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On the Disribution of the Zeros
of an Entire Function of Exponential Type
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1. Introduction

An entire function f is said to be of exponential type σ > 0 if for every
ε > 0, there exists a constant c(ε) such that

|f(z)| ≤ c(ε) e(σ+ε) |z| (z ∈ C) .

In Theorem 2 of the present article we generalize a theorem of R. J. Duffin
and A. C. Schaeffer about the distribution of the zeros of a real entire func-
tion of exponential type. By using this generalization we extend a result of
L. Hörmander on the local behavior of an entire function of exponential type.
This is contained in Theorem 3. In the process of our research we obtain new
interpolation formulae for exact recovery of an entire function of exponential
type. The result is presented in Theorem 1.

2. Interpolation Formulae of Shannon - Kotelnikov
Type

For the proof of our first theorem that extends an interpolation result due
to Bernstein [1, (17), p. 568], [2, (2), p. 103] we need the following auxiliary
lemma.

Lemma 1. Let f be a sufficiently smooth function and suppose that we are
given a finite set S1 := {m1π/σ, . . . ,mr1π/σ} of zeros of sinσz and another
finite point set S2 := {z1, . . . , zr2}, not containing any of the zeros of sinσz.
Let {λ1, . . . , λr1} and {β1, . . . , βr2} be two sets of positive integers such that∑r1
µ=1 λµ +

∑r2
ν=1 βν = m. Then there exists a unique algebraic polynomial

qm−1 of degree ≤ m− 1 which solves the following interpolation problem :

(
sinσz qm−1(z)

)(j)
z=mµπ/σ

=

(
f(z)−

r1∑
κ=1

f
(mκπ

σ

) sin(σz −mκπ)

σz −mκπ

)(j)

z=
mµπ

σ
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for j = 1, . . . , λµ (µ = 1, . . . , r1) and

(
sinσz qm−1(z)

)(j)
z=zν

=

(
f(z)−

r1∑
κ=1

f
(mκπ

σ

) sin(σz −mκπ)

σz −mκπ

)(j)

z=zν

for j = 0, . . . , βν − 1 (ν = 1, . . . , r2) .

Remark 1. The coefficients of qm−1 are uniquely determined by the in-
terpolation conditions f (j)(mµπ/σ) for j = 0, 1, . . . , λµ (µ = 1, . . . , r1), and
f (j)(zν) for j = 0, 1, . . . , βν − 1 (ν = 1, . . . , r2).

We denote by Eσ (σ > 0) the complex vector space of all entire functions
of exponential type σ.

Theorem 1. Let f ∈ Eσ and let

f(x) = o(xm), |x| → ∞ (x ∈ R),

where m ∈ N0 := { 0, 1, 2, . . . }. Let there exist p0 > 0 such that

∑
k∈Z\{0}

|f(kπ/σ)|p0

|k|p0m
<∞ . (1)

Let qm−1 be the unique interpolation solution from Lemma 1 and let us define,
by using the notations of Lemma 1,

Ωm(z) :=

r1∏
µ=1

(z −mµπ/σ)λµ
r2∏
ν=1

(z − zν)βν ,

and let ω1 := {m1, . . . ,mr1} . Then, the following Shannon - Kotelnikov type
interpolation formula holds

f(z) =

r1∑
µ=1

f
(mµπ

σ

) sin(σz −mµ π)

σ z −mµ π

+ Ωm(z) sinσz
∑

k∈Z\ω1

(−1)k f(kπ/σ)

Ωm(kπ/σ) (σz − kπ)
+ sinσ z qm−1(z) .

Example 1. The case ω1 = {0} (r1 = 1, m1 = 0, λ1 = m) and S2 = ∅
has been considered by Bernstein [2, (2), p. 103] under the following, a bit more
restrictive than (1) condition

f (kπ/σ) = O (|k|α) , |k| → ∞ ( k ∈ Z, α < m ) . (2)
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In this particular case of Theorem 1, Ωm(z) = zm and the corresponding
interpolation formula reads as follows

f(z) = f(0)
sinσz

σz
+ (σz)

m
sinσz

∑
k∈Z\{0}

(−1)k f(kπ/σ)

(kπ)m(σz − kπ)
+ sin σz qm−1(z) .

Concerning the condition (2), we take as an example the sampling sequence

f
(
2s

2

π/σ
)

:= 2ms2−s (s ∈ N), and f(kπ/σ) := 0
(
k 6= 2s

2

, k ∈ Z
)

which
does not satisfy the condition (2) but does satisfy the condition (1).

Remark 2. In the particular case m = 1 of Example 1, the corresponding
interpolation formula has been known since 1931 [6], [3, Theorem 4, p. 47 and
the footnotes on p. 47] but under more stringent conditions.

Example 2. Let z1, z2, . . . , zm be interpolation nodes such that sinσzl 6= 0,
l = 1, . . . ,m. In this particular case of Theorem 1, we have S1 = ∅, ω1 = ∅,
and S2 = {z1, . . . , zm} (r2 = m, β1 = · · · = βm = 1). Polynomial Lagrange’s
interpolation qm−1(zl) = f(zl)/ sinσzl (l = 1, . . . ,m) gives a unique polyno-
mial qm−1 (see Lemma 1). Thus, Ωm(z) =

∏m
ν=1 (z−zν) and the corresponding

interpolation representation (see Theorem 1) has the form

f(z) = Ωm(z) sinσz
∑
k∈Z

(−1)k f(kπ/σ)

Ωm(kπ/σ) (σz − kπ)
+ sinσz qm−1(z) .

