CONSTRUCTIVE THEORY OF FUNCTIONS, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2003, pp. 198-204.

Wavelet Decomposition and Sampling for *p*-adic Multiresolution Analysis

NIKOLAOS D. ATREAS

We define a *p*-adic Multiresolution Analysis (MRA) on the space of p^{M} -periodic sequences, where $p, M \in \mathbb{Z}^+$. We present the Sampling Theorem on MRA subspaces and we discuss the existence of *p*-adic wavelets which provide a variety of new Discrete Transforms.

1. Introduction

It is well-known that the Discrete Fourier Transform (DFT) is one of the most widely used tools in communication, engineering and computational mathematics. Recall the following definition of the DFT of an N-periodic sequence s(n):

$$\widehat{s}(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s(n) e^{-2\pi i n k/N}, \qquad k = 0, ..., N-1.$$

The Inverse Discrete Fourier Transform is given by the formula:

$$s(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \widehat{s}(k) e^{2\pi i n k/N}, \qquad n = 0, ..., N-1.$$

The DFT Analysis will be proven very useful for defining a Multiresolution Analysis over $L^2(\mathbb{Z}/(N\mathbb{Z}))$. Recall that a *Multiresolution Analysis* of $L^2(\mathbb{R})$ (*MRA*), is a nested sequence $\{V_m \subset V_{m+1}, m \in \mathbb{Z}\}$ of closed subspaces of $L^2(\mathbb{R})$ and a scaling function φ such that:

- (i) $\overline{\bigcup_m V_m} = L_2(\mathbb{R})$ and $\bigcap_m V_m = \{\mathbf{0}\};$
- (ii) $f \in V_0 \Leftrightarrow f(2^m \cdot) \in V_m, m \in \mathbb{Z};$
- (iii) The set $\{\varphi(\cdot n), n \in \mathbb{Z}\}$ is an orthonormal basis of V_0 .

Since in most practical applications only sampled data are available, it is natural to wander if we can build a similar construction on spaces of periodic sequences. In Section 2 we define a Multiresolution Analysis on the space of p^{M} -periodic sequences, so that we can be able to use two important advantages of MRA's: the existence of sampling expansions in MRA subspaces and a Wavelet Decomposition algorithm. In Section 3 we discuss the Decomposition algorithm.

2. The *p*-adic Multiresolution Analysis

Definition 1. Let p, M > 1 be positive integers. We define $V_M = \{s(n) : n = 0, ..., p^M - 1\}$ to be the p^M -dimensional vector space of all complex p^M -periodic sequences with the usual orthonormal basis $e_k(n) = \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta.

The main difficulty in defining a Multiresolution Analysis for spaces of p^{M} periodic sequences is the notion of the Dilation operator for sequences. We give
the following:

Definition 2. Let p, M > 1 be positive integers and let φ_0 be a p^M -periodic sequence. The Dilation operator with respect to the sequence φ_0 is:

$$D_{\varphi_0}: V_M \to V_M,$$

$$s \to (D_{\varphi_0}s)(n) = \frac{1}{\sqrt{p^M}} \sum_{k=0}^{p^{M-1}-1} \varphi_0(n-kp) \sum_{m=0}^{p-1} s(k+mp^{M-1}), \quad n = 0, ..., p^M - 1,$$

or equivalently:

$$(\widehat{D_{\varphi_0}s})(n) = \widehat{s}(pn)\widehat{\varphi_0}(n), \qquad n = 0, ..., p^M - 1,$$

where $\hat{s}(n)$ is the Discrete Fourier Transform of the p^{M} -periodic sequence s(n).

Definition 3. We shall say that a p-adic Multiresolution Analysis (p-adic MRA) of V_M is a nested sequence $\{V_j : j = 0, ..., M - 1\}$ of subspaces of V_M and a scaling sequence $\{\varphi_1(n)\}$ such that:

- (i) $\{c(n): c(n) = (\alpha, ..., \alpha), \alpha \in \mathbf{C}\} = \mathbf{V}_0 \subset \mathbf{V}_1 \subset ... \subset \mathbf{V}_{\mathbf{M}-1} \subset \mathbf{V}_{\mathbf{M}};$
- (ii) V_j is the linear span of an orthonormal set $\{\varphi_{M-j}(\cdot kp^{M-j}) : k = 0, ..., p^j 1\}$, where for j = M 1 the scaling sequence $\{\varphi_1(n)\}$ is the dilation of the sequence $e_0(n) = (1, 0, ..., 0)$ and for j = 0, ..., M 2 the sequence $\{\varphi_{M-j}(n)\}$ is the dilation of the sequence $\{\varphi_{M-j-1}(n)\}$.

