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Given a function f , real-valued and continuous on [−1, 1], let Rn,mn

be the rational function of best uniform approximation of f on [−1, 1]
of order (n,mn). Let mn ≤ n, mn ≤ mn+1 ≤ mn + 1, n → ∞. In the
present paper, results dealing with the distribution of alternation points
of f −Rn,mn are provided.

1. Introduction

Let I := [−1, 1] and let the function f ∈ C(I) be real-valued on I. Through-
out this paper, we assume that f is not rational.

Set Pn for the class of polynomials with real coefficients of degree not ex-
ceeding n and Rn,m for the collection of all rational functions r = p/q, p ∈ Pn,
q ∈ Pm, q 6≡ 0.

Given a pair (n,m) of nonnegative integers (n,m ∈ N), letRn,m (= Rn,m(f))
be the rational function of best Chebyshev approximation of f on I in the class
Rn,m. Write Rn,m :=

Pn,m
Qn,m

, where both polynomials Pn,m and Qn,m do not

have common divisors and Qn,m(ζn,m,i) = 0, i = 1, . . . , kn,m ≤ m. Fix in an
arbitrary way a positive number R, R > 2, and normalize Qn,m in the way:

Qn,m(z) =
∏

|ζn,m,i|≤R

(z − ζn,m,i)
∏

|ζn,m,i|>R

(1− z/ζn,m,i).

Apparently, for every compact set K in C there is a positive constant C(K)
such that the inequality

‖Qn,m‖K ≤ C(K)m (1)

holds.
Set dn,m := min{n − degPn,m,m − degQn,m}. By Chebyshev’s alterna-

tion theorem [1], Rn,m is unique and is characterized by the existence of
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n + m + 2 − dn,m points of alternation y
(n,m)
i ; −1 ≤ y

(n,m)
0 < y

(n,m)
1 < · · · <

y
(n,m)
n+m+1−dn,m ≤ 1 and

(f−Rn,m)(y
(n,m)
i ) = δn,m(−1)iEn,m(f), i = 0, . . . , n+m+1−dn,m, δn,m = ±1.

In what follows, we shall consider sequences {Rn,mn} with mn ≤ n, mn ≤
mn+1 ≤ mn+1. For simplicity, we omit writingmn (i.e., En,mn := En, Qn,mn :=
Qn, etc.)

Recall the well-known fact [7] that there exists an infinite sequence Λ ⊂ N
such that

En + En+1

En − En+1
≤ Cn2 as n→∞, n ∈ Λ (2)

(C is a positive constant).
Write Pn,m(z) = Anz

n
n,m + . . . and set

Rn+1 −Rn =
Ãn+1Wn

Qn+1Qn
,

with Wn being a monic polynomial. It is easy to check that degWn = n+mn+
1− dn,mn , as well as that all its zeros are simple and interlace the alternation

points yn,i, i = 0, . . . , n+m+ 1− dn,mn . For Ãn+1 we have

Ãn+1 =


An+1

∏
|ζn,i|>R

(− 1
ζn,i

)−An
∏

|ζn+1,i|>R
(− 1

ζn+1,i
), if mn + 1 = mn+1

An+1

∏
|ζn,i|>R

(− 1
ζn,i

), if mn = mn+1.

(3)
We first estimate Ãn+1. After keeping track of (1), we obtain

|Ãn+1| ≤ Cmn2 (En + En+1)2n, n ≥ n1. (4)

Apparently,

(Rn+1 −Rn)(yn,i) (Rn+1 −Rn)(yn,i+1) < 0,

i = 0, . . . , n+mn − dn,mn
(5)

and

|(Rn+1 −Rn)(yn,i)| ≥ En − En+1, i = 0, . . . , n+mn + 1− dn,mn (6)

Fix now a number n ≥ n1 and introduce into considerations the quantity

ρn := inf
p∈Pn+mn−dn,mn

∥∥∥∥∥ Ãn+1z
n+mn+1−dn,mn

Qn(z)Qn+1(z)
− p(z)

