the Space $L^{2}(-\infty, \infty)$

Using a change of the variable, it is not difficult to see that the equality $\mathcal{K}_{r}(\delta, \sigma)=\mathcal{K}_{r}(\delta \sigma, 1)$ is valid for the constant $\mathcal{K}_{r}(\delta, \sigma)$ in (12). Therefore, it is enough to study inequality (12) for $\sigma=1$ only. Now, let $\mathcal{K}_{r}(\delta)$ be the best constant in the inequality

$$
\begin{equation*}
E(f) \leq \mathcal{K}_{r}(\delta) \omega_{r}(\delta, f), \quad f \in L^{2} \tag{17}
\end{equation*}
$$

here and below we use the notation $E(f)=E_{1}(f)$.
By virtue of Parseval equality we have (e.g. [10])

$$
\begin{equation*}
\left\|\Delta_{s}^{r} f\right\|_{2}^{2}=\int_{-\infty}^{\infty}|\widehat{f}(t)|^{2} \varphi_{r}(s t) d t \tag{18}
\end{equation*}
$$

where $\varphi_{r}(x)=2^{r}(1-\cos x)^{r}, x \in[0, \infty)$. Starting with formula (18), we generalize the concept of the modulus of continuity by analogy with (6). Let us denote by $C^{+}=C^{+}[0, \infty)$ the set of continuous, bounded, non-negative functions on the half-line $[0, \infty)$. Now we define the (generalized) modulus of continuity of a function $f \in L^{2}$ using a function $\varphi \in C^{+}, \varphi \not \equiv 0$, as follows

$$
\begin{gather*}
\bar{\omega}(\delta)=\bar{\omega}(\delta, f)=\max \{\sqrt{F(s, f)}: 0 \leq s \leq \delta\}, \quad \delta \in[0, \infty) \tag{19}\\
F(s, f)=\int_{-\infty}^{\infty}|\widehat{f}(t)|^{2} \varphi(s|t|) d t, \quad s \in[0, \infty)
\end{gather*}
$$

Under the assumptions on the function φ we made, both functions just introduced are continuous and bounded on the half-line $[0, \infty)$. By virtue of (18), the function (19) with $\varphi=\varphi_{r}$ coincides with the modulus of continuity (13) of the function f of order r.

Let $\mathcal{K}(\delta)=\mathcal{K}(\delta, \varphi)$ be the best constant in the (generalized) Jackson inequality

$$
\begin{equation*}
E(f) \leq \mathcal{K}(\delta) \bar{\omega}(\delta, f), \quad f \in L^{2} \tag{20}
\end{equation*}
$$

It may happen that inequality (20) does not hold with a finite constant; in such a case we put $\mathcal{K}(\delta)=+\infty$. Inequality (17) is a particular case of (20) for $\varphi=\varphi_{r}$.

Now we present effective estimates of the least value $\underline{\mathcal{K}}=\inf \{\mathcal{K}(\delta): \delta>0\}$ of the quantity $\mathcal{K}(\delta)$. Function (19) does not decrease with respect to $\delta \in(0, \infty)$; hence, $\mathcal{K}(\delta)$ does not increase. Therefore,

$$
\begin{equation*}
\underline{\mathcal{K}}=\inf \{\mathcal{K}(\delta): \delta>0\}=\lim _{\delta \rightarrow+\infty} \mathcal{K}(\delta) \tag{21}
\end{equation*}
$$

Consider the function $\vartheta(T)=\frac{1}{T} \int_{0}^{T} \varphi(t) d t, T>0$. Put

$$
I^{*}=I^{*}(\varphi)=\varlimsup_{T \rightarrow+\infty} \vartheta(T), \quad I_{*}=I_{*}(\varphi)=\lim _{T \rightarrow+\infty} \vartheta(T)
$$

