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On Martensen Splines

Franz-Jürgen Delvos

Martensen [5] introduced a method of minimal Hermite spline interpo-
lation which is a special case of the more general result presented in [1]
and [6]. We will construct the fundamental Hermite splines for a uniform
mesh and derive an integral remainder. Using Boolean methods (see [3],
[6], [4]) we will construct tensor product and blending Martensen splines
which are an alternative to the spline spaces discussed in [7].

1. Fundamental Hermite Splines

The linear space of polynomial splines of degree p with breakpoints kh,
h > 0, k ∈ Z, is denoted by Sh

p+1. Martensen spline interpolation is a Hermite
type interpolation method (see also Nuernberger, Dahmen and all., Bojanov)
which extends piecewise linear interpolation in the most natural way. We first
consider the explicit construction for cardinal splines S1

p+1 = Sp+1.
Let

G0(x) = x0+

be the Heaviside function. The backward difference operator is defined as

∇f(x) = f(x)− f(x− 1).

Then

G1(x) =

∫ x

−∞
∇G0(s) ds = x1+ − (x− 1)1+

is a spline from S2 satisfying the interpolation conditions

G1(0) = 0, G1(1) = 1.

The construction is continued by recursion.

Theorem 1. The function

Gp(x) =

∫ x

−∞
∇Gp−1(s) ds
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is a spline from Sp+1. It satisfies the interpolation conditions

DjGp(0) = 0, j = 0, ..., p− 1,

DjGp(p) = 0, j = 1, ..., p− 1,

Gp(p) = 1.

Proof. The assertion is true for p = 1. By induction we have

Gp−1(x) =

{
0, x < 1

1, x > p− 1.

This implies

Gp(x) = 0, x < 1.

We have for x > p

Gp(x) =

∫ x

p−1
Gp−1(s) ds−

∫ x−1

p−1
Gp−1(s− 1) ds =

∫ x

x−1
Gp−1(s) ds = 1.

This completes the proof.

To construct the fundamental Hermite spline functions we define first

G0,p(x) = Gp(x) =

∫ x

−∞
∇Gp−1(s) ds

and then, by triangular recursion,

Gi,p(x) =

∫ x

−∞
Gi−1,p−1(s− 1) ds−

∫ p

−∞
Gi−1,p−1(s− 1) ds ·G0,p(x)

for 0 < i < p, p > 1.

Theorem 2. The functions

G0,p(x), G1,p(x), ..., Gp−1,p(x)

are the fundamental Hermite splines from Sp+1 which satisfy the interpolation
conditions

DjGk,p(0) = 0, DjGk,p(p) = δj,k, k, j = 0, ..., p− 1.

Proof. We apply induction on p and assume i > 0, p > 1. We have for
k > 0

DkGi,p(x) = Dk−1Gi−1,p−1(s− 1)−
∫ p

−∞
Gi−1,p−1(s− 1) ds ·DkG0,p(x)



Franz-Jürgen Delvos 235

which implies

DkGi,p(0) = 0, DkGi,p(p) = Dk−1Gi−1,p−1(p− 1) = δk,i.

We have for k = 0:

Gi,p(0) =

∫ 0

−∞
Gi−1,p−1(s− 1) ds−

∫ p

−∞
Gi−1,p−1(s− 1) ds ·G0,p(0) = 0,

Gi,p(p) =

∫ p

−∞
Gi−1,p−1(s− 1) ds−

∫ p

−∞
Gi−1,p−1(s− 1) ds ·G0,p(p) = 0.

This completes the proof.

Consider the spline Fi ∈ Sp+1 defined by

Fi(x) =

{
(−1)iGi,p(p− x), x ≥ 0

Gi,p(p+ x), x ≤ 0.

It is uniquely defined by the interpolation conditions

DkFi(0) = δi,k, DkFi(−p) = 0, DkFi(p) = 0, i, k = 0, ..., p− 1.

Then we define Mh(f) ∈ Sh
p+1 by

Mh(f)(x) =

∞∑
r=−∞

p−1∑
i=0

Dif(hrp)
[
hiFi(h

−1(x− hrp))
]
.

The global scaled Martensen operator Mh is uniquely defined by the interpo-
lation conditions

DiMh(f)(hrp) = Dif(hrp), i = 0, ..., p− 1, r ∈ Z.

2. Remainder Formulas

We consider first the cardinal remainder operator

M(f)(x) = f(x)−M(f)(x).

Recall the Taylor formula

f(x) =

p∑
i=0

Dif(0)
xi

i!
+

∫ p

0

(x− s)p+
p!

Dp+1f(s) ds, 0 ≤ x ≤ p,

with Taylor operator

T (f)(x) =

p∑
i=0

Dif(0)
xi

i!
.
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Note that Mh reproduces splines from Sp+1 and in particular polynomials of
degree at most p. This implies

M
(
f − T (f)

)
(x) = f(x)−M(f)(x).

Thus, we have

f(x)−
p∑

i=0

Dif(0)
xi

i!
=

∫ p

0

(x− s)p+
p!

