Discrepancy Estimates and Rational Chebyshev Approximation

Hans-Peter Blatt, René Grothmann and
Ralitza Kovacheva

Abstract

Given a function f, real-valued and continuous on $[-1,1]$, let $R_{n, m_{n}}$ be the rational function of best uniform approximation of f on $[-1,1]$ of order $\left(n, m_{n}\right)$. Let $m_{n} \leq n, m_{n} \leq m_{n+1} \leq m_{n}+1, n \rightarrow \infty$. In the present paper, results dealing with the distribution of alternation points of $f-R_{n, m_{n}}$ are provided.

1. Introduction

Let $I:=[-1,1]$ and let the function $f \in C(I)$ be real-valued on I. Throughout this paper, we assume that f is not rational.

Set \mathcal{P}_{n} for the class of polynomials with real coefficients of degree not exceeding n and $\mathcal{R}_{n, m}$ for the collection of all rational functions $r=p / q, p \in \mathcal{P}_{n}$, $q \in \mathcal{P}_{m}, q \not \equiv 0$.

Given a pair (n, m) of nonnegative integers $(n, m \in \mathbb{N})$, let $R_{n, m}\left(=R_{n, m}(f)\right)$ be the rational function of best Chebyshev approximation of f on I in the class $\mathcal{R}_{n, m}$. Write $R_{n, m}:=\frac{P_{n, m}}{Q_{n, m}}$, where both polynomials $P_{n, m}$ and $Q_{n, m}$ do not have common divisors and $Q_{n, m}\left(\zeta_{n, m, i}\right)=0, i=1, \ldots, k_{n, m} \leq m$. Fix in an arbitrary way a positive number $R, R>2$, and normalize $Q_{n, m}$ in the way:

$$
Q_{n, m}(z)=\prod_{\left|\zeta_{n, m, i}\right| \leq R}\left(z-\zeta_{n, m, i}\right) \prod_{\left|\zeta_{n, m, i}\right|>R}\left(1-z / \zeta_{n, m, i}\right) .
$$

Apparently, for every compact set K in \mathbf{C} there is a positive constant $C(K)$ such that the inequality

$$
\begin{equation*}
\left\|Q_{n, m}\right\|_{K} \leq C(K)^{m} \tag{1}
\end{equation*}
$$

holds.
Set $d_{n, m}:=\min \left\{n-\operatorname{deg} P_{n, m}, m-\operatorname{deg} Q_{n, m}\right\}$. By Chebyshev's alternation theorem [1], $R_{n, m}$ is unique and is characterized by the existence of
$n+m+2-d_{n, m}$ points of alternation $y_{i}^{(n, m)} ;-1 \leq y_{0}^{(n, m)}<y_{1}^{(n, m)}<\cdots<$ $y_{n+m+1-d_{n, m}}^{(n, m)} \leq 1$ and
$\left(f-R_{n, m}\right)\left(y_{i}^{(n, m)}\right)=\delta_{n, m}(-1)^{i} E_{n, m}(f), i=0, \ldots, n+m+1-d_{n, m}, \delta_{n, m}= \pm 1$.
In what follows, we shall consider sequences $\left\{R_{n, m_{n}}\right\}$ with $m_{n} \leq n, m_{n} \leq$ $m_{n+1} \leq m_{n}+1$. For simplicity, we omit writing m_{n} (i.e., $E_{n, m_{n}}:=E_{n}, Q_{n, m_{n}}:=$ Q_{n}, etc.)

Recall the well-known fact [7] that there exists an infinite sequence $\Lambda \subset \mathbb{N}$ such that

$$
\begin{equation*}
\frac{E_{n}+E_{n+1}}{E_{n}-E_{n+1}} \leq C n^{2} \quad \text { as } n \rightarrow \infty, n \in \Lambda \tag{2}
\end{equation*}
$$