Definition 4. Given the Dilation operator (D_{φ_0}) , its associate sequence is given by

$$\varphi_{M-j}(n) = \begin{cases} \frac{\varphi_0(n)}{\sqrt{p^M}} = (D_{\varphi_0}e_k)(n), & j = M-1\\ (D_{\varphi_0}\varphi_{M-j-1})(n), & j = 0, ..., M-2. \end{cases}$$

The associate sequence is given by its DFT form in the following:

$$\widehat{\varphi_{M-j}}(k) = \begin{cases} \frac{\widehat{\varphi_0}(k)}{\sqrt{p^M}}, & j = M-1\\ \widehat{\varphi_{M-j-1}}(pk)\widehat{\varphi_0}(k), & j = 0, ..., M-2 \end{cases}$$
(1)

Proposition 1. The Dilation operator D_{φ_0} satisfies the following:

(i) $(D_{\varphi_0}T_1s)(n) = (T_p D_{\varphi_0}s)(n)$, where $T_k : V_M \to V_M$, $(T_ks)(n) = s(n-k)$ is the Translation operator for sequences;

(*ii*)
$$||D_{\varphi_0}||_2 = p^{1/2};$$

(iii) Let $\hat{\varphi}_0(k_1) = \dots = \hat{\varphi}_0(k_m) = 0, \ 0 \le m < p^N - 1.$ Then:

$$\operatorname{Ker} D_{\varphi_0} = \{ s(n) : \hat{s}(pn) = 0, \ n \neq k_i \};$$

(iv) Let
$$s(n) \in V_j$$
, then $(D_{\varphi_0}s)(n) \in V_{j-1}$.

Proof. (i) It is an immediate consequence of Definition 2. (ii)

$$\begin{split} \|D_{\varphi_0}s\|_2^2 &= \sum_{n=0}^{p^M-1} |\hat{s}(pn)|^2 |\hat{\varphi_0}(n)|^2 = \sum_{k=0}^{p-1} \sum_{m=0}^{p^{M-1}-1} |\hat{s}(pm)|^2 |\hat{\varphi_0}(m+kp^{M-1})|^2 \\ &= p \sum_{m=0}^{p^{M-1}-1} |\hat{s}(pm)|^2 \le p \|s(\,\cdot\,)\|_2^2. \end{split}$$

Obviously:

$$\|D_{\varphi_0}\|_2 = \sup_{s \in V_M} \frac{\|D_{\varphi_0}s(\cdot)\|_2}{\|s(\cdot)\|_2} \le \sqrt{p},$$

but we can find a sequence $s_1(n)$ to obtain equality. In fact, we define $s_1(n)$ by its DFT form in the following:

$$\hat{s_1}(n) = \begin{cases} 1, & n = pk \\ 0, & n \neq pk. \end{cases}$$

(iii) It is an immediate consequence of the fact that $(\widehat{D_{\varphi_0}s})(n) = \widehat{s}(pn)\widehat{\varphi_0}(n)$.

200

Nikolaos D. Atreas

(iv) Let $s(n) \in V_j$. Then:

$$(D_{\varphi_0}s)(n) = \sum_{k=0}^{p^j - 1} c_k (D_{\varphi_0} T_{kp^{M-j}} \varphi_{M-j})(n) = \sum_{k=0}^{p^j - 1} c_k (T_{kp^{M-j+1}} D_{\varphi_0} \varphi_{M-j})(n)$$
$$= \sum_{k=0}^{p^j - 1} c_k \varphi_{M-j+1}(n - kp^{M-j+1})$$
$$= \sum_{l=0}^{p^{j-1} - 1} \left(\sum_{r=0}^{p-1} c_{l+rp^{j-1}}\right) \varphi_{M-j+1}(n - lp^{M-j+1}). \quad \Box$$

Proposition 2. Let φ_0 be a p^M -periodic sequence and let the collection $\{\varphi_{M-j}(n)\}_{j=0}^{M-1}$ be as in (1). If

$$\sum_{s=0}^{p-1} |\widehat{\varphi_0}(r+sp^{M-1})|^2 = p, \qquad r = 0, ..., p^{M-1} - 1, \tag{2}$$

then:

