CONSTRUCTIVE THEORY OF FUNCTIONS, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2003, pp. 219-224.

Discrepancy Estimates and Rational Chebyshev Approximation

HANS-PETER BLATT, RENÉ GROTHMANN AND RALITZA KOVACHEVA

Given a function f, real-valued and continuous on [-1, 1], let R_{n,m_n} be the rational function of best uniform approximation of f on [-1, 1] of order (n, m_n) . Let $m_n \leq n, m_n \leq m_{n+1} \leq m_n + 1, n \to \infty$. In the present paper, results dealing with the distribution of alternation points of $f - R_{n,m_n}$ are provided.

1. Introduction

Let I := [-1, 1] and let the function $f \in C(I)$ be real-valued on I. Throughout this paper, we assume that f is not rational.

Set \mathcal{P}_n for the class of polynomials with real coefficients of degree not exceeding n and $\mathcal{R}_{n,m}$ for the collection of all rational functions r = p/q, $p \in \mathcal{P}_n$, $q \in \mathcal{P}_m$, $q \neq 0$.

Given a pair (n, m) of nonnegative integers $(n, m \in \mathbb{N})$, let $R_{n,m} (= R_{n,m}(f))$ be the rational function of best Chebyshev approximation of f on I in the class $\mathcal{R}_{n,m}$. Write $R_{n,m} := \frac{P_{n,m}}{Q_{n,m}}$, where both polynomials $P_{n,m}$ and $Q_{n,m}$ do not have common divisors and $Q_{n,m}(\zeta_{n,m,i}) = 0$, $i = 1, \ldots, k_{n,m} \leq m$. Fix in an arbitrary way a positive number R, R > 2, and normalize $Q_{n,m}$ in the way:

$$Q_{n,m}(z) = \prod_{|\zeta_{n,m,i}| \le R} (z - \zeta_{n,m,i}) \prod_{|\zeta_{n,m,i}| > R} (1 - z/\zeta_{n,m,i}).$$

Apparently, for every compact set K in \mathbb{C} there is a positive constant C(K) such that the inequality

$$\|Q_{n,m}\|_K \le C(K)^m \tag{1}$$

holds.

Set $d_{n,m} := \min\{n - \deg P_{n,m}, m - \deg Q_{n,m}\}$. By Chebyshev's alternation theorem [1], $R_{n,m}$ is unique and is characterized by the existence of

 $n + m + 2 - d_{n,m}$ points of alternation $y_i^{(n,m)}$; $-1 \le y_0^{(n,m)} < y_1^{(n,m)} < \cdots < y_{n+m+1-d_{n,m}}^{(n,m)} \le 1$ and

$$(f - R_{n,m})(y_i^{(n,m)}) = \delta_{n,m}(-1)^i E_{n,m}(f), \ i = 0, \dots, n + m + 1 - d_{n,m}, \ \delta_{n,m} = \pm 1.$$

In what follows, we shall consider sequences $\{R_{n,m_n}\}$ with $m_n \leq n, m_n \leq m_{n+1} \leq m_n+1$. For simplicity, we omit writing m_n (i.e., $E_{n,m_n} := E_n, Q_{n,m_n} := Q_n$, etc.)

Recall the well-known fact [7] that there exists an infinite sequence $\Lambda \subset \mathbb{N}$ such that

$$\frac{E_n + E_{n+1}}{E_n - E_{n+1}} \le Cn^2 \qquad \text{as } n \to \infty, \ n \in \Lambda$$
(2)

(C is a positive constant).

Write $P_{n,m}(z) = A_n z_{n,m}^n + \dots$ and set

$$R_{n+1} - R_n = \frac{\tilde{A}_{n+1}W_n}{Q_{n+1}Q_n},$$

with W_n being a monic polynomial. It is easy to check that deg $W_n = n + m_n + 1 - d_{n,m_n}$, as well as that all its zeros are simple and interlace the alternation points $y_{n,i}$, $i = 0, \ldots, n + m + 1 - d_{n,m_n}$. For \tilde{A}_{n+1} we have

$$\tilde{A}_{n+1} = \begin{cases} A_{n+1} \prod_{|\zeta_{n,i}| > R} \left(-\frac{1}{\zeta_{n,i}}\right) - A_n \prod_{|\zeta_{n+1,i}| > R} \left(-\frac{1}{\zeta_{n+1,i}}\right), & \text{if } m_n + 1 = m_{n+1} \\ A_{n+1} \prod_{|\zeta_{n,i}| > R} \left(-\frac{1}{\zeta_{n,i}}\right), & \text{if } m_n = m_{n+1}. \end{cases}$$

$$(3)$$

We first estimate \tilde{A}_{n+1} . After keeping track of (1), we obtain

$$|\tilde{A}_{n+1}| \le C_2^{m_n} (E_n + E_{n+1}) 2^n, \qquad n \ge n_1.$$
(4)