(C is a positive constant).
Write $P_{n, m}(z)=A_{n} z_{n, m}^{n}+\ldots$ and set

$$
R_{n+1}-R_{n}=\frac{\tilde{A}_{n+1} W_{n}}{Q_{n+1} Q_{n}}
$$

with W_{n} being a monic polynomial. It is easy to check that $\operatorname{deg} W_{n}=n+m_{n}+$ $1-d_{n, m_{n}}$, as well as that all its zeros are simple and interlace the alternation points $y_{n, i}, i=0, \ldots, n+m+1-d_{n, m_{n}}$. For \tilde{A}_{n+1} we have

$$
\tilde{A}_{n+1}= \begin{cases}A_{n+1} \prod_{\left|\zeta_{n, i}\right|>R}\left(-\frac{1}{\zeta_{n, i}}\right)-A_{n} \prod_{\left|\zeta_{n+1, i}\right|>R}\left(-\frac{1}{\zeta_{n+1, i}}\right), & \text { if } m_{n}+1=m_{n+1} \tag{3}\\ A_{n+1} \prod_{\left|\zeta_{n, i}\right|>R}\left(-\frac{1}{\zeta_{n, i}}\right), & \text { if } m_{n}=m_{n+1}\end{cases}
$$

We first estimate \tilde{A}_{n+1}. After keeping track of (1), we obtain

$$
\begin{equation*}
\left|\tilde{A}_{n+1}\right| \leq C_{2}^{m_{n}}\left(E_{n}+E_{n+1}\right) 2^{n}, \quad n \geq n_{1} \tag{4}
\end{equation*}
$$

Apparently,

$$
\begin{array}{r}
\left(R_{n+1}-R_{n}\right)\left(y_{n, i}\right)\left(R_{n+1}-R_{n}\right)\left(y_{n, i+1}\right)<0 \tag{5}\\
i=0, \ldots, n+m_{n}-d_{n, m_{n}}
\end{array}
$$

and

$$
\begin{equation*}
\left|\left(R_{n+1}-R_{n}\right)\left(y_{n, i}\right)\right| \geq E_{n}-E_{n+1}, \quad i=0, \ldots, n+m_{n}+1-d_{n, m_{n}} \tag{6}
\end{equation*}
$$

Fix now a number $n \geq n_{1}$ and introduce into considerations the quantity

$$
\rho_{n}:=\inf _{p \in \mathcal{P}_{n+m_{n}-d_{n, m_{n}}}}\left\|\frac{\tilde{A}_{n+1} z^{n+m_{n}+1-d_{n, m_{n}}}}{Q_{n}(z) Q_{n+1}(z)}-\frac{p(z)}{Q_{n}(z) Q_{n+1}(z)}\right\|_{I}
$$

The set $\left\{\frac{p}{Q_{n} Q_{n+1}}: p \in \mathcal{P}_{n+m_{n}-d_{n, m_{n}}}, Q_{n}\right.$ and $Q_{n+1}-$ fixed polynomials $\}$ forms a set of dimension $n+m_{n}+1-d_{n, m_{n}}$ that satisfies the Haar conditions. Hence ([2])

$$
\begin{equation*}
\rho_{n}=\frac{\sum_{i=0}^{n+m_{n}+1-d_{n, m_{n}}}\left|\alpha_{n, i}\left(\frac{\tilde{A}_{n+1} y_{n, i}^{n+m_{n}+1-d_{n, m_{n}}}}{Q_{n+1}\left(y_{n, i}\right) Q_{n}\left(y_{n, i}\right)}-\frac{\tilde{p}\left(y_{n, i}\right)}{\left.Q_{n} Q_{n+1}\right)\left(y_{n, i}\right)}\right)\right|}{\sum_{i=0}^{n+m_{n}+1-d_{n, m_{n}}}\left|\alpha_{n, i}\right|} \tag{7}
\end{equation*}
$$

where $\tilde{p} \in \mathcal{P}_{n+m_{n}-d_{n, m_{n}}}$ is arbitrary and

$$
\begin{equation*}
\alpha_{n, i}=\frac{\left(Q_{n+1} Q_{n}\right)\left(y_{n, i}\right)}{\prod_{j \neq i}\left(y_{n, i}-y_{n, j}\right)}, \quad i=0, \ldots, n+m_{n}+1-d_{n, m_{n}} \tag{8}
\end{equation*}
$$

