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Wavelet Decomposition and Sampling for p-adic
Multiresolution Analysis

Nikolaos D. Atreas

We define a p-adic Multiresolution Analysis (MRA) on the space of pM -
periodic sequences, where p,M ∈ Z+. We present the Sampling Theorem
on MRA subspaces and we discuss the existence of p-adic wavelets which
provide a variety of new Discrete Transforms.

1. Introduction

It is well-known that the Discrete Fourier Transform (DFT) is one of the
most widely used tools in communication, engineering and computational math-
ematics. Recall the following definition of the DFT of an N -periodic sequence
s(n):

ŝ(k) =
1√
N

N−1∑
n=0

s(n)e−2πink/N , k = 0, ..., N − 1.

The Inverse Discrete Fourier Transform is given by the formula:

s(n) =
1√
N

N−1∑
k=0

ŝ(k)e2πink/N , n = 0, ..., N − 1.

The DFT Analysis will be proven very useful for defining a Multiresolution
Analysis over L2(Z/(NZ)). Recall that a Multiresolution Analysis of L2(R)
(MRA), is a nested sequence {Vm ⊂ Vm+1,m ∈ Z} of closed subspaces of
L2(R) and a scaling function ϕ such that:

(i)
⋃
m Vm = L2(R) and

⋂
m Vm = {0};

(ii) f ∈ V0 ⇔ f(2m · ) ∈ Vm, m ∈ Z;

(iii) The set {ϕ( · − n), n ∈ Z} is an orthonormal basis of V0.
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Since in most practical applications only sampled data are available, it is
natural to wander if we can build a similar construction on spaces of periodic
sequences. In Section 2 we define a Multiresolution Analysis on the space of pM -
periodic sequences, so that we can be able to use two important advantages
of MRA’s: the existence of sampling expansions in MRA subspaces and a
Wavelet Decomposition algorithm. In Section 3 we discuss the Decomposition
algorithm.

2. The p-adic Multiresolution Analysis

Definition 1. Let p,M > 1 be positive integers. We define VM = {s(n) :
n = 0, ..., pM − 1} to be the pM -dimensional vector space of all complex pM -
periodic sequences with the usual orthonormal basis ek(n) = δn,k, where δn,k is
the Kronecker delta.

The main difficulty in defining a Multiresolution Analysis for spaces of pM -
periodic sequences is the notion of the Dilation operator for sequences. We give
the following:

Definition 2. Let p,M > 1 be positive integers and let ϕ0 be a pM -periodic
sequence. The Dilation operator with respect to the sequence ϕ0 is:

Dϕ0 : VM → VM ,

s→ (Dϕ0
s)(n) =

1√
pM

pM−1−1∑
k=0

ϕ0(n−kp)
p−1∑
m=0

s(k+mpM−1), n = 0, ..., pM−1,

or equivalently:

̂(Dϕ0s)(n) = ŝ(pn)ϕ̂0(n), n = 0, ..., pM − 1,

where ŝ(n) is the Discrete Fourier Transform of the pM -periodic sequence s(n).

Definition 3. We shall say that a p-adic Multiresolution Analysis (p-adic
MRA) of VM is a nested sequence {Vj : j = 0, ...,M − 1} of subspaces of VM
and a scaling sequence {ϕ1(n)} such that:

(i) {c(n) : c(n) = (α, ..., α), α ∈ C} = V0 ⊂ V1 ⊂ ... ⊂ VM−1 ⊂ VM;

(ii) Vj is the linear span of an orthonormal set {ϕM−j( · − kpM−j) : k =
0, ..., pj − 1}, where for j = M − 1 the scaling sequence {ϕ1(n)} is the
dilation of the sequence e0(n) = (1, 0, ..., 0) and for j = 0, ...,M − 2 the
sequence {ϕM−j(n)} is the dilation of the sequence {ϕM−j−1(n)}.
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Definition 4. Given the Dilation operator (Dϕ0
), its associate sequence is

given by

ϕM−j(n) =


ϕ0(n)√
pM

= (Dϕ0
ek)(n), j = M − 1

(Dϕ0ϕM−j−1)(n), j = 0, ...,M − 2.