- (i) The collection $\{\varphi_{M-j}(\cdot kp^{M-j}) : k = 0, ..., p^j 1\}, (j = 0, ..., M 1)$ is an orthonormal basis of V_j ;
- (ii) The subspaces V_j form a p-adic MRA of V_M with scaling sequence $\varphi_1(n) = \frac{\varphi_0(n)}{\sqrt{p^M}}.$

Proof. The proof was presented in [1]. We shall briefly sketch it. First we find a necessary and sufficient condition for the orthonormality of the set $\{\varphi_{M-j}(\cdot -mp^{M-j}), m=0, ..., p^j-1\}$:

$$\sum_{s=0}^{p^{M-j}-1} |\widehat{\varphi_{M-j}}(r+sp^j)|^2 = \frac{1}{p^j}, \qquad r = 0, ..., p^j - 1.$$
(3)

Let j = M - 1. Using (2), (3) and Definition 4 we see that the *p*-translations of φ_1 form an orthonormal basis of V_{M-1} . In fact:

$$\sum_{s=0}^{p-1} |\widehat{\varphi_1}(r+sp^{M-1})|^2 = \frac{\sum_{s=0}^{p-1} |\widehat{\varphi_0}(r+sp^{M-1})|^2}{p^M} = \frac{1}{p^{M-1}}, \quad r = 0, ..., p^{M-1} - 1$$

and thus Proposition 2 is valid for j = M - 1. Now let j = 0, ..., M - 2. We suppose that the set $\{\varphi_{M-j}(\cdot - kp^{M-j})\}_{k=0}^{p^j-1}$ is an orthonormal basis of V_j and we use (3) in combination with (1) and (2) to show that the p^{M-j+1} translations of the sequence $\varphi_{M-j+1}(n)$ form an orthonormal basis of V_{j-1} . The proof follows by induction. \Box **Proposition 3.** Let $\varphi(n)$ be a p^M -periodic sequence which satisfies the condition

$$\sum_{m=0}^{p^{M-1}-1} \varphi(k+mp)\overline{\varphi(k+(m-r)p)} = \begin{cases} 1/p, & r=0\\ 0, & r=1,...,p^{M-1}-1 \end{cases}$$

for k = 0, ..., p - 1, then $\varphi(n)$ is the scaling sequence of a p-adic MRA.

Proof. The proof was presented in [1]. \Box

3. The *p*-adic Sampling Sequence

Definition 5. We say that an M-dimensional subspace W of V has a sampling basis $\{s_0, ..., s_{M-1}\}$, if there exist M positive integers $0 \le n_1 < ... < n_M < N$ such that for any sequence $a(n) \in W$ we have:

$$a(n) = \sum_{j=0}^{M-1} a(n_j) s_j(n), \qquad 0 \le n \le N-1.$$

In particular, we say that W has a sampling sequence s(n) (which is N-periodic), if there exist M positive integers $0 \le n_1 < ... < n_M < N$ such that for any sequence $a(n) \in W$ we have:

$$a(n) = \sum_{j=0}^{M-1} a(n_j) s(n - n_j), \qquad 0 \le n \le N - 1.$$

Theorem 1. Let $\varphi_0(n)$ be a p^M -periodic sequence which produces a p-adic MRA $\{V_j\}_{j=0}^{M-1}$. If

$$\sum_{s=0}^{p-1}\widehat{\varphi_0}(r+sp^{M-1}) \neq 0, \qquad 0 \le r \le p^{M-1}-1, \tag{4}$$

then any sequence $f(n) \in V_j$ has the following sampling expansion:

$$f(n) = \sum_{m=0}^{p^{j}-1} f(mp^{M-j}) s_{M-j}(n-mp^{M-j}), \qquad n = 0, ..., p^{M} - 1.$$

where

$$s_{M-j}(\cdot) \leftrightarrow \frac{\sqrt{p^M}}{p^j} \cdot \frac{\widehat{\varphi_{M-j}}(\cdot)}{\sum_{r=0}^{p^{M-j-1}} \widehat{\varphi_{M-j}}(\cdot + r^j)}.$$
(5)

Obviously, the sequence $s_{M-j}(n)$ is the sampling sequence of the MRA subspace V_j .

