On Martensen Splines

Franz-Jürgen Delvos

Abstract

Martensen [5] introduced a method of minimal Hermite spline interpolation which is a special case of the more general result presented in [1] and [6]. We will construct the fundamental Hermite splines for a uniform mesh and derive an integral remainder. Using Boolean methods (see [3], [6], [4]) we will construct tensor product and blending Martensen splines which are an alternative to the spline spaces discussed in [7].

1. Fundamental Hermite Splines

The linear space of polynomial splines of degree p with breakpoints $k h$, $h>0, k \in \mathbb{Z}$, is denoted by S_{p+1}^{h}. Martensen spline interpolation is a Hermite type interpolation method (see also Nuernberger, Dahmen and all., Bojanov) which extends piecewise linear interpolation in the most natural way. We first consider the explicit construction for cardinal splines $S_{p+1}^{1}=S_{p+1}$.

Let

$$
G_{0}(x)=x_{+}^{0}
$$

be the Heaviside function. The backward difference operator is defined as

$$
\nabla f(x)=f(x)-f(x-1)
$$

Then

$$
G_{1}(x)=\int_{-\infty}^{x} \nabla G_{0}(s) d s=x_{+}^{1}-(x-1)_{+}^{1}
$$

is a spline from S_{2} satisfying the interpolation conditions

$$
G_{1}(0)=0, \quad G_{1}(1)=1
$$

The construction is continued by recursion.
Theorem 1. The function

$$
G_{p}(x)=\int_{-\infty}^{x} \nabla G_{p-1}(s) d s
$$

is a spline from S_{p+1}. It satisfies the interpolation conditions

$$
\begin{array}{rlrl}
D^{j} G_{p}(0) & =0, & & j=0, \ldots, p-1, \\
D^{j} G_{p}(p) & =0, & j=1, \ldots, p-1, \\
G_{p}(p) & =1 . &
\end{array}
$$

Proof. The assertion is true for $p=1$. By induction we have

$$
G_{p-1}(x)= \begin{cases}0, & x<1 \\ 1, & x>p-1\end{cases}
$$

This implies

$$
G_{p}(x)=0, \quad x<1 .
$$

We have for $x>p$

$$
G_{p}(x)=\int_{p-1}^{x} G_{p-1}(s) d s-\int_{p-1}^{x-1} G_{p-1}(s-1) d s=\int_{x-1}^{x} G_{p-1}(s) d s=1
$$

This completes the proof.
To construct the fundamental Hermite spline functions we define first

$$
G_{0, p}(x)=G_{p}(x)=\int_{-\infty}^{x} \nabla G_{p-1}(s) d s
$$

and then, by triangular recursion,

$$
G_{i, p}(x)=\int_{-\infty}^{x} G_{i-1, p-1}(s-1) d s-\int_{-\infty}^{p} G_{i-1, p-1}(s-1) d s \cdot G_{0, p}(x)
$$

for $0<i<p, p>1$.
Theorem 2. The functions

$$
G_{0, p}(x), G_{1, p}(x), \ldots, G_{p-1, p}(x)
$$

are the fundamental Hermite splines from S_{p+1} which satisfy the interpolation conditions

$$
D^{j} G_{k, p}(0)=0, \quad D^{j} G_{k, p}(p)=\delta_{j, k}, \quad k, j=0, \ldots, p-1
$$

Proof. We apply induction on p and assume $i>0, p>1$. We have for $k>0$

$$
D^{k} G_{i, p}(x)=D^{k-1} G_{i-1, p-1}(s-1)-\int_{-\infty}^{p} G_{i-1, p-1}(s-1) d s \cdot D^{k} G_{0, p}(x)
$$

which implies

$$
D^{k} G_{i, p}(0)=0, \quad D^{k} G_{i, p}(p)=D^{k-1} G_{i-1, p-1}(p-1)=\delta_{k, i}
$$