The associate sequence is given by its DFT form in the following:

ϕ̂M−j(k) =


ϕ̂0(k)√
pM
, j = M − 1

̂ϕM−j−1(pk)ϕ̂0(k), j = 0, ...,M − 2
. (1)

Proposition 1. The Dilation operator Dϕ0
satisfies the following:

(i) (Dϕ0
T1s)(n) = (TpDϕ0

s)(n), where Tk : VM → VM , (Tks)(n) = s(n − k)
is the Translation operator for sequences;

(ii) ‖Dϕ0
‖2 = p1/2;

(iii) Let ϕ̂0(k1) = ... = ϕ̂0(km) = 0, 0 ≤ m < pN − 1. Then:

KerDϕ0 = {s(n) : ŝ(pn) = 0, n 6= ki};

(iv) Let s(n) ∈ Vj, then (Dϕ0
s)(n) ∈ Vj−1.

Proof. (i) It is an immediate consequence of Definition 2.

(ii)

‖Dϕ0s‖22 =

pM−1∑
n=0

|ŝ(pn)|2|ϕ̂0(n)|2 =

p−1∑
k=0

pM−1−1∑
m=0

|ŝ(pm)|2|ϕ̂0(m+ kpM−1)|2

= p

pM−1−1∑
m=0

|ŝ(pm)|2 ≤ p‖s( · )‖22.

Obviously:

‖Dϕ0
‖2 = sup

s∈VM

‖Dϕ0
s( · )‖2

‖s( · )‖2
≤ √p,

but we can find a sequence s1(n) to obtain equality. In fact, we define s1(n)
by its DFT form in the following:

ŝ1(n) =

{
1, n = pk
0, n 6= pk.

(iii) It is an immediate consequence of the fact that ̂(Dϕ0
s)(n) = ŝ(pn)ϕ̂0(n).
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(iv) Let s(n) ∈ Vj . Then:

(Dϕ0
s)(n) =

pj−1∑
k=0

ck(Dϕ0
TkpM−jϕM−j)(n) =

pj−1∑
k=0

ck(TkpM−j+1Dϕ0
ϕM−j)(n)

=

pj−1∑
k=0

ckϕM−j+1(n− kpM−j+1)

=

pj−1−1∑
l=0

(
p−1∑
r=0

cl+rpj−1

)
ϕM−j+1(n− lpM−j+1). �

Proposition 2. Let ϕ0 be a pM -periodic sequence and let the collection
{ϕM−j(n)}M−1j=0 be as in (1). If

p−1∑
s=0

|ϕ̂0(r + spM−1)|2 = p, r = 0, ..., pM−1 − 1, (2)

then:

(i) The collection {ϕM−j( · − kpM−j) : k = 0, ..., pj − 1}, (j = 0, ...,M − 1)
is an orthonormal basis of Vj;

(ii) The subspaces Vj form a p-adic MRA of VM with scaling sequence

ϕ1(n) = ϕ0(n)√
pM

.

Proof. The proof was presented in [1]. We shall briefly sketch it. First
we find a necessary and sufficient condition for the orthonormality of the set
{ϕM−j( · −mpM−j), m = 0, ..., pj − 1}:

pM−j−1∑
s=0

|ϕ̂M−j(r + spj)|2 =
1

pj
, r = 0, ..., pj − 1. (3)

Let j = M − 1. Using (2), (3) and Definition 4 we see that the p-translations
of ϕ1 form an orthonormal basis of VM−1. In fact:

p−1∑
s=0

|ϕ̂1(r+spM−1)|2 =

∑p−1
s=0 |ϕ̂0(r + spM−1)|2

pM
=

1

pM−1
, r = 0, ..., pM−1−1,

and thus Proposition 2 is valid for j = M − 1. Now let j = 0, ...,M − 2.

We suppose that the set {ϕM−j( · − kpM−j)}p
j−1
k=0 is an orthonormal basis of

Vj and we use (3) in combination with (1) and (2) to show that the pM−j+1

translations of the sequence ϕM−j+1(n) form an orthonormal basis of Vj−1.
The proof follows by induction. �
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Proposition 3. Let ϕ(n) be a pM -periodic sequence which satisfies the
condition

pM−1−1∑
m=0

ϕ(k +mp)ϕ(k + (m− r)p) =

{
1/p, r = 0
0, r = 1, ..., pM−1 − 1

for k = 0, ..., p− 1, then ϕ(n) is the scaling sequence of a p-adic MRA.

