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New Nonexistence Results for Spherical
Designs

Silvia Boumova, Peter Boyvalenkov and Danyo Danev ∗

We obtain bounds for the smallest and largest inner products of dis-
tinct points of spherical τ -designs of relatively small cardinalities and
odd strengths τ . In many cases, the restrictions obtained imply new
nonexistence results. Our method works well in small dimensions as well
as when the dimension tends to infinity. For τ = 3 and τ = 5, we obtain
new asymptotic bounds on the minimum possible odd size of τ -designs.

1. Introduction

The spherical designs have been introduced in 1977 by Delsarte-Goethals-
Seidel [7] on the analogy of the classical combinatorial designs. A spherical
τ -design C ⊂ Sn−1 is a finite subset of the unit sphere Sn−1 in Rn such that

1

µ(Sn−1)

∫
Sn−1

f(x) dµ(x) =
1

|C|
∑
x∈C

f(x)

(µ(x) is the Lebesgue measure) holds for all polynomials f(x) = f(x1, . . . , xn)
of degree at most τ (i.e., the average of f over the set is equal to the average
of f over Sn−1). The number τ is called the strength of C.

Let us denote by B(n, τ) (resp., by Bodd(n, τ)) the minimum possible cardi-
nality (resp. odd cardinality) of a τ -design on Sn−1. The following Fisher-type
lower bound on B(n, τ) was obtained by Delsarte-Goethals-Seidel [7, Theo-
rem 5.11 and Theorem 5.12]

B(n, τ) ≥ R(n, τ) =

{(
n+e−1

e

)
+
(
n+e−2
e−1

)
, if τ = 2e

2
(
n+e−2
e−1

)
, if τ = 2e− 1.

(1)

In this paper we consider designs of odd strength τ = 2e − 1, e ≥ 2 is
integer, and odd cardinality |C|. This case turned out to be more difficult for
realization.
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For τ = 2e− 1 we derive from (1) the estimate

Bodd(n, 2e− 1) ≥ 2

(
n+ e− 2

e− 1

)
+ 1.

First nonexistence results for (2e−1)-designs of odd size were proved in [5] (see
also [4]). In this paper we continue this investigation by refining the approach
from [5].

The following definition for spherical designs is crucial for our approach. A
code C ⊂ Sn−1 is a spherical τ -design if and only if for any point y ∈ Sn−1

and any real polynomial f(t) of degree at most τ , the equality∑
x∈C

f(〈x, y〉) = f0|C| (2)

holds, where

f0 = cn

∫ 1

−1
f(t)(1− t2)(n−3)/2 dt, cn =

Γ(n− 1)

2n−2(Γ(n−1
2 ))2

(f0 is the first coefficient in the expansion of f(t) =
∑k

i=0 fiP
(n)
i (t) in terms

of the Gegenbauer polynomials [1, Chapter 22]). As usual, 〈x, y〉 denotes the
standard scalar product in Rn.

We use (2) when y belongs to the design. Then (2) becomes∑
x∈C\{y}

f(〈x, y〉) = f0|C| − f(1). (3)

In this paper, we propose a method for investigation of (2e− 1)-designs of
odd size. As results, we derive some restrictions on the structure of such designs
which are expressed as bounds on inner products of their points. Sometimes
this implies nonexistence results. Interestingly, nonexistence follows already in
first open cases (i.e., in small dimensions) and when the dimension n tends to
infinity but the strength τ is fixed.

In Section 2 we describe our approach. We start with the assumption of
the existence of certain (2e − 1)-design C ⊂ Sn−1 with prescribed odd cardi-
nality. Then we prove that some special triple of points of C do always exist.
The remaining analysis is restricted to these three points with using suitable
polynomials in (3).

Applications for τ = 3 and τ = 5 are shown in Sections 3 and 4. It becomes
clear how this investigation could be continued for higher strengths.