Dp+1f(s) ds,

M
(
f − T (f)

)
(x) =

∫ p

0

[
(x− s)p+

p!
−

p−1∑
i=0

(p− s)p−i+

(p− i)!
Gi,p(x)

]
Dp+1f(s) ds.

Hence, the Peano kernel of the remainder functional f(x) −M(f)(x) is given
by

K(x, s) =
(x− s)p+

p!
−

p−1∑
i=0

(p− s)p−i+

(p− i)!
Gi,p(x), 0 < x < p.

Let us consider now the remainder of the global scaled Martensen interpo-
lation:

f(x)−Mh(f)(x) = µh(f)(h−1x)−M(µh(f))(h−1x)

=

∫ p

0

K(h−1x, s)Dp+1µh(f)(s) ds =

∫ p

0

K(h−1x, s)hp+1(Dp+1f)(hs) ds

= hp
∫ ph

0

K(h−1x, h−1z)(Dp+1f)(z) dz.

Thus, we arrive at the following.

Theorem 3. Assume f ∈ Cp+1(R) with
∥∥Dp+1f

∥∥
∞ <∞. Then

‖f −Mh(f)‖∞ ≤ hp+1
∥∥Dp+1f

∥∥
∞ Cp, Cp = sup

0≤x≤p

∫ p

0

|K(x, s)| ds.

3. Bivariate Martensen Splines

Next we consider tensor product Martensen splines and follow the represen-
tations in Haemmerlin-Hoffmann, Nuernberger, and Delvos-Schempp. We in-
troduce the parametrically extended operators for functions of bounded mixed
derivatives f ∈ Cp−1,p−1(R2) :

Mhx
(f)(x, y) :=

∑
l

∑
i<p

D(i,0)f(lphx, y)Wi,hx
(x− lphx),

Mhy
(f)(x, y) :=

∑
l′

∑
i′<p

D(0,i′)f(x, l′phy)Wi′,hy
(y − l′phy)
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with

Wi,hx
(x) = hixFi

(
h−1x x

)
.

The interpolation properties of the parametrically extended Martensen opera-
tor are given by:

D(i,0)Mhx
(f)(lphx, y) = D(i,0)f(lphx, y), i < p, l ∈ Z,

D(0,i′)Mhy
(f)(x, l′phy) = D(0,i′)f(x, l′phy), i′ < p, l′ ∈ Z.

Then we define the product operator

Mhx
Mhy

(f)(x, y) := Mhy
Mhx

(f)(x, y)

=
∑
l

∑
l′

∑
i<p

∑
i′<p

D(i,i′)f(lphx, l
′phy)Wi,hx

(x− lphx)Wi′,hy
(y − l′phy).

It has the interpolation properties

D(i,i′)Mhx
Mhy

(f)(lphx, l
′phy) = D(i,i′)(lphx, l

′phy), i, i′ < p, l, l′ ∈ Z.

The remainder operators are also parametric extensions:

Mhx
(f)(x, y) = hpx

∫ hxp

0

K(h−1x x, h−1x s)D(p+1,0)f(s, y) ds,

Mhy (f)(x, y) = hpy

∫ hyp

0

K(h−1y y, h−1y t)D(0,p+1)f(x, t) dt.

Since

Mhx
Mhy

= Mhx
+Mhy

−Mhx
Mhy

and

MhxMhy (f)(x, y)

= hpx h
p
y

∫ hxp

0

∫ hyp

0

K(h−1y y, h−1y t)K(h−1x x, h−1x s)D(p+1,p+1)f(s, t) ds dt,

we obtain

Theorem 4. Assume f ∈ C(p+t,p+1)(R2) and∥∥D(p+1,0)f
∥∥
∞ <∞,

∥∥D(0,p+1)f
∥∥
∞ <∞,

∥∥D(p+1,p+1)f
∥∥
∞ <∞.

Then we have∥∥f −MhxMhy (f)
∥∥
∞ ≤ hp+1

x Cp

∥∥D(p+1,0)f
∥∥
∞ + hp+1

y

∥∥D(0,p+1)f
∥∥
∞

+ hp+1
x hp+1

y C2
p

∥∥D(p+1,p+1)f
∥∥
∞.
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Blended bivariate Martensen interpolation is defined by the Boolean sum

Mhx ⊕Mhy = Mhx +Mhy −MhxMhy .

The interpolation properties of the blending Martensen operator are given by:

D(i,0)Mhx
⊕Mhy

(f)(lphx, y) = D(i,0)f(lphx, y), i < p, l ∈ Z,

D(0,i′)Mhx
⊕Mhy

(f)(x, l′phy) = D(0,i′)f(x, l′phy), i′ < p, l′ ∈ Z.

Since
Mhx

⊕Mhy
= Mhx

Mhy

we obtain

Theorem 5. Assume f ∈ C(p+t,p+1)(R2) and
∥∥D(p+1,p+1)f

∥∥
∞ <∞. Then

we have ∥∥f −Mhx ⊕Mhy (f)
∥∥
∞ ≤ h

p+1
x hp+1

y C2
p

∥∥D(p+1,p+1)f
∥∥
∞.
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