Apparently,

$$(R_{n+1} - R_n)(y_{n,i}) (R_{n+1} - R_n)(y_{n,i+1}) < 0,$$

$$i = 0, \dots, n + m_n - d_{n,m_n}$$
(5)

and

$$|(R_{n+1} - R_n)(y_{n,i})| \ge E_n - E_{n+1}, \qquad i = 0, \dots, n + m_n + 1 - d_{n,m_n} \tag{6}$$

Fix now a number $n \ge n_1$ and introduce into considerations the quantity

$$\rho_n := \inf_{p \in \mathcal{P}_{n+m_n - d_{n,m_n}}} \left\| \frac{\tilde{A}_{n+1} z^{n+m_n + 1 - d_{n,m_n}}}{Q_n(z) Q_{n+1}(z)} - \frac{p(z)}{Q_n(z) Q_{n+1}(z)} \right\|_I$$

220

Hans-Peter Blatt, René Grothmann and Ralitza Kovacheva

The set $\left\{\frac{p}{Q_nQ_{n+1}}: p \in \mathcal{P}_{n+m_n-d_{n,m_n}}, Q_n \text{ and } Q_{n+1} - \text{fixed polynomials}\right\}$ forms a set of dimension $n + m_n + 1 - d_{n,m_n}$ that satisfies the Haar conditions. Hence ([2])

$$\rho_{n} = \frac{\sum_{i=0}^{n+m_{n}+1-d_{n,m_{n}}} \left| \alpha_{n,i} \left(\frac{\tilde{A}_{n+1} y_{n,i}^{n+m_{n}+1-d_{n,m_{n}}}}{Q_{n+1}(y_{n,i})Q_{n}(y_{n,i})} - \frac{\tilde{p}(y_{n,i})}{Q_{n}Q_{n+1})(y_{n,i})} \right) \right| \\ \frac{1}{\sum_{i=0}^{n+m_{n}+1-d_{n,m_{n}}} |\alpha_{n,i}|} \tag{7}$$

where $\tilde{p} \in \mathcal{P}_{n+m_n-d_{n,m_n}}$ is arbitrary and

$$\alpha_{n,i} = \frac{(Q_{n+1}Q_n)(y_{n,i})}{\prod_{j \neq i} (y_{n,i} - y_{n,j})}, \qquad i = 0, \dots, n + m_n + 1 - d_{n,m_n}.$$
 (8)

On the other hand, by (5) and (6),

$$\rho_n \ge E_n - E_{n+1}.\tag{9}$$

Let now \tilde{P} be the polynomial of degree $n + m_n - d_{n,m_n}$ that interpolates $\tilde{A}_{n+1}z^{n+m_n+1-d_{n,m_n}}$ at $y_{n,i}$, $i = 1, \ldots, n + m_n + 1 - d_{n,m_n}$. Replacing in (7) \tilde{p} by \tilde{P} , we obtain

$$\rho_n = \frac{1}{\sum_{i=0}^{n+m_n+1-d_{n,m_n}} |\alpha_{n,i}|} |\tilde{A}_{n+1}|$$

Taking now into account (9) and applying (4), we arrive at

$$\frac{1}{\sum_{i=0}^{n+m_n+1-d_{n,m_n}} |\alpha_{n,i}|} \ge C_3^{m_n} \frac{E_n - E_{n+1}}{2^n (E_n + E_{n+1})}.$$

Setting $\omega_n(z) := \prod_{i=0}^{n+m_n+1-d_{n,m_n}} (z - y_{n,i})$ and combining (8) and (2), we get for $n \ge n_2, n \in \Lambda$,

$$\sum_{i=0}^{n+m_n+1-d_{n,m_n}} |\alpha_{n,i}| = \sum_{i=0}^{n+m_n+1-d_{n,m_n}} \frac{|(Q_n Q_{n+1})(y_{n,i})|}{|w_n'(y_{n,i})|} \le C_4^{m_n} \, 2^n n^2.$$
(10)

Using the Lagrange interpolation formula, we obtain from (8) that

$$\frac{(Q_n Q_{n+1})(z)}{\omega_n(z)} = \sum_{i=0}^{n+m_n+1-d_{n,m_n}} \frac{\alpha_{n,i}}{z - y_{n,i}}.$$
(11)

This formula is valid for every z with $\omega_n(z) \neq 0$.