Obviously, we have $0 \leq I_{*} \leq I^{*} \leq\|\varphi\|_{C[0, \infty)}$.
Theorem 2 (Arestov). If φ is such that $\varphi \in C^{+}[0, \infty), \varphi \not \equiv 0, \varphi(0)=0$, then the following estimates take place for the constant (21)

$$
\begin{equation*}
\frac{1}{I^{*}(\varphi)} \leq \underline{\mathcal{K}}^{2} \leq \frac{1}{I_{*}(\varphi)} \tag{22}
\end{equation*}
$$

If φ is 2π-periodic, then $I^{*}(\varphi)=I_{*}(\varphi)=I(\varphi)$, where

$$
I(\varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(t) d t
$$

In particular, for $\varphi_{r}(x)=2^{r}(1-\cos x)^{r}$ we have $I\left(\varphi_{r}\right)=\binom{2 r}{r}$, and thus (22) turns to coincide with the first statement in (16) for the classical moduli of continuity of order r.

The statement of Theorem 2 is an analogue of the first relation in (10) for the periodic case.

The following statement generalizes Theorem 1.
Theorem 3 (Arestov and Babenko [1]). For any function $\varphi \in C^{+}[0, \infty)$, $\varphi \not \equiv 0$, the best constant $\mathcal{K}(\delta)$ in inequality (20) is continuous with respect to δ on the half-line $(0, \infty)$.

References

[1] V. V. Arestov and A. G. Babenko, Continuity of the best constant in the Jackson inequality in L^{2} with respect to argument of modulus of continuity, in "Approximation Theory: A volume dedicated to Blagovest Sendov" (B. Bojanov, Ed.), pp. 13-23, Darba, Sofia, 2002.
[2] V. V. Arestov and N. I. Chernykh, On the L_{2}-approximation of periodic functions by trigonometric polynomials, in "Approximation and Functions Spaces", Proc. Conf. Gdan'sk 1979, North-Holland, Amsterdam, 1981.
[3] E. E. Berdysheva, Two related extremal problems for entire functions of several variables, Mat. Zametki 66, 3 (1999), 336-350; English transl.: Math. Notes 66, 3 (1999), 271-282.
[4] N. I. Chernykh, Jackson's inequality in L_{2}, Trudy Mat. Inst. Steklov 88 (1967), 71-74. [In Russian]
[5] N. I. Chernykh, The best approximation of periodic functions by trigonometric polynomials in L_{2}, Mat. Zametki 2, 5 (1967), 513-522. [In Russian]
[6] D. V. Gorbachev, Approximation in L^{2} by partial integrals in eigenfunctions of Sturm-Liouville operator, Izv. Tul. Gos. Univ. Mat. Mekh. Inform. 5, 1 (1999), 38-50. [In Russian]
[7] I. I. Ibragimov and F. G. Nasibov, Estimation of the best approximation of a summable function on the real axis by entire functions of finite degree, Dokl. Akad. Nauk SSSR 194, 5 (1970), 1013-1016; English transl.: Soviet Math. Dokl. 11 (1970/71), 1332-1336.
[8] A. I. Kozko and A. V. Rozhdestvenskir, On the Jackson inequality in L_{2} with generalized modulus of continuity, in press.
[9] B. F. Logan, Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions, SIAM J. Math. Anal. 14, 2 (1983), 253-257.
[10] V. Yu. Popov, On the best mean square approximations by entire functions of exponential type, Izv. Vyssh. Uchebn. Zaved. Mat. 6 (1972), 65-73.
[11] S. N. VASIL'Ev, The Jackson-Stechkin Inequality in $L_{2}[-\pi, \pi]$, Proc. Steklov Inst. Math., Suppl. 1 (2001), S243-S253.

Vitalii V. Arestov

Chair of Mathematical Analysis and Theory of Functions
Department of Mathematics
Ural State University
Lenin Avenue, 51
620083 Ekaterinburg
RUSSIA
E-mail: Vitalii.Arestov@usu.ru

[^0]: *Supported by the Russian Foundation for Basic Research, project no. 02-01-00783 and by the Programme for State Support of Leading Scientific Schools of Russian Federation, project no. 00-15-96035.