Qn(z)Qn+1(z)

∥∥∥∥∥
I

.
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The set
{

p
QnQn+1

: p ∈ Pn+mn−dn,mn , Qn and Qn+1 − fixed polynomials
}

forms a set of dimension n+mn + 1− dn,mn that satisfies the Haar conditions.
Hence ([2])

ρn =

n+mn+1−dn,mn∑
i=0

∣∣∣αn,i( Ãn+1y
n+mn+1−dn,mn
n,i

Qn+1(yn,i)Qn(yn,i)
− p̃(yn,i)

QnQn+1)(yn,i)

)∣∣∣
n+mn+1−dn,mn∑

i=0

|αn,i|

(7)

where p̃ ∈ Pn+mn−dn,mn is arbitrary and

αn,i =
(Qn+1Qn)(yn,i)∏
j 6=i(yn,i − yn,j)

, i = 0, . . . , n+mn + 1− dn,mn . (8)

On the other hand, by (5) and (6),

ρn ≥ En − En+1. (9)

Let now P̃ be the polynomial of degree n + mn − dn,mn that interpolates

Ãn+1z
n+mn+1−dn,mn at yn,i, i = 1, . . . , n + mn + 1 − dn,mn . Replacing in (7)

p̃ by P̃ , we obtain

ρn =
1∑n+mn+1−dn,mn

i=0 |αn,i|
|Ãn+1|.

Taking now into account (9) and applying (4), we arrive at

1∑n+mn+1−dn,mn
i=0 |αn,i|

≥ Cmn3

En − En+1

2n(En + En+1)
.

Setting ωn(z) :=
∏n+mn+1−dn,mn
i=0 (z − yn,i) and combining (8) and (2), we

get for n ≥ n2, n ∈ Λ,

n+mn+1−dn,mn∑
i=0

|αn,i| =
n+mn+1−dn,mn∑

i=0

|(QnQn+1)(yn,i)|
|w′n(yn,i)|

≤ Cmn4 2nn2. (10)

Using the Lagrange interpolation formula, we obtain from (8) that

(QnQn+1)(z)

ωn(z)
=

n+mn+1−dn,mn∑
i=0

αn,i
z − yn,i

. (11)

This formula is valid for every z with ωn(z) 6= 0.
From here, by means of (10), we finally arrive at∣∣∣∣ (QnQn+1)(z)

ωn(z)

∣∣∣∣ ≤ Cmn5

2nn2

dist (z, I)
, n ≥ n2, n ∈ Λ. (12)
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2. Discrepancy Results

Let νn,mn be the probability measure that associates the mass 1/(n+mn+
2− dn,mn) with each of the points yn,i, i = 0, . . . , n+mn + 1− dn,mn , and µ –
the equilibrium measure on [−1, 1], that is: dµ = dx

π
√
1−x2

, x ∈ I.
The discrepancy D[νn,m − µ] between νn,m and µ is given by

D[νn,m − µ] := sup
1≤a<b≤1

|νn,m − µ|(a, b).

The first discrepancy result is the classical theorem of Kadec [7] about
polynomial approximation. M. Kadec found that for every ε > 0 there is a
positive constant c such that

D[νn,0 − µ] ≤ c 1

n1/2−ε
, n ∈ Λ.

Later, H.-P. Blatt [3] sharpened Kadec’s result, showing that

D[νn,0 − µ] ≤ c (log n)2

n
, n ∈ Λ. (13)

In the present paper, we will exploit formulas (11) - (12) to provide dis-
crepancy results dealing with the distribution of alternation points in rational
approximation.

Given a number ρ > 1, we set Eρ for the interior of the ellipse with foci at
±1 and axes 1/2(ρ± 1/ρ); Γρ := ∂Eρ.

