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Discrepancy Estimates and Rational Chebyshev
Approximation

HANS-PETER BLATT, RENE GROTHMANN AND
RALITZA KOVACHEVA

Given a function f, real-valued and continuous on [—1,1], let Ry m.,
be the rational function of best uniform approximation of f on [—1,1]
of order (n,my). Let mp < n, mp < Mmpy1 < mp + 1, n — oco. In the
present paper, results dealing with the distribution of alternation points
of f — Rpn,m,, are provided.

1. Introduction

Let I := [—1,1] and let the function f € C(I) be real-valued on I. Through-
out this paper, we assume that f is not rational.

Set P, for the class of polynomials with real coefficients of degree not ex-
ceeding n and R, for the collection of all rational functions r = p/q, p € P,
q € Pm, ¢ Z0.

Given a pair (n, m) of nonnegative integers (n, m € N),let Ry, m (= Rum(f))
be the rational function of best Chebyshev approximation of f on I in the class
Rp,m- Write R, 1= 5’::’:, where both polynomials P, ,, and @, ., do not

have common divisors and Qnm(Comyi) =0, i =1,...,kypm < m. Fix in an
arbitrary way a positive number R, R > 2, and normalize @), », in the way:

Qn,m(z) = H (Z - Cn,m,i) H (1 - Z/Cn,m,i)~

[Cnym, il <R [Cnym,i| >R

Apparently, for every compact set K in C there is a positive constant C'(K)
such that the inequality

1@n.mllx < C(K)™ (1)

holds.
Set dpm = min{n — deg P, m,m — deg Qpn m}. By Chebyshev’s alterna-
tion theorem [1], R, ., is unique and is characterized by the existence of
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n +m+ 2 — dy,,, points of alternation yl("’m); -1< yé”’m) < y%n’m)

(n,m)
Yntmt1—dp o < 1 and

< e <&

(F=Rno) 0™ = 6 (1) By (f), i =0,... ,ntm+1—dpm, Spm = =£L.

In what follows, we shall consider sequences { Ry, i, } with m, <n, m, <
M1 < my+1. For simplicity, we omit writing m,, (i.e., Enm, ‘= En, Qun.m, =
Qn, etc.)

Recall the well-known fact [7] that there exists an infinite sequence A C N
such that

En + En+1

By — By < Cn? asn—o00, n €A (2)

(C is a positive constant).
Write P, (2) = Anzy ,, + ... and set

An+1Wn
Rn - Rn =5 A >
i Qn+1Qn

with W,, being a monic polynomial. It is easy to check that deg W,, = n+m,, +
1 —dy,m, , as well as that all its zeros are simple and interlace the alternation
points ypn i, 1 =0,...,n+m+1—dy, m,. For A,11 we have

An+1 H (—i) — An H (_Cnil . )7 lf mpy + 1= Mp+1
~ [Cn il >R ' [Cnt1,i|>R '
An+1 - 1 .
Anyr 1 (_m)’ if my, = mpq1.
|Cn,i|>R '

(3)

We first estimate A,, ;1. After keeping track of (1), we obtain

|Api1] < CP(Ep + Eny1)2",  n>ny. (4)
Apparently,
(Rng1 — Rn)(Wn,i) (Rny1 — Bi) (Yn,iv1) <0, (5)
i=0,....,n+my —dpm,
and

[(Rnt1 — Rn)(Yn,i)| > En — Enga, 1=0,....,n+mp+1—dym, (6)

Fix now a number n > n; and introduce into considerations the quantity

An+lzn+mn+1_dn,7nn p(Z)

Qn(2)Qn11(2) @n(2)Qni1(2)

Pn = inf

pepn+m7z —dn,my

I
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The set {m P € Putmy,—dy.m, » @n and Q1 — fixed polynomials}

forms a set of dimension n 4+ m,, +1 —d,, , that satisfies the Haar conditions.
Hence ([2])

n+mp+1—dn, m, bt n+mp+1l—dn m, -
Z o '(AnJrlyn,i _ p(yn,z) )’
—~ N Qa1 (W) Qn(ni)  QuQnt1) (i)
Pn = ntmp+1—dn, m, (7)
Z |t i
=0

where p € Prim, —a is arbitrary and

n, My,

g = ~@rt1Qn) () i=0,..,n+my+1—dym,. (8

Hj;éi(yn,i — Ynj)
On the other hand, by (5) and (6),

Pn Z En - En+1- (9)

Let now P be the polynomial of degree n + m,, — d,, ,, that interpolates
Apprzvtmati=dnmn at y, i =1,...,n +my, + 1 — dy m, . Replacing in (7)
p by P, we obtain

1 ~
pn - n+mn+1_dn,7nn |A’IL+1|'

> i=0 i
Taking now into account (9) and applying (4), we arrive at

1 m En— Enp

> .
Z;:_gnn—‘rl_dn’m” ‘Oén71'| 3 2n(En + En—H)

Setting wy(2) = H?:Jrom"ﬂid"’m" (2 — yn,i) and combining (8) and (2), we

get for n > no, n € A,

n+mp+1l—dp m n+myp+1—dn m
o o (QnQn—l—l)(yn z)| 2
| = W omngnp2, 10
2, lond 2 (] <42 (0