2. Method of Investigation

Let C ∈ Sn−1 be a (2e− 1)-design. For arbitrary point x ∈ C, we denote

I(x) = {〈x, y〉 : y ∈ C \ {x}} = {t1(x), t2(x), . . . , t|C|−1(x)},
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where −1 ≤ t1(x) ≤ t2(x) ≤ · · · ≤ t|C|−1(x) < 1.
It follows from [9, Section 4] (see also [10, 4]) that for every fixed “size”

|C| > R(n, 2e − 1) there exist uniquely determined real numbers −1 ≤ α0 <
α1 < · · · < αe−1 < 1 and ρ0, ρ1, . . . , ρe−1, ρi > 0 for i = 0, 1, . . . , e − 1, such
that the equality

f0 =
f(1)

|C|
+

e−1∑
i=0

ρif(αi)

is true for every real polynomial f(t) of degree at most 2e−1. The numbers αi,
i = 0, 1, . . . , e−1, are all roots of the equation Pk(t)Pk−1(s)−Pk(s)Pk−1(t) = 0,

where Pi(t) = P
(n−1)/2,(n−3)/2
i (t) is the Jacobi polynomial [1, 12]. The weights

ρi can be found by

ρi = −
( ∏

0≤j≤e−1,j 6=i

(1− α2
j )
)
/
(
αi|C|

∏
0≤j≤e−1,j 6=i

(α2
i − α2

j )
)
.

These facts were used in [4] for obtaining restrictions on the structure of
designs. For example, it was proved in [4] that t1(x) ≤ α0 (see Lemma 2 below)
and t|C|−1(x) ≥ αe−1 for every point x ∈ C.

In what follows, we associate every feasible size |C| ≥ R(n, 2e − 1) + 1 to
the corresponding numbers α0, α1, . . . , αe−1 and ρ0, ρ1, . . . , ρe−1.

Our approach is the following. First, we show for odd cardinalities |C|
that some special triples (x, y, z) of points of C appear. Then we use suitable
polynomials in (3) in order to derive bounds on some inner products in the
sets I(x), I(y) and I(z). At the third step, we organize an iterative process
by using the new bounds and (other) suitable polynomials in (3). The results
are again bounds on inner products in I(x), I(y) and I(z). In many cases this
implies nonexistence of the design under target.

Step 1. Our first step is based on the following simple observation.

Lemma 1. Let C ⊂ Sn−1 be a τ -design of odd cardinality |C|. Then there
exist three distinct points x, y, z ∈ C such that t1(x) = t1(y) and t2(x) = t1(z).

Proof. Let Γ be the directed graph with vertices the points of C and edges
x→ y if and only if t1(x) = 〈x, y〉. It is easy to see that cycles in Γ are possible
only of length two. Since |Γ| = |C| is odd, we must have y ↔ x ← z which
completes the proof. �

Lemma 2 ([4]). If C ⊂ Sn−1 is a (2e − 1)-design, then t1(x) ≤ α0 for
every point x ∈ C.

It follows by Lemmas 1 and 2 that there exists a point x ∈ C such that
t1(x) ≤ t2(x) ≤ α0. This observation was used in [4] to prove that ρ0|C| ≥ 2
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is a necessary condition for existence of C. We upgrade this result by more
detailed investigation of the triple (x, y, z).

Step 2. Inequalities of the type t1(x) = 〈x, y〉 ≤ t2(x) = 〈x, z〉 ≤ a may
mean that the points y and z are close each other. Indeed, it is easy to see
that 〈y, z〉 ≥ 2a2 − 1. If 2a2 − 1 > αe−1, we actually have obtained new
bounds on t|C|−1(y) and t|C|−1(z). In turn, these new bounds give better
estimations t1(y) ≤ a′ < a and t1(z) ≤ a′ < a. This leads to an improvement
t1(x) ≤ t2(x) ≤ a′ < a.

Step 3. If 2α2
0 − 1 > αe−1, we can start and further organize the following

iterative process, applying in fact Step 2 as many times as necessary. Set
δ0 = α0 and let us have δ1 = a′ by applying Step 2 for a = α0. Now 2δ21 − 1 >
2δ20 − 1 is a better lower bound for t|C|−1(y) and t|C|−1(z) and implies by a
second application of Step 2 better upper bounds t2(x) ≤ δ2. We can continue
this process, checking (at each iteration) the existence of C.

Theorem 1. If there exists a real nonnegative polynomial f(t) of degree at
most 2e− 1 which decreases in the interval [−1, α0) and

2f(δi) > f0|C| − f(1) (4)

for some i ≥ 0, then C does not exist.