We have for $k=0$:

$$
\begin{aligned}
& G_{i, p}(0)=\int_{-\infty}^{0} G_{i-1, p-1}(s-1) d s-\int_{-\infty}^{p} G_{i-1, p-1}(s-1) d s \cdot G_{0, p}(0)=0 \\
& G_{i, p}(p)=\int_{-\infty}^{p} G_{i-1, p-1}(s-1) d s-\int_{-\infty}^{p} G_{i-1, p-1}(s-1) d s \cdot G_{0, p}(p)=0
\end{aligned}
$$

This completes the proof.
Consider the spline $F_{i} \in S_{p+1}$ defined by

$$
F_{i}(x)= \begin{cases}(-1)^{i} G_{i, p}(p-x), & x \geq 0 \\ G_{i, p}(p+x), & x \leq 0\end{cases}
$$

It is uniquely defined by the interpolation conditions

$$
D^{k} F_{i}(0)=\delta_{i, k}, \quad D^{k} F_{i}(-p)=0, \quad D^{k} F_{i}(p)=0, \quad i, k=0, \ldots, p-1 .
$$

Then we define $M_{h}(f) \in S_{p+1}^{h}$ by

$$
M_{h}(f)(x)=\sum_{r=-\infty}^{\infty} \sum_{i=0}^{p-1} D^{i} f(h r p)\left[h^{i} F_{i}\left(h^{-1}(x-h r p)\right)\right] .
$$

The global scaled Martensen operator M_{h} is uniquely defined by the interpolation conditions

$$
D^{i} M_{h}(f)(h r p)=D^{i} f(h r p), \quad i=0, \ldots, p-1, r \in \mathbb{Z}
$$

2. Remainder Formulas

We consider first the cardinal remainder operator

$$
\bar{M}(f)(x)=f(x)-M(f)(x) .
$$

Recall the Taylor formula

$$
f(x)=\sum_{i=0}^{p} D^{i} f(0) \frac{x^{i}}{i!}+\int_{0}^{p} \frac{(x-s)_{+}^{p}}{p!} D^{p+1} f(s) d s, \quad 0 \leq x \leq p
$$

with Taylor operator

$$
T(f)(x)=\sum_{i=0}^{p} D^{i} f(0) \frac{x^{i}}{i!}
$$

Note that M_{h} reproduces splines from S_{p+1} and in particular polynomials of degree at most p. This implies

$$
\bar{M}(f-T(f))(x)=f(x)-M(f)(x)
$$

Thus, we have

$$
\begin{gathered}
f(x)-\sum_{i=0}^{p} D^{i} f(0) \frac{x^{i}}{i!}=\int_{0}^{p} \frac{(x-s)_{+}^{p}}{p!} D^{p+1} f(s) d s \\
\bar{M}(f-T(f))(x)=\int_{0}^{p}\left[\frac{(x-s)_{+}^{p}}{p!}-\sum_{i=0}^{p-1} \frac{(p-s)_{+}^{p-i}}{(p-i)!} G_{i, p}(x)\right] D^{p+1} f(s) d s .
\end{gathered}
$$

Hence, the Peano kernel of the remainder functional $f(x)-M(f)(x)$ is given by

$$
K(x, s)=\frac{(x-s)_{+}^{p}}{p!}-\sum_{i=0}^{p-1} \frac{(p-s)_{+}^{p-i}}{(p-i)!} G_{i, p}(x), \quad 0<x<p
$$

Let us consider now the remainder of the global scaled Martensen interpolation:

$$
\begin{aligned}
& f(x)-M_{h}(f)(x)=\mu_{h}(f)\left(h^{-1} x\right)-M\left(\mu_{h}(f)\right)\left(h^{-1} x\right) \\
& \quad=\int_{0}^{p} K\left(h^{-1} x, s\right) D^{p+1} \mu_{h}(f)(s) d s=\int_{0}^{p} K\left(h^{-1} x, s\right) h^{p+1}\left(D^{p+1} f\right)(h s) d s \\
& \quad=h^{p} \int_{0}^{p h} K\left(h^{-1} x, h^{-1} z\right)\left(D^{p+1} f\right)(z) d z
\end{aligned}
$$