Theorem 1. Let mn ≤ n, mn ≤ mn+1 ≤ mn+ 1 for n = 1, 2, . . . . Assume
there is an annulus Ar,R := {z, z ∈ ER − Er, 1 < r < R} such that Qn(z) 6= 0
for every n starting with some number n0 and z 6∈ Ar,R. Then there is a positive
constant C such that

D[νn,mn − µ] ≤ C
√

lnn

n
+
mn

n
, n ∈ Λ.

In the special case, when mn = m for every n ∈ N, we have

D[νn,m − µ] ≤ (log n)2

n
n ∈ Λ.

We note that the assumptions of Theorem 1 are satisfied if f is analytic on
I and admits a continuation into some ellipse as a meromorphic function with
exactly m poles inside the ellipse in question (multiplicities included). In this
case we get the same estimate as in (13) (cf. [6]).

Theorem 2. Under the same conditions on f and {mn}, assume mn =
o(n). Then there is a positive constant C such that

D[νn,mn − µ] ≤ C
√
mn lnn

n
, n ∈ Λ.
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3. Proofs

Lemma 1 ([5, p. 105]). Let pn ∈ Pn be a monic polynomial with simple
zeros ζi, i = 1, . . . , n on I. Assume

‖pn‖I ≤
an
2n

and |p′n(ζi)| ≥
1

bn2n
,

where an > 0 and bn > 1. Set cn := max{n, an, bn}. If cn ≤ en/e, then for the
measure νpn associated with ζi, i = 1, . . . , n we have

D[νpn − µ] ≤ log cn
n

log
n

log cn
.

Lemma 2 ([5]). Let pn ∈ Pn be a monic polynomial with simple zeros
ζi, i = 1, . . . , n on I such that

|p′n(ζi)| ≥
1

bn2n
, i = 1, . . . , n

with bn > 1. Then

D[νpn − µ] ≤ C
√

log(nbn)

n
.

Lemma 3 ([5]). Let n > 2, Ξn be a monic polynomial of degree n and the
points ξi, i = 1, . . . , n, be such that

−1 ≤ ξ1 < ξ2 < · · · < ξn−1 < ξn ≤ 1

and
Ξn(ξi) Ξn(ξi+1) < 0, i = 1, . . . , n− 1.

Set πn(z) :=
∏n
i=1(z − ξi). Then

‖πn‖I ≤ C̃n3 ‖Ξn‖I .

Lemma 4 ([5]). Assume, for n ∈ Λ and z ∈ Γ1+δ, δ > 0, sup Uνn,mn−µ ≤
α(δ). Then there is a positive constant c such that

D[νn,mn − µ] ≤ cα(δ)1/2, n ∈ Λ.

Proof of Theorem 1. The proof of the first part is a consequence of (10)
and Lemma 2, applied to the polynomials wn. The case mn = m,n = 1, 2, . . .
results from (11) and Lemmas 1 and 3, after taking into account the inequality
|An,m| ≥ Cm2n(En − En+1), n ∈ Λ.

Proof of Theorem 2. First note that the sequence νn,mn converges weakly
to µ, as n ∈ Λ [4]. We fix a number ρ > 1 and normalize the numerators Qn
in the way

Qn(z) =
∏

ζn,i∈Eρ

(z − ζn,i)
∏

ζn,i 6∈Eρ

(1− z/ζn,i) := qn(z)Q∗n(z).
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Cover each zero ζn,i of qn by a circle Ωn,i of radius 1/32mnn
2 and set Ωn :=

∪iΩn,i. It is easy to see that for every n there is a number κn, 1 < κn < 2,
such that (Ωn ∪ Ωn+1) ∩ Γ1+1/nκn = ∅. By means of (12), there is a constant
c1 such that

1

|ωn(z)|
≤ cmn1

2nn2

dist (z, I)
(32mnn

2)2mn , n ∈ Λ, z ∈ Eρ\ I \ Ωn∪ Ωn+1.

From here, we easily get

Uνn(z)− Uµ(z) ≤ c2mn
log n

n
, z ∈ Γ1+n−κn , n ≥ n1, n ∈ Λ.

Lemma 4 leads now to the statement of the theorem.
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