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Analyticity of Moduli of Continuity

O.A. Dovgoshey and L. L. Potomkina ∗

For any real-analytic function f on a closed interval of the real axis,
Perelman [3] showed that the modulus of continuity of f is an analytic
function on a neighborhood of the origin. We study conditions of ana-
lyticity for a modulus of continuity of piecewise analytic functions.

1. Introduction and notation

The modulus of continuity is one of the main structural characteristics of a
function, and questions associated with the study of the modulus of continuity
are considered in a great number of works (for example, see monographs [1],
[4–8], and the bibliography there). In particular, it was proved in Perelman’s
article [3] that for any real-analytic function f(x), defined on a closed interval
of the real axis, the modulus of continuity ω(f ; δ) is an analytic function at
zero. The subject of this report is the analysis of conditions of analyticity for
the modulus of continuity of piecewise analytic functions.

As is well-known, the function f : [a, b] → R is real-analytic (r.-a.) on
[a, b] if it is analytic at each point x ∈ [a, b], i.e., if it can be expanded in
convergent power series in a certain neighborhood of x. A continuous function
f : [a, b] → R is piecewise analytic (p.-a.) on [a, b], if there is a partition
a = x0 < x1 < ... < xn+1 = b such that the restrictions f |[xi,xi+1] are r.-a.
functions.

Let f(x) be p.-a. function with a right derivative f ′r(x) and a left one f ′l (x).
Let us denote

Θ(x) :=


|f ′r(a)|, for x = a

max {|f ′r(x)|; |f ′l (x)|}, for x ∈ (a, b)

|f ′l (b)|, for x = b,

and
m := sup

x∈[a,b]
Θ(x), (1)
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Mr := {x ∈ [a, b) : |f ′r(x)| = m}, Ml := {x ∈ (a, b] : |f ′l (x)| = m},

M := Ml ∪Mr.

Since f(x) is p.-a. function on [a, b], the relation M 6= ∅ holds. For each
t0 ∈ (a, b] and every sufficiently small ε > 0 the function f ′l (x) is expanded on
[t0 − ε, t0] by Taylor’s formula

f ′l (x) = f ′l (t0) + kl(x− t0)dl + o(x− t0)dl ,

where dl = dlt0 is the multiplicity of the zero of the function (f ′l (x)− f ′l (t0)) at
t0, and

kl = klt0 :=
1

(dl)!
f
(1+dl)
l (t0).

If for each x ∈ [t0 − ε, t0] we have f ′l (x) = f ′l (t0), then we set dlt0 := ∞,
klt0 := 0. Analogously, for t0 ∈ [a, b), let dr = drt0 , kr = krt0 . Then

f ′r(x) = f ′r(t0) + kr(x− t0)dr + o(x− t0)dr .

Let the function d(x) be defined on the set M by

d(x) :=


dlx, for x ∈Ml \Mr

max {dlx; drx}, for x ∈Ml ∩Mr

drx, for x ∈Mr \Ml.

Let
... be the symbol for the binary relation, defined on N ∪ {∞} by the

rule:
(
a

... b
)

if and only if either a and b are natural numbers and b divides a or
a =∞ and b is an arbitrary element of N ∪ {∞}.

Let us introduce the following notation

DN := Ml ∩Mr ∩
{
x ∈ (a, b) : f ′r(x) = f ′l (x), e(dlx

... drx), e(drx
... dlx)

}
,

i.e., for x ∈ DN no one from the “numbers” drx, dlx is a “divider” of the other
one and f ′l (x) = f ′r(x) = ±m.

Assume that
d := sup

x∈M
d(x), (2)

and

Mdl := Ml ∩ {x ∈ (a, b] : dlx = d}, Mdr := Mr ∩ {x ∈ [a, b) : drx = d},

Md := Mdl ∪Mdr.

Let the function k(x) be defined on the set Md by the following rule: If
d =∞, then

∀x ∈Md k(x) = 0, (3)
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but for d <∞

k(x) :=


|klx|, for x ∈Mdl \Mdr(
|klx|−1/d + |krx|−1/d

)−d
, for x ∈Mdl ∩Mdr and f ′l (x) = f ′r(x)

max {|klx|; |krx|}, for x ∈Mdl ∩Mdr and f ′l (x) = −f ′r(x)

|krx|, for x ∈Mdr \Mdl.

(4)

2. Main Results

Theorem 1. Let f(x) be a p.-a. function on [a, b]. If either

sup
x∈DN

d(x) < sup
x∈M\DN

d(x)

or

sup
x∈DN

d(x) = sup
x∈M\DN

d(x) but inf
x∈DN∩Md

k(x) > inf
x∈Md\DN

k(x),

then ω(f ; δ) is analytic at zero. If either

sup
x∈DN

d(x) > sup
x∈M\DN

d(x)

or

sup
x∈DN

d(x) = sup
x∈M\DN

d(x) but inf
x∈DN∩Md

k(x) < inf
x∈Md\DN

k(x),

then ω(f ; δ) is not analytic at zero.

Remark 1. If DN = ∅ or M \DN = ∅, then we have sup
x∈∅

d(x) = −∞.