Proof. Assume that such a polynomial f exists and consider (3) for this
polynomial and x ∈ C. The assertion then follows since the left-hand side of
(3) is at least 2f(t2(x)) ≥ 2f(δi) for all i ≥ 0. This means that C could not
exist if (4) is satisfied. �

The logic of Theorem 1 is the following. If limi→+∞ δi = −∞ (we actually
need much weaker results – see Example 1), then C does not exist. Otherwise,
we have some new bounds of `(C) = min{〈x, y〉 : x, y ∈ C} and s(C) =
max{〈x, y〉 : x, y ∈ C, x 6= y}.

Theorem 2. If limi→+∞ δi = δ > −∞, then −1 ≤ `(C) ≤ δ and 1 >
s(C) ≥ 2δ2 − 1 > αe−1.

Proof. We have `(C) ≤ t1(z) ≤ δ and s(C) ≥ t|C|−1(z) ≥ 2δ2 − 1. �

3. Some Results for 3-designs

3.1. Small Cases

Let τ = 3 and C ⊂ Sn−1 be a 3-design of cardinality |C| = R(n, 3) + k =
2n+ k. Now α0 and α1 are the roots of the equation n(n+ k − 1)X2 + n(n−
1)X − k = 0 (see [5, Eq. (8)]).



Silvia Boumova, Peter Boyvalenkov and Danyo Danev 229

Bajnok [2, 3] shows that 3-designs of any even size exist. He also constructs
3-designs of any odd cardinality greater than or equal to 5n/2 for n ≥ 7, 11 for
n = 3, 4 and 15 for n = 5, 6. On the other hand, it was shown in [5] that k ≥ 3
in all dimensions, k ≥ 5 for n ≥ 11, k ≥ 7 for n ≥ 19, etc.

Therefore, we may assume that k is odd, k = 3 for n = 3, 5, 7, 8, 9, 10, k = 5
for 11 ≤ n ≤ 18, k = 7 for 15 ≤ n ≤ 2x, etc. Let x, y, z be points in C
such that t1(x) = t1(y) ≤ t2(x) = t1(z) ≤ α0. For Step 2, we assume that
µ0 = 2α2

0 − 1 > α1.

Lemma 3. For any real a ∈ (α0, α1), we have t1(z) ≤ F (a), where

F (a) = −2
nα2

0a
2 +

[
2n(2α2

0 − 2α4
0 − 1) + |C|

]
a+ nα2

0(4α4
0 − 6α2

0 + 3)

(|C| − 2)a2 + 4nα2
0a+ 2n(2α2

0 − 2α4
0 − 1) + |C|

.

Proof. The equality follows from (3) for the function f(t) = (t−t1(z))(t−a)2

and z ∈ C. �

In each concrete case, the optimal value of F (a) can be found numerically
by Maple. According to Step 2, we denote δ1 = min{F (a) : a ∈ (α0, α1)}.
Then t1(y) ≤ t1(z) ≤ δ1 whence t|C|−1(z) ≥ 〈y, z〉 ≥ 2δ21 − 1 = µ1. For the
iterative process of Step 3, we use the analog of Lemma 3 by using µ1 instead
of µ0 to obtain t1(y) ≤ t1(z) ≤ δ2 and so on.

To check the existence of C, we use Theorem 1 with f(t) = t2. Hence, we
have to check if 2δ2i > |C|/n− 1. The whole iteration process was realized by
a simple Maple program which is available upon request.

Example 1. Let us consider the cases n = 9 and n = 10, k = 3 in
both dimensions. If C ⊂ S9 is a 23-point 3-design, then α0 ≈ −0.78197,
α1 ≈ 0.03197. Thus 2α2

0 − 1 > α1 and even at the first iteration we obtain
δ1 = −0.81202, whence 2δ21 = 1.31875 > 1.3 = 23

10 − 1. Therefore C does not
exist. Analogously, for a putative 21-point 3-design on C ⊂ S8, we obtain
2δ24 = 1.35909 > 4

3 = 21
9 − 1 (i.e., four iterations are needed). Therefore such

designs do not exist.

There were 144 open cases in dimensions 3 ≤ n ≤ 50. We rule out 50
of them. The first nonexistence results (Example 1) show that there are no
3-designs of 21 points in nine dimensions (k = 3), 23 points in ten dimensions
(k = 3), 35 points in fifteen dimensions (k = 5), etc. The problem of finding all
possible cardinalities of 3-designs is therefore solved in dimensions n = 4, 6, 9
and 10, only one open case remains in dimensions n = 3, 5, 7, 8, 21, 22 and for
11 ≤ n ≤ 18, etc.