From here, by means of (10), we finally arrive at

$$\left|\frac{(Q_n Q_{n+1})(z)}{\omega_n(z)}\right| \le C_5^{m_n} \frac{2^n n^2}{\operatorname{dist}(z,I)}, \qquad n \ge n_2, \ n \in \Lambda.$$
(12)

2. Discrepancy Results

Let ν_{n,m_n} be the probability measure that associates the mass $1/(n+m_n+2-d_{n,m_n})$ with each of the points $y_{n,i}$, $i=0,\ldots,n+m_n+1-d_{n,m_n}$, and μ – the equilibrium measure on [-1,1], that is: $d\mu = \frac{dx}{\pi\sqrt{1-x^2}}$, $x \in I$.

The discrepancy $D[\nu_{n,m} - \mu]$ between $\nu_{n,m}$ and μ is given by

$$D[\nu_{n,m} - \mu] := \sup_{1 \le a < b \le 1} |\nu_{n,m} - \mu|(a,b)|$$

The first discrepancy result is the classical theorem of Kadec [7] about polynomial approximation. M. Kadec found that for every $\varepsilon > 0$ there is a positive constant c such that

$$D[\nu_{n,0}-\mu] \le c \frac{1}{n^{1/2-\varepsilon}}, \qquad n \in \Lambda.$$

Later, H.-P. Blatt [3] sharpened Kadec's result, showing that

$$D[\nu_{n,0} - \mu] \le c \frac{(\log n)^2}{n}, \qquad n \in \Lambda.$$
(13)

In the present paper, we will exploit formulas (11) - (12) to provide discrepancy results dealing with the distribution of alternation points in rational approximation.

Given a number $\rho > 1$, we set \mathcal{E}_{ρ} for the interior of the ellipse with foci at ± 1 and axes $1/2(\rho \pm 1/\rho)$; $\Gamma_{\rho} := \partial \mathcal{E}_{\rho}$.

Theorem 1. Let $m_n \leq n, m_n \leq m_{n+1} \leq m_n + 1$ for n = 1, 2, ... Assume there is an annulus $\mathcal{A}_{r,R} := \{z, z \in \mathcal{E}_R - \mathcal{E}_r, 1 < r < R\}$ such that $Q_n(z) \neq 0$ for every n starting with some number n_0 and $z \notin \mathcal{A}_{r,R}$. Then there is a positive constant C such that

$$D[\nu_{n,m_n} - \mu] \le C \sqrt{\frac{\ln n}{n} + \frac{m_n}{n}}, \qquad n \in \Lambda.$$

In the special case, when $m_n = m$ for every $n \in \mathbf{N}$, we have

$$D[\nu_{n,m} - \mu] \le \frac{(\log n)^2}{n} \qquad n \in \Lambda.$$

We note that the assumptions of Theorem 1 are satisfied if f is analytic on I and admits a continuation into some ellipse as a meromorphic function with exactly m poles inside the ellipse in question (multiplicities included). In this case we get the same estimate as in (13) (cf. [6]).

Theorem 2. Under the same conditions on f and $\{m_n\}$, assume $m_n = o(n)$. Then there is a positive constant C such that

$$D[\nu_{n,m_n} - \mu] \le C \sqrt{\frac{m_n \ln n}{n}}, \qquad n \in \Lambda.$$

222

3. Proofs

Lemma 1 ([5, p. 105]). Let $p_n \in \mathcal{P}_n$ be a monic polynomial with simple zeros ζ_i , $i = 1, \ldots, n$ on I. Assume

$$\|p_n\|_I \leq \frac{a_n}{2^n}$$
 and $|p'_n(\zeta_i)| \geq \frac{1}{b_n 2^n},$

where $a_n > 0$ and $b_n > 1$. Set $c_n := \max\{n, a_n, b_n\}$. If $c_n \le e^{n/e}$, then for the measure ν_{p_n} associated with ζ_i , i = 1, ..., n we have

$$D[\nu_{p_n} - \mu] \le \frac{\log c_n}{n} \log \frac{n}{\log c_n}.$$

Lemma 2 ([5]). Let $p_n \in \mathcal{P}_n$ be a monic polynomial with simple zeros ζ_i , i = 1, ..., n on I such that

$$|p'_n(\zeta_i)| \ge \frac{1}{b_n 2^n}, \qquad i = 1, \dots, n$$

with $b_n > 1$. Then

$$D[\nu_{p_n} - \mu] \le C \sqrt{\frac{\log(nb_n)}{n}}.$$

Lemma 3 ([5]). Let n > 2, Ξ_n be a monic polynomial of degree n and the points ξ_i , i = 1, ..., n, be such that