On the other hand, by (5) and (6),

$$
\begin{equation*}
\rho_{n} \geq E_{n}-E_{n+1} \tag{9}
\end{equation*}
$$

Let now \tilde{P} be the polynomial of degree $n+m_{n}-d_{n, m_{n}}$ that interpolates $\tilde{A}_{n+1} z^{n+m_{n}+1-d_{n, m_{n}}}$ at $y_{n, i}, i=1, \ldots, n+m_{n}+1-d_{n, m_{n}}$. Replacing in (7) \tilde{p} by \tilde{P}, we obtain

$$
\rho_{n}=\frac{1}{\sum_{i=0}^{n+m_{n}+1-d_{n, m_{n}}}\left|\alpha_{n, i}\right|}\left|\tilde{A}_{n+1}\right| .
$$

Taking now into account (9) and applying (4), we arrive at

$$
\frac{1}{\sum_{i=0}^{n+m_{n}+1-d_{n, m_{n}}}\left|\alpha_{n, i}\right|} \geq C_{3}^{m_{n}} \frac{E_{n}-E_{n+1}}{2^{n}\left(E_{n}+E_{n+1}\right)}
$$

Setting $\omega_{n}(z):=\prod_{i=0}^{n+m_{n}+1-d_{n, m_{n}}}\left(z-y_{n, i}\right)$ and combining (8) and (2), we get for $n \geq n_{2}, n \in \Lambda$,

$$
\begin{equation*}
\sum_{i=0}^{n+m_{n}+1-d_{n, m_{n}}}\left|\alpha_{n, i}\right|=\sum_{i=0}^{n+m_{n}+1-d_{n, m_{n}}} \frac{\left|\left(Q_{n} Q_{n+1}\right)\left(y_{n, i}\right)\right|}{\left|w_{n}^{\prime}\left(y_{n, i}\right)\right|} \leq C_{4}^{m_{n}} 2^{n} n^{2} . \tag{10}
\end{equation*}
$$

Using the Lagrange interpolation formula, we obtain from (8) that

$$
\begin{equation*}
\frac{\left(Q_{n} Q_{n+1}\right)(z)}{\omega_{n}(z)}=\sum_{i=0}^{n+m_{n}+1-d_{n, m_{n}}} \frac{\alpha_{n, i}}{z-y_{n, i}} . \tag{11}
\end{equation*}
$$

This formula is valid for every z with $\omega_{n}(z) \neq 0$.
From here, by means of (10), we finally arrive at

$$
\begin{equation*}
\left|\frac{\left(Q_{n} Q_{n+1}\right)(z)}{\omega_{n}(z)}\right| \leq C_{5}^{m_{n}} \frac{2^{n} n^{2}}{\operatorname{dist}(z, I)}, \quad n \geq n_{2}, n \in \Lambda . \tag{12}
\end{equation*}
$$

2. Discrepancy Results

Let $\nu_{n, m_{n}}$ be the probability measure that associates the mass $1 /\left(n+m_{n}+\right.$ $2-d_{n, m_{n}}$) with each of the points $y_{n, i}, i=0, \ldots, n+m_{n}+1-d_{n, m_{n}}$, and $\mu-$ the equilibrium measure on $[-1,1]$, that is: $d \mu=\frac{d x}{\pi \sqrt{1-x^{2}}}, x \in I$.

The discrepancy $D\left[\nu_{n, m}-\mu\right]$ between $\nu_{n, m}$ and μ is given by

$$
D\left[\nu_{n, m}-\mu\right]:=\sup _{1 \leq a<b \leq 1}\left|\nu_{n, m}-\mu\right|(a, b) .
$$

The first discrepancy result is the classical theorem of Kadec [7] about polynomial approximation. M. Kadec found that for every $\varepsilon>0$ there is a positive constant c such that

$$
D\left[\nu_{n, 0}-\mu\right] \leq c \frac{1}{n^{1 / 2-\varepsilon}}, \quad n \in \Lambda .
$$

Later, H.-P. Blatt [3] sharpened Kadec's result, showing that

$$
\begin{equation*}
D\left[\nu_{n, 0}-\mu\right] \leq c \frac{(\log n)^{2}}{n}, \quad n \in \Lambda \tag{13}
\end{equation*}
$$

In the present paper, we will exploit formulas (11) - (12) to provide discrepancy results dealing with the distribution of alternation points in rational approximation.