202

Nikolaos D. Atreas

Proof. The proof was presented in [1]. We give here a slightly alternate proof. The hypothesis (4) implies that for any j = 0, ..., M - 1 there holds:

$$\sum_{s=0}^{p^{M-j}-1} \widehat{\varphi_{M-j}}(r+sp^j) \neq 0, \qquad 0 \le r \le p^j - 1.$$
(6)

By [2, p. 255], it suffices to prove that the set $\{K_j(\cdot, mp^{M-j}) : m = 0, ..., p^j - 1\}$ is a basis for V_j , where

$$K_j(n,m) = \sum_{r=0}^{p^j - 1} \varphi_{M-j}(n - rp^{M-j}) \overline{\varphi_{M-j}(m - rp^{M-j})}, \qquad 0 \le n, m \le N - 1,$$

is the reproducing kernel of V_j , or equivalently we try to find a positive constant A > 0 such that for any sequence of scalars $\{a_m\}_{m=0}^{p^j-1}$, we have

$$A\sum_{m=0}^{p^{j}-1}|a_{m}|^{2} \leq \left\|\sum_{m=0}^{p^{j}-1}a_{m}K_{j}(\cdot,mp^{M-j})\right\|_{2}^{2}.$$

After some calculations concerning the DFT of the kernel we find

$$\begin{split} \left\|\sum_{m=0}^{p^{j}-1} a_{m}\widehat{K_{j}}(\cdot, mp^{M-j})\right\|_{2}^{2} &= \frac{1}{p^{M-j}} \sum_{k=0}^{p^{j}-1} \sum_{l=0}^{p^{M-j}-1} |\widehat{a_{k}}|^{2} |\widehat{\varphi_{M-j}}(k+lp^{j})|^{2} \\ &\times \Big|\sum_{s=0}^{p^{M-j}-1} \widehat{\varphi_{M-j}}(k+sp^{j})\Big|^{2}. \end{split}$$

Thus $\{K_j(\cdot, mp^{M-j}) : m = 0, ..., p^j - 1\}$ is a basis of V_j , (see (6)) and it possesses a unique biorthonormal sequence $\{s_{M-j,m} : m = 0, ..., p^j - 1\}$ which is a sampling basis for V_j (see [2]). Finally,

$$\varphi_{M-j}(n) = \sum_{k=0}^{p^j - 1} \varphi_{M-j}(kp^{M-j}) s_{M-j}(n - kp^{M-j})$$

and the DFT of the equality above implies (5). \Box

4. Spectral Wavelet Decomposition

We expect that this work provides wavelet Analysis. We believe that the wavelet sequence associated with our MRA is the following:

Definition 6. Given the Dilation operator (D_{φ_0}) , then for l = 1, ..., p - 1 its associate sequence is given by

$$\widehat{\psi_{M-j}^l}(k) = \begin{cases} \widehat{\varphi_1}(k+lp^{M-1}), & j=M-1\\ \widehat{\psi_{M-j-1}^l}(pk)\widehat{\varphi_0}(k), & j=0,...,M-2. \end{cases}$$

Assuming that $\varphi_1(n)$ is an appropriately chosen scaling sequence of a *p*-adic MRA, we believe that each wavelet subspace W_j^l is the linear span of $\{\psi_{M-j}^l(\cdot - kp^{M-j}): k = 0, ..., p^j - 1\}$ and we can write

$$V_M = V_0 \bigoplus_{j=0}^{M-1} \bigoplus_{l=1}^{p-1} W_j^l,$$

which implies the following decomposition algorithm

$$s(n) = \sum_{j=0}^{M-1} \sum_{k=0}^{p^j-1} \sum_{l=0}^{p-1} \langle s(\cdot), \psi_{M-j}^l(\cdot - kp^{M-j}) \rangle \psi_{M-j}^l(n - kp^{M-j}) + \frac{1}{p^M} \sum_{k=0}^{p^M-1} s(k).$$

References

- [1] N. ATREAS AND C. KARANIKAS, Sampling formulas for spectral analysis on spaces of p^M -periodic sequences for computational applications of immune type, submitted.
- [2] A. I. ZAYED, "Advances in Shannon's Sampling Theory", CRC Press Inc., 1993.

NIKOLAOS D. ATREAS Department of Mathematics Aristotle University of Thessaloniki 54006 Thessaloniki GREECE *E-mail:* natreas@auth.gr

204