=0 =0

Using the Lagrange interpolation formula, we obtain from (8) that

n4+mp+1—dn m,

(@n@n+1)(2) _ 3 Oni (11)

Wn(z) z— yn,i

=0

This formula is valid for every z with w,(z) # 0.
From here, by means of (10), we finally arrive at
My 2

‘(QnQn-‘rl)(z) < OMn 2"n

_— > A. 12
wn(2) =75 dist (2, 1)’ mZng, mE (12)
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2. Discrepancy Results

Let vy, m, be the probability measure that associates the mass 1/(n+m,, +

2 —dy,m, ) with each of the points ¥, ;, i =0,...,n+m, +1—dp m,, and p -

the equilibrium measure on [—1, 1], that is: du = m/%, xel.

The discrepancy D[vy, m — p] between vy, ,,, and p is given by

D[Vn,m - ,U/] = Sup |Vn,m - M|(av b)
1<a<b<1
The first discrepancy result is the classical theorem of Kadec [7] about
polynomial approximation. M. Kadec found that for every ¢ > 0 there is a
positive constant ¢ such that

1
D[Vn’o_/,l,] SCW, n € A.

Later, H.-P. Blatt [3] sharpened Kadec’s result, showing that

logn)?
Divpo— ] < c&, neA. (13)
n
In the present paper, we will exploit formulas (11) - (12) to provide dis-
crepancy results dealing with the distribution of alternation points in rational
approximation.
Given a number p > 1, we set &, for the interior of the ellipse with foci at

+1 and axes 1/2(p £ 1/p); T'), := 0E,.

Theorem 1. Let m,, <mn, my, < mpr1 <m,+1 forn=1,2.... Assume
there is an annulus A, g = {z,2 € Er — &, 1 <r < R} such that Q,(z) # 0
for every n starting with some number ng and z ¢ A, r. Then there is a positive
constant C' such that

Inn  m,

Dvym, —p] < Cy/ — + —, n €A
n n

In the special case, when m, = m for every n € N, we have

logn)?
Dlvpm — 1] < MgT) n e A
We note that the assumptions of Theorem 1 are satisfied if f is analytic on
I and admits a continuation into some ellipse as a meromorphic function with
exactly m poles inside the ellipse in question (multiplicities included). In this

case we get the same estimate as in (13) (cf. [6]).

Theorem 2. Under the same conditions on f and {m,}, assume m, =
o(n). Then there is a positive constant C such that

oyfMenn
n

IN

Dlvn,m, — 1
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3. Proofs

Lemma 1 ([5, p. 105]). Let p, € P, be a monic polynomial with simple
zeros (i, 1=1,...,n on I. Assume
1
bp2n’

an
ol <52 and (Gl >

where a, > 0 and b, > 1. Set ¢, := max{n,an,b,}. If ¢, < e"/¢. then for the
measure v,, associated with (;, i =1,...,n we have

log ¢, n
D —p] < 1 )
[Vpn Iu’] = n o) log cn
Lemma 2 ([5]). Let p, € P, be a monic polynomial with simple zeros
G, t=1,...,n on I such that

1
Y (G| > =1
|pn(<l)‘ - bn2n7 1 9 an
with b, > 1. Then
1
Dlv,, —u] < C %_

Lemma 3 ([5]). Let n > 2, Z,, be a monic polynomial of degree n and the
points &, i =1,...,n, be such that

—1<6 <6< <61 <€ <1
and
En(ﬁz) En(fi-‘rl) <O, 1= 1,...,7’L—1.
Set mp(2) =11 (z — &). Then

Imallz < Cn® |[Enllr.

Lemma 4 ([5]). Assume, forn € A and z € T145, § > 0, sup UVnmn=H <
a(6). Then there is a positive constant ¢ such that

D[y m, — ] < ca(8)V?, neA.

Proof of Theorem 1. The proof of the first part is a consequence of (10)
and Lemma 2, applied to the polynomials w,,. The case m,, = m,n =1,2,...
results from (11) and Lemmas 1 and 3, after taking into account the inequality
|[Ap m| > C™2™(E,, — Ept1), n € A

Proof of Theorem 2. First note that the sequence vy, ,,,, converges weakly
to u, as m € A [4]. We fix a number p > 1 and normalize the numerators Q,,
in the way

Qn(z) = H (z = Cnﬂ) H (1- Z/C:n,i) = qn(2) @ (2).

Cn,z‘ Gzp Cn,'i QSD
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Cover each zero ¢, ; of g, by a circle €, ; of radius 1/32m,n? and set Q,, :=
Uifdp ;. It is easy to see that for every n there is a number k,, 1 < K, < 2,
such that (Q, U Quq1) NT4q/pse = 0. By means of (12), there is a constant
c1 such that
1 < e 2"n?
lwn(2)] = 1 dist (2,1)

From here, we easily get

(32m,n?)*mn nel, ze&N\T\ QU .

1
U (2) —U"(z) < camy ogn’ z€l L, n>n1, nE€A.
n

Lemma 4 leads now to the statement of the theorem.
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