Given a number $\rho>1$, we set \mathcal{E}_{ρ} for the interior of the ellipse with foci at ± 1 and axes $1 / 2(\rho \pm 1 / \rho) ; \Gamma_{\rho}:=\partial \mathcal{E}_{\rho}$.

Theorem 1. Let $m_{n} \leq n, m_{n} \leq m_{n+1} \leq m_{n}+1$ for $n=1,2, \ldots$ Assume there is an annulus $\mathcal{A}_{r, R}:=\left\{z, z \in \mathcal{E}_{R}-\mathcal{E}_{r}, 1<r<R\right\}$ such that $Q_{n}(z) \neq 0$ for every n starting with some number n_{0} and $z \notin \mathcal{A}_{r, R}$. Then there is a positive constant C such that

$$
D\left[\nu_{n, m_{n}}-\mu\right] \leq C \sqrt{\frac{\ln n}{n}+\frac{m_{n}}{n}}, \quad n \in \Lambda
$$

In the special case, when $m_{n}=m$ for every $n \in \mathbf{N}$, we have

$$
D\left[\nu_{n, m}-\mu\right] \leq \frac{(\log n)^{2}}{n} \quad n \in \Lambda
$$

We note that the assumptions of Theorem 1 are satisfied if f is analytic on I and admits a continuation into some ellipse as a meromorphic function with exactly m poles inside the ellipse in question (multiplicities included). In this case we get the same estimate as in (13) (cf. [6]).

Theorem 2. Under the same conditions on f and $\left\{m_{n}\right\}$, assume $m_{n}=$ $o(n)$. Then there is a positive constant C such that

$$
D\left[\nu_{n, m_{n}}-\mu\right] \leq C \sqrt{\frac{m_{n} \ln n}{n}}, \quad n \in \Lambda
$$

3. Proofs

Lemma 1 ([5, p. 105]). Let $p_{n} \in \mathcal{P}_{n}$ be a monic polynomial with simple $z \operatorname{eros} \zeta_{i}, i=1, \ldots, n$ on I. Assume

$$
\left\|p_{n}\right\|_{I} \leq \frac{a_{n}}{2^{n}} \quad \text { and } \quad\left|p_{n}^{\prime}\left(\zeta_{i}\right)\right| \geq \frac{1}{b_{n} 2^{n}}
$$

where $a_{n}>0$ and $b_{n}>1$. Set $c_{n}:=\max \left\{n, a_{n}, b_{n}\right\}$. If $c_{n} \leq e^{n / e}$, then for the measure $\nu_{p_{n}}$ associated with $\zeta_{i}, i=1, \ldots, n$ we have

$$
D\left[\nu_{p_{n}}-\mu\right] \leq \frac{\log c_{n}}{n} \log \frac{n}{\log c_{n}}
$$

Lemma 2 ([5]). Let $p_{n} \in \mathcal{P}_{n}$ be a monic polynomial with simple zeros $\zeta_{i}, i=1, \ldots, n$ on I such that

$$
\left|p_{n}^{\prime}\left(\zeta_{i}\right)\right| \geq \frac{1}{b_{n} 2^{n}}, \quad i=1, \ldots, n
$$

with $b_{n}>1$. Then

$$
D\left[\nu_{p_{n}}-\mu\right] \leq C \sqrt{\frac{\log \left(n b_{n}\right)}{n}}
$$

Lemma 3 ([5]). Let $n>2, \Xi_{n}$ be a monic polynomial of degree n and the points $\xi_{i}, i=1, \ldots, n$, be such that

$$
-1 \leq \xi_{1}<\xi_{2}<\cdots<\xi_{n-1}<\xi_{n} \leq 1
$$

and

$$
\Xi_{n}\left(\xi_{i}\right) \Xi_{n}\left(\xi_{i+1}\right)<0, \quad i=1, \ldots, n-1
$$