It is clear that sup
x∈DN

d(x) < ∞, and the relation d = ∞ is equivalent with

f ′(x) ≡ m or f ′(x) ≡ −m on an interval (a1, b1) ⊂ (a, b). Let I be a set of
points in (a, b) where f(x) is not analytic. Clearly DN ⊆ I and f(x) is r.-a.
function if and only if I = ∅.

Proposition 1. Let f(x) be a p.-a. function on [a, b]. If

∀x ∈M ∩ I : (f ′r(x) = f ′l (x)) ⇒
((
drx

... dlx
)
∨
(
dlx

... drx
))

,

then ω(f ; δ) is analytic at zero.
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Remark 2. Perelman’s theorem about analyticity of the modulus of con-
tinuity of a r.-a. function is a special case of Proposition 1.

Proposition 2. Let f(x) be a p.-a. function on [a, b]. Suppose that M
consists of a single point x0 ∈ (a, b), and that f ′r(x0) = f ′l (x0). Then ω(f ; δ) is

analytic at zero if and only if either drx0

... dlx0
or dlx0

... drx0
.

Corollary 1. Let f(x) be a r.-a. function on [a, b] and

f1(x) := |f(x)|, f2(x) := f+(x), f3(x) := f−(x),

where f+(x) = 1
2

(
|f(x)|+f(x)

)
, f−(x) = 1

2

(
|f(x)|−f(x)

)
. Then the functions

ω(fi; δ), i = 1, 2, 3, are analytic at zero.

Proof. If x ∈ I, i = 1, 2, 3, then

f ′il(x) f ′ir(x)
(
f ′ir(x) + f ′il(x)

)
= 0.

This implies DN = ∅ for each i.

Corollary 2. Let f1(x) be a r.-a. on [a, b] and let f2(x) be a r.-a. on [b, c]
such that f1(b) = f2(b). Let f(x) := f1(x) on [a, b] and f(x) = f2(x) on [b, c].
If the angle between the arcs y = f1(x) and y = f2(x) is not equal to zero, then
ω(f ; δ) is analytic at zero.

Proof. The assertion follows from the condition f ′l (b) 6= f ′r(b).

Corollary 3. Let f be a spline of order m ≤ 3 or a spline with defect d = 1
on [a, b]. Then ω(f ; δ) is an analytic function at zero.

The proof follows from the definitions of order and defect of a spline function
(see, for example [2, p. 7]).

Let
k := inf

x∈Md

k(x), (5)

where k(x) is the function defined by (3) and (4).
The following theorem gives some information about the modulus of conti-

nuity of an arbitrary p.-a. function.

Theorem 2. Let f(x) be a p.-a. function on [a, b]. Then there are a
natural number s = s(f) ≥ 1 and a positive number ε = ε(f) > 0 for which
ω(f ; δ) can be expanded on [0, ε] in a power series of the variable

(
δ1/s

)
. The

formula

ω(f ; δ) = mδ − k

d+ 1
δd+1 +O

(
δd+1+1/s

)
,

holds, where the constants m, d and k are defined by formulae (1), (2) and (5).
If the function ω(f ; δ) is not analytic at zero, then

d ≥ 3, s ≤ d− 1, d+ 1 +
1

s
≥ 9

2
.
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Corollary 4. Let f(x) be a p.-a. function on [a, b]. Then there is ε =
ε(f) > 0 such that on (0, ε] the function δ−1ω(f ; δ) is nonincreasing and ω(f ; δ)
is concave.

Example 1. Let

f ′(x) :=

{
1− x2, for − 1 ≤ x ≤ 0

1− x3, for 0 ≤ x ≤ 1.

It may be proved, that on a neighborhood of zero we have

ω(f ; δ) = δ − Y 9(δ)

3
− Y 8(δ)

4
,

where

Y (δ) =

∞∑
n=1

knδ
n/2, k1 = 1, k2 = −1

2
, ..., kn+2 =

3

4
· 9n2 − 4

4n2 + 3n+ 2
kn.

Hence, on a neighborhood of zero

ω(f ; δ) = δ − δ4

4
+

2

3
δ9/2 − 3

2
δ5 + ...

Consequently, the constants in Theorem 2 and Corollary 3 are exact.

The following theorem is about analyticity of the modulus of continuity
ωk(f ; δ) of order k, for natural k ≥ 2.

Theorem 3. Let f(x) be a r.-a. function on [a, b], and let k be a natural
number. Then ωk(f ; δ) is an analytic function at the origin.

The following lemma is used for the proof of Theorem 1.

Lemma 1. Let f(x) be continuous on [a, b], and 0 < δ < b − a. Assume
that x1, x2 is a pair of points, for which

ω(f ; δ) = |f(x1)− f(x2)|, 0 < x1 − x2 ≤ δ, [x1, x2] ⊂ (a, b).

If f is differentiable at the points x1 and x2, then f ′(x1) = f ′(x2), and if we
have f ′(x1) = f ′(x2) 6= 0, then x1 − x2 = δ.

We can prove an analogous lemma for the modulus ωk(f ; δ) with k ≥ 2.
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