3.2. Asymptotic Results

Boyvalenkov-Danev-Nikova prove in [5] that

Bodd(n, 3) & (1 + 21/3)n ≈ 2.2599n (5)
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as n tends to infinity. Bajnok’s construction [2, 3] shows thatBodd(n, 3) ≤ 2.5n.

Therefore we have to consider k/n = γ ∈ [21/3−1, 0.5) as n tends to infinity.
Already the first applications of our iterative process gives better asymptotic
results than (5). Asymptotically, we have α0 ∼ −1/(1 + γ) and α1 ∼ 0. Now
Lemma 3 with a = 0 gives

t2(x) ≤ δ1 ∼ −
2(γ5 + 8γ4 + 19γ3 + 13γ2 − 2γ + 1)

γ(γ2 + 4γ + 5)2(γ + 1)4
.

Solving by Maple the equation 2δ21 = 1+γ we obtain that Bodd(n, 3) & 2.2949n
as n tends to infinity. We were able to implement four iterations to obtain the
following assertion.

Theorem 3. We have Bodd(n, 3) & 2.3227n.

Therefore, 2.3227n ≤ Bodd(n, 3) ≤ 2.5n asymptotically. Our conjecture
is that the upper bound gives the exact value of Bodd(n, 3) either in small
dimensions and as n tends to infinity.

4. Some Results for 5-designs

4.1. Small Cases

Let C ⊂ Sn−1 be a 5-design of size |C| = R(n, 5) + k = n2 + n+ k.

Constructions of 5-designs were described by Reznick [11] and Hardin-
Sloane [8] (see also Sloane’s home page www.research.att.com/~njas/).

Let k be odd and x, y, z be the points from Lemma 1. We assume that
µ0 = 2α2

0 − 1 > α2 as Step 2 requires. Then the new bound on t2(x) = t1(z) is
given by the following lemma which can be proved as Lemma 3.

Lemma 4. For any real a and b, we have t1(z) ≤ F (a, b), where

F (a, b) =
2a|C| [(n+ 2)b+ 3]− n(n+ 2)

[
(1 + a+ b)2 + (2α2

0 − 1)K
]

|C| [n(n+ 2)b2 + (n+ 2)(a2 + 2b) + 3]− n(n+ 2) [(1 + a+ b)2 +K]
,

and K =
[
(2α2

0 − 1)2 + a(2α2
0 − 1) + b

]2
provided the denominator in the last

fraction is positive.

The iterative process can be continued as in the case τ = 3 by using f(t) =
(t − α1)2(t − α2)2 in Theorem 1. The first nonexistence result shows that
33-point 5-designs on S4 do not exist. We tested the first open cases (with
ρ0|C| ≥ 2) in each dimension 3 ≤ n ≤ 20 until nonexistence proof is still
possible. In this way, 53 designs were proved not to exist.
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4.2. Asymptotic Results

Asymptotic consequences from [5, 4] say that Bodd(n, 5) & 1+21/5

2 n2 ≈
1.0743n2 as n tends to infinity. Using the same argument as in Section 3.2, we
are able to improve this.

Theorem 4. We have Bodd(n, 5) & 1.09309n2.

Proof. The assertion follows by Theorem 1 with f(t) = (t − α1)2(t − α2)2

and the asymptotic behaviour of δ1. �

5. General Asymptotic Results

Asymptotically, we have

Bodd(n, 2e− 1) &
2

(e− 1)!
ne−1

by the Delsarte-Goethals-Seidel bound. This was improved to

Bodd(n, 2e− 1) &
1 + 21/(2e−1)

(e− 1)!
ne−1

in [5] and the condition ρ0|C| ≥ 2 implies the same asymptotic result. We
improved this for e = 2 and e = 3 in the previous two sections. Our attempts
to find improvement in general led us to the following assertion.

Let x0 be a root of the equation

2
(
x4e−2 +

(
2− x2

)2e−1)2e−2
= x4e−3

(
x4e−3 −

(
2− x2

)2e−2)2e−2
.

Then Bodd(n, 2e − 1) &
(

2
(e−1)! + γe

)
ne−1, where γe = (x0 − 1)/(e − 1)!.

The first values of γe are γ2 = 0.29244, γ3 = 0.09309 (as in Section 4.2) and
γ4 = 0.02314.
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