$$-1 \le \xi_1 < \xi_2 < \dots < \xi_{n-1} < \xi_n \le 1$$

and

$$\Xi_n(\xi_i) \Xi_n(\xi_{i+1}) < 0, \qquad i = 1, \dots, n-1.$$

Set $\pi_n(z) := \prod_{i=1}^n (z - \xi_i)$. Then

$$\|\pi_n\|_I \le \tilde{C}n^3 \|\Xi_n\|_I.$$

Lemma 4 ([5]). Assume, for $n \in \Lambda$ and $z \in \Gamma_{1+\delta}$, $\delta > 0$, sup $U^{\nu_{n,m_n}-\mu} \leq \alpha(\delta)$. Then there is a positive constant c such that

$$D[\nu_{n,m_n} - \mu] \le c\alpha(\delta)^{1/2}, \qquad n \in \Lambda.$$

Proof of Theorem 1. The proof of the first part is a consequence of (10) and Lemma 2, applied to the polynomials w_n . The case $m_n = m, n = 1, 2, ...$ results from (11) and Lemmas 1 and 3, after taking into account the inequality $|A_{n,m}| \geq C^m 2^n (E_n - E_{n+1}), n \in \Lambda$.

Proof of Theorem 2. First note that the sequence ν_{n,m_n} converges weakly to μ , as $n \in \Lambda$ [4]. We fix a number $\rho > 1$ and normalize the numerators Q_n in the way

$$Q_n(z) = \prod_{\zeta_{n,i} \in \overline{\mathcal{E}}_\rho} (z - \zeta_{n,i}) \prod_{\zeta_{n,i} \notin \mathcal{E}_\rho} (1 - z/\zeta_{n,i}) := q_n(z) Q_n^*(z).$$

Cover each zero $\zeta_{n,i}$ of q_n by a circle $\Omega_{n,i}$ of radius $1/32m_nn^2$ and set $\Omega_n := \bigcup_i \Omega_{n,i}$. It is easy to see that for every *n* there is a number κ_n , $1 < \kappa_n < 2$, such that $(\Omega_n \cup \Omega_{n+1}) \cap \Gamma_{1+1/n^{\kappa_n}} = \emptyset$. By means of (12), there is a constant c_1 such that

$$\frac{1}{|\omega_n(z)|} \le c_1^{m_n} \frac{2^n n^2}{\operatorname{dist}(z,I)} (32m_n n^2)^{2m_n}, \qquad n \in \Lambda, \ z \in \mathcal{E}_{\rho} \setminus I \setminus \Omega_n \cup \Omega_{n+1}.$$

From here, we easily get

$$U^{\nu_n}(z) - U^{\mu}(z) \le c_2 m_n \frac{\log n}{n}, \qquad z \in \Gamma_{1+n^{-\kappa_n}}, \ n \ge n_1, \ n \in \Lambda.$$

Lemma 4 leads now to the statement of the theorem.

References

- [1] N. I. AKHIEZER, "Theory of Approximation", Nauka, Moscow, 1966.
- [2] G. MEINARDUS, "Approximationentheorie", Springer Monographs in Math, 1967.
- [3] H.-P. BLATT, On the distribution of simple zeros of polynomials, J. Approx. Theory 69, 3 (1992), 250–269.
- [4] P. BORWEIN, R. GROTHMANN, A. KROO, AND E. SAFF, The density of alternation points in rational approximation, *Proc. AMS* 105 (1989), 881–888.
- [5] VL. ANDRIEVSKI AND H.-P. BLATT, "Discrepancy of Sign Measures and Polynomial Approximation", Springer Monographs in Math, 2002.
- [6] H.-P. BLATT, R. GROTHMANN, AND R. K. KOVACHEVA, On the distribution of alternation points in uniform rational approximation, C. R. Acad. Bulgare Sci., Tome 55, 8 (2002), 5–10.
- [7] M. I. KADEC, On the distribution of points of maximal deviation in the approximation of continuous functions by polynomials, Uspekhi Mat. Nauk 15 (1960), 199–202.

HANS-PETER BLATT, RENÉ GROTHMANN Katholische Universität Eichstätt Mathematisch - Geographische Fakultät 85072 Eichstätt GERMANY *E-mail:* mga0090ku-eichstaett.de, Grothm0ku-eichstaett.de

RALITZA K. KOVACHEVA Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia BULGARIA *E-mail:* rkovach@math.bas.bg

224