Set $\pi_{n}(z):=\prod_{i=1}^{n}\left(z-\xi_{i}\right)$. Then

$$
\left\|\pi_{n}\right\|_{I} \leq \tilde{C} n^{3}\left\|\Xi_{n}\right\|_{I}
$$

Lemma 4 ([5]). Assume, for $n \in \Lambda$ and $z \in \Gamma_{1+\delta}, \delta>0$, $\sup U^{\nu_{n, m_{n}}-\mu} \leq$ $\alpha(\delta)$. Then there is a positive constant c such that

$$
D\left[\nu_{n, m_{n}}-\mu\right] \leq c \alpha(\delta)^{1 / 2}, \quad n \in \Lambda .
$$

Proof of Theorem 1. The proof of the first part is a consequence of (10) and Lemma 2, applied to the polynomials w_{n}. The case $m_{n}=m, n=1,2, \ldots$ results from (11) and Lemmas 1 and 3, after taking into account the inequality $\left|A_{n, m}\right| \geq C^{m} 2^{n}\left(E_{n}-E_{n+1}\right), n \in \Lambda$.

Proof of Theorem 2. First note that the sequence $\nu_{n, m_{n}}$ converges weakly to μ, as $n \in \Lambda$ [4]. We fix a number $\rho>1$ and normalize the numerators Q_{n} in the way

$$
Q_{n}(z)=\prod_{\zeta_{n, i} \in \overline{\mathcal{E}}_{\rho}}\left(z-\zeta_{n, i}\right) \prod_{\zeta_{n, i} \notin \mathcal{E}_{\rho}}\left(1-z / \zeta_{n, i}\right):=q_{n}(z) Q_{n}^{*}(z) .
$$

Cover each zero $\zeta_{n, i}$ of q_{n} by a circle $\Omega_{n, i}$ of radius $1 / 32 m_{n} n^{2}$ and set $\Omega_{n}:=$ $\cup_{i} \Omega_{n, i}$. It is easy to see that for every n there is a number $\kappa_{n}, 1<\kappa_{n}<2$, such that $\left(\Omega_{n} \cup \Omega_{n+1}\right) \cap \Gamma_{1+1 / n^{\kappa n}}=\emptyset$. By means of (12), there is a constant c_{1} such that

$$
\frac{1}{\left|\omega_{n}(z)\right|} \leq c_{1}^{m_{n}} \frac{2^{n} n^{2}}{\operatorname{dist}(z, I)}\left(32 m_{n} n^{2}\right)^{2 m_{n}}, \quad n \in \Lambda, z \in \mathcal{E}_{\rho} \backslash I \backslash \Omega_{n} \cup \Omega_{n+1}
$$

From here, we easily get

$$
U^{\nu_{n}}(z)-U^{\mu}(z) \leq c_{2} m_{n} \frac{\log n}{n}, \quad z \in \Gamma_{1+n^{-\kappa_{n}}}, n \geq n_{1}, n \in \Lambda
$$

Lemma 4 leads now to the statement of the theorem.

References

[1] N. I. Akhiezer, "Theory of Approximation", Nauka, Moscow, 1966.
[2] G. Meinardus, "Approximationentheorie", Springer Monographs in Math, 1967.
[3] H.-P. Blatt, On the distribution of simple zeros of polynomials, J. Approx. Theory 69, 3 (1992), 250-269.
[4] P. Borwein, R. Grothmann, A. Kroo, and E. Saff, The density of alternation points in rational approximation, Proc. AMS 105 (1989), 881-888.
[5] Vl. Andrievski and H.-P. Blatt, "Discrepancy of Sign Measures and Polynomial Approximation", Springer Monographs in Math, 2002.
[6] H.-P. Blatt, R. Grothmann, and R. K. Kovacheva, On the distribution of alternation points in uniform rational approximation, C. R. Acad. Bulgare Sci., Tome 55, 8 (2002), 5-10.
[7] M. I. Kadec, On the distribution of points of maximal deviation in the approximation of continuous functions by polynomials, Uspekhi Mat. Nauk 15 (1960), 199-202.

Hans-Peter Blatt, René Grothmann

Katholische Universität Eichstätt
Mathematisch - Geographische Fakultät
85072 Eichstätt
GERMANY
E-mail: mga009@ku-eichstaett.de, Grothm@ku-eichstaett.de
Ralitza K. Kovacheva
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
1113 Sofia
BULGARIA
E-mail: rkovach@math.bas.bg