Thus, we arrive at the following.
Theorem 3. Assume $f \in C^{p+1}(\mathbb{R})$ with $\left\|D^{p+1} f\right\|_{\infty}<\infty$. Then

$$
\left\|f-M_{h}(f)\right\|_{\infty} \leq h^{p+1}\left\|D^{p+1} f\right\|_{\infty} C_{p}, \quad C_{p}=\sup _{0 \leq x \leq p} \int_{0}^{p}|K(x, s)| d s
$$

3. Bivariate Martensen Splines

Next we consider tensor product Martensen splines and follow the representations in Haemmerlin-Hoffmann, Nuernberger, and Delvos-Schempp. We introduce the parametrically extended operators for functions of bounded mixed derivatives $f \in C^{p-1, p-1}\left(\mathbb{R}^{2}\right)$:

$$
\begin{aligned}
& M_{h_{x}}(f)(x, y):=\sum_{l} \sum_{i<p} D^{(i, 0)} f\left(l p h_{x}, y\right) W_{i, h_{x}}\left(x-l p h_{x}\right), \\
& M_{h_{y}}(f)(x, y):=\sum_{l^{\prime}} \sum_{i^{\prime}<p} D^{\left(0, i^{\prime}\right)} f\left(x, l^{\prime} p h_{y}\right) W_{i^{\prime}, h_{y}}\left(y-l^{\prime} p h_{y}\right)
\end{aligned}
$$

with

$$
W_{i, h_{x}}(x)=h_{x}^{i} F_{i}\left(h_{x}^{-1} x\right) .
$$

The interpolation properties of the parametrically extended Martensen operator are given by:

$$
\begin{aligned}
D^{(i, 0)} M_{h_{x}}(f)\left(l p h_{x}, y\right) & =D^{(i, 0)} f\left(l p h_{x}, y\right), & & i<p, l \in \mathbb{Z} \\
D^{\left(0, i^{\prime}\right)} M_{h_{y}}(f)\left(x, l^{\prime} p h_{y}\right) & =D^{\left(0, i^{\prime}\right)} f\left(x, l^{\prime} p h_{y}\right), & & i^{\prime}<p, l^{\prime} \in \mathbb{Z}
\end{aligned}
$$

Then we define the product operator

$$
\begin{aligned}
& M_{h_{x}} M_{h_{y}}(f)(x, y):=M_{h_{y}} M_{h_{x}}(f)(x, y) \\
& \quad=\sum_{l} \sum_{l^{\prime}} \sum_{i<p} \sum_{i^{\prime}<p} D^{\left(i, i^{\prime}\right)} f\left(l p h_{x}, l^{\prime} p h_{y}\right) W_{i, h_{x}}\left(x-l p h_{x}\right) W_{i^{\prime}, h_{y}}\left(y-l^{\prime} p h_{y}\right) .
\end{aligned}
$$

It has the interpolation properties

$$
D^{\left(i, i^{\prime}\right)} M_{h_{x}} M_{h_{y}}(f)\left(l p h_{x}, l^{\prime} p h_{y}\right)=D^{\left(i, i^{\prime}\right)}\left(l p h_{x}, l^{\prime} p h_{y}\right), \quad i, i^{\prime}<p, l, l^{\prime} \in \mathbb{Z}
$$

The remainder operators are also parametric extensions:

$$
\begin{aligned}
& \overline{M_{h_{x}}}(f)(x, y)=h_{x}^{p} \int_{0}^{h_{x} p} K\left(h_{x}^{-1} x, h_{x}^{-1} s\right) D^{(p+1,0)} f(s, y) d s, \\
& \overline{M_{h_{y}}}(f)(x, y)=h_{y}^{p} \int_{0}^{h_{y} p} K\left(h_{y}^{-1} y, h_{y}^{-1} t\right) D^{(0, p+1)} f(x, t) d t
\end{aligned}
$$