Proof. The proof was presented in [1]. �

3. The p-adic Sampling Sequence

Definition 5. We say that an M -dimensional subspace W of V has a
sampling basis {s0, ..., sM−1}, if there exist M positive integers 0 ≤ n1 < ... <
nM < N such that for any sequence a(n) ∈W we have:

a(n) =

M−1∑
j=0

a(nj)sj(n), 0 ≤ n ≤ N − 1.

In particular, we say that W has a sampling sequence s(n) (which is N-
periodic), if there exist M positive integers 0 ≤ n1 < ... < nM < N such
that for any sequence a(n) ∈W we have:

a(n) =

M−1∑
j=0

a(nj)s(n− nj), 0 ≤ n ≤ N − 1.

Theorem 1. Let ϕ0(n) be a pM -periodic sequence which produces a p-adic
MRA {Vj}M−1j=0 . If

p−1∑
s=0

ϕ̂0(r + spM−1) 6= 0, 0 ≤ r ≤ pM−1 − 1, (4)

then any sequence f(n) ∈ Vj has the following sampling expansion:

f(n) =

pj−1∑
m=0

f(mpM−j)sM−j(n−mpM−j), n = 0, ..., pM − 1,

where

sM−j( · )↔
√
pM

pj
· ϕ̂M−j( · )∑pM−j−1

r=0 ϕ̂M−j( · + rj)
. (5)

Obviously, the sequence sM−j(n) is the sampling sequence of the MRA sub-
space Vj.
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Proof. The proof was presented in [1]. We give here a slightly alternate
proof. The hypothesis (4) implies that for any j = 0, ...,M − 1 there holds:

pM−j−1∑
s=0

ϕ̂M−j(r + spj) 6= 0, 0 ≤ r ≤ pj − 1. (6)

By [2, p. 255], it suffices to prove that the set {Kj( · ,mpM−j) : m = 0, ..., pj−1}
is a basis for Vj , where

Kj(n,m) =

pj−1∑
r=0

ϕM−j(n− rpM−j)ϕM−j(m− rpM−j), 0 ≤ n,m ≤ N − 1,

is the reproducing kernel of Vj , or equivalrntly we try to find a positive constant

A > 0 such that for any sequence of scalars {am}p
j−1
m=0 , we have

A

pj−1∑
m=0

|am|2 ≤
∥∥∥∥ p

j−1∑
m=0

amKj( · ,mpM−j)
∥∥∥∥2
2

.

After some calculations concerning the DFT of the kernel we find

∥∥∥∥ p
j−1∑
m=0

amK̂j( · ,mpM−j)
∥∥∥∥2
2

=
1

pM−j

pj−1∑
k=0

pM−j−1∑
l=0

|âk|2|ϕ̂M−j(k + lpj)|2

×
∣∣∣∣ p

M−j−1∑
s=0

ϕ̂M−j(k + spj)

∣∣∣∣2.
Thus {Kj( · ,mpM−j) : m = 0, ..., pj − 1} is a basis of Vj , (see (6)) and it
possesses a unique biorthonormal sequence {sM−j,m : m = 0, ..., pj − 1} which
is a sampling basis for Vj (see [2]). Finally,

ϕM−j(n) =

pj−1∑
k=0

ϕM−j(kp
M−j)sM−j(n− kpM−j)

and the DFT of the equality above implies (5). �

4. Spectral Wavelet Decomposition

We expect that this work provides wavelet Analysis. We believe that the
wavelet sequence associated with our MRA is the following:
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Definition 6. Given the Dilation operator (Dϕ0
), then for l = 1, ..., p− 1

its associate sequence is given by

ψ̂lM−j(k) =

{
ϕ̂1(k + lpM−1), j = M − 1
̂ψlM−j−1(pk)ϕ̂0(k), j = 0, ...,M − 2.

Assuming that ϕ1(n) is an appropriately chosen scaling sequence of a p-
adic MRA, we believe that each wavelet subspace W l

j is the linear span of

{ψlM−j( · − kpM−j) : k = 0, ..., pj − 1} and we can write

VM = V0

M−1⊕
j=0

p−1⊕
l=1

W l
j ,

which implies the following decomposition algorithm

s(n) =

M−1∑
j=0

pj−1∑
k=0

p−1∑
l=0

〈s( · ), ψlM−j( · −kpM−j)〉ψlM−j(n−kpM−j)+
1

pM

pM−1∑
k=0

s(k).
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