Since

$$
\overline{M_{h_{x}} M_{h_{y}}}=\overline{M_{h_{x}}}+\overline{M_{h_{y}}}-\overline{M_{h_{x}} M_{h_{y}}}
$$

and

$$
\begin{aligned}
& \bar{M}_{h_{x}} M_{h_{y}}(f)(x, y) \\
& \quad=h_{x}^{p} h_{y}^{p} \int_{0}^{h_{x} p} \int_{0}^{h_{y} p} K\left(h_{y}^{-1} y, h_{y}^{-1} t\right) K\left(h_{x}^{-1} x, h_{x}^{-1} s\right) D^{(p+1, p+1)} f(s, t) d s d t,
\end{aligned}
$$

we obtain
Theorem 4. Assume $f \in C^{(p+t, p+1)}\left(\mathbb{R}^{2}\right)$ and

$$
\left\|D^{(p+1,0)} f\right\|_{\infty}<\infty, \quad\left\|D^{(0, p+1)} f\right\|_{\infty}<\infty, \quad\left\|D^{(p+1, p+1)} f\right\|_{\infty}<\infty
$$

Then we have

$$
\begin{aligned}
\left\|f-M_{h_{x}} M_{h_{y}}(f)\right\|_{\infty} \leq & h_{x}^{p+1} C_{p}\left\|D^{(p+1,0)} f\right\|_{\infty}+h_{y}^{p+1}\left\|D^{(0, p+1)} f\right\|_{\infty} \\
& +h_{x}^{p+1} h_{y}^{p+1} C_{p}^{2}\left\|D^{(p+1, p+1)} f\right\|_{\infty}
\end{aligned}
$$

Blended bivariate Martensen interpolation is defined by the Boolean sum

$$
M_{h_{x}} \oplus M_{h_{y}}=M_{h_{x}}+M_{h_{y}}-M_{h_{x}} M_{h_{y}}
$$

The interpolation properties of the blending Martensen operator are given by:

$$
\begin{aligned}
D^{(i, 0)} M_{h_{x}} \oplus M_{h_{y}}(f)\left(l p h_{x}, y\right) & =D^{(i, 0)} f\left(l p h_{x}, y\right), & & i<p, l \in \mathbb{Z} \\
D^{\left(0, i^{\prime}\right)} M_{h_{x}} \oplus M_{h_{y}}(f)\left(x, l^{\prime} p h_{y}\right) & =D^{\left(0, i^{\prime}\right)} f\left(x, l^{\prime} p h_{y}\right), & & i^{\prime}<p, l^{\prime} \in \mathbb{Z}
\end{aligned}
$$

Since

$$
\overline{M_{h_{x}} \oplus M_{h_{y}}}=\overline{M_{h_{x}} M_{h_{y}}}
$$

we obtain
Theorem 5. Assume $f \in C^{(p+t, p+1)}\left(\mathbb{R}^{2}\right)$ and $\left\|D^{(p+1, p+1)} f\right\|_{\infty}<\infty$. Then we have

$$
\left\|f-M_{h_{x}} \oplus M_{h_{y}}(f)\right\|_{\infty} \leq h_{x}^{p+1} h_{y}^{p+1} C_{p}^{2}\left\|D^{(p+1, p+1)} f\right\|_{\infty}
$$

References

[1] B. D. Bojanov, H. A. Hakopian, and A. A. Sahakian, "Spline Functions and Multivariate Interpolation", Kluwer Academic Publishers, Dordrecht, 1993.
[2] W. Dahmen, T. N. T. Goodman, and C. H. Micchelli, Compactly supported fundamental functions for spline interpolation, Numer. Math. 52 (1988), 639664.
[3] F.-J. Delvos and W. Schempr, "Boolean Methods in Interpolation and Approximation", Longman Scientific and Technical, Essex CM20 2JE, England, 1989.
[4] G. Haemmerlin and K.-H. Hoffmann, "Numerische Mathematik", Springer Verlag, Berlin, 1989.
[5] E. Martensen, Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen, Numer. Math. 21 (1973), 7080.
[6] G. Nuernberger, "Approximation by Spline Functions", Springer Verlag, Berlin, 1989.
[7] M. H. Schultz, "Spline Analysis", Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973.

Franz-Jürgen Delvos
Universität-GH-Siegen
Fachbereich Mathematik I
Walter-Flex-Straße 3
D-57068 Siegen
GERMANY
E-mail: delvos@mathematik.uni-siegen.de