The sharpness of our result

Estimating the result of Theorem 1 we may ask the following question: Can
we recover exactly a function from Eσ, which is O(xm), |x| → ∞ (x ∈ R), and
satisfying the condition (1) on the bases of samples at {kπ/σ} (k ∈ Z) and
an additional m-bits Hermite type of information as it is in Theorem 1 ? The
simple example Ωm(z) sinσ z shows that this is not possible. In other words,
the asymptotic o(xm), |x| → ∞ (x ∈ R) is the best possible in Eσ for an exact
recovery based on the interpolation values at {kπ/σ} (k ∈ Z) and an additional
m-bits Hermite type information, including functional values and derivatives.

3. Generalization of a Theorem of R. J. Duffin and
A. C. Schaeffer

Let Eσ,R (σ > 0 ) denote the real vector space of all entire functions from
Eσ which are real on the real line. Duffin and Schaeffer [4, Theorem 1, p. 236]
established the following result on the distribution of the zeros of a real entire
function of exponential type.
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Theorem A. Let f ∈ Eσ,R such that |f(x)| ≤ 1 (x ∈ R), and let us denote
cσ(z) := cosσz. Then cσ(z)− f(z) has only real zeros, or vanishes identically.
Moreover, all the zeros are simple, except perhaps at points on the real axis,
where f(x) = ±1.

Definition 1. For a given vector

y := {. . . , y−2, y−1, y0, y1, y2, . . . } ( yk ≥ 0, k ∈ Z )

of non-negative components and for a fixed m ∈ N0 , we define the following
convex functional set

DSσ,m,y := {f(z) : f ∈ Eσ,R, f(x) = o(xm), |x| → ∞ (x ∈ R),

and |f(kπ/σ)| ≤ yk ( k ∈ Z )} .

Now we introduce the important for our next considerations notion for a
Chebyshev (barrier) function in the class DSσ,m,y.

Definition 2. A Chebyshev function in the class DSσ,m,y is each func-
tion Cσ(z) ∈ DSσ,m,y which satisfies the following alternating interpolation
conditions

Cσ (kπ/σ) = ε (−1)k yk (k ∈ Z),

where ε = ±1 and y := {. . . , y−2, y−1, y0, y1, y2, . . . } ( yk ≥ 0, k ∈ Z ) is a
vector of non-negative components.

Remark 3. Let, for some p > 0 , we have
∑
k∈Z\{0} (yk/|k|m)

p
< ∞ or

more restrictively, yk = O (|k|α) ( k ∈ Z , α < m ) . Then Chebyshev functions
Cσ(z) can be constructed by using the interpolation formula, given in Theo-
rem 1 (see also Examples 1 and 2). So, explicit constructions of Chebyshev
barrier functions are possible on the basis of different (m bits) Hermite type of
interpolation information. For a given DSσ,m,y, the class of allChebyshev func-
tions is uniquely determined within m Hermite type interpolation conditions.

Theorem 2. Let f ∈ DSσ,m,y and let Cσ(z) ∈ DSσ,m,y be a Chebyshev
function in DSσ,m,y, i.e., Cσ (kπ/σ) = (−1)k yk (k ∈ Z) . Then, the function
Cσ(z)− f(z) vanishes identically or else :

A. Let m be odd. Then, besides at most m−1 (i.e., even number, counting
multiplicities) real or complex conjugate zeros, the function Cσ(z) − f(z) has
only real zeros with the following distribution properties :

a) The function Cσ(z) − f(z) has at least one and at most three zero in
each interval [kπ/σ , (k + 1)π/σ], where k ∈ Z. In case of three zeros in
[kπ/σ , (k+1)π/σ], the points kπ/σ and (k+1)π/σ are zeros of Cσ(z)−
f(z).

b) There can be at most one zero of Cσ(z) − f(z) in (kπ/σ , (k + 1)π/σ),
k ∈ Z, and it can be only a zero with a multiplicity 1 (a simple zero) .
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c) A zero at any point kπ/σ, k ∈ Z, may be simple or double but not of
higher multiplicity. If Cσ(z) − f(z) has a double zero at some point
kπ/σ, k ∈ Z, then it cannot have any zeros in

((k − 1)π/σ , kπ/σ) ∪ (kπ/σ, (k + 1)π/σ) .

B. Let m be even. Then, besides at most m, even number counting mul-
tiplicities, real or complex conjugate zeros, the distribution of the zeros of
Cσ(z)− f(z) is as in A.

Corollary 1. Taking into account that the function f(z) ≡ 0 belongs to
DSσ,m,y for an arbitrarily chosen parameters σ > 0, m ∈ N0, and y =
{. . . , y−1, y0, y1, . . . } (yk ≥ 0, k ∈ Z), each Chebyshev function Cσ from
DSσ,m,y possesses the same as Cσ − f, f ∈ DSσ,m,y zero distribution which is
described by Theorem 2.

Theorem A can be derived from the next corollary of Theorem 2 .

Corollary 2. Let y be as in Theorem 2 and let, in the special case m = 1,
the class DSσ,1,y be defined as in Definition 1. Let Cσ(z) ∈ DSσ,1,y be a
Chebyshev function, i.e., Cσ (kπ/σ) = (−1)k yk (k ∈ Z) . Then, for each
f ∈ DSσ,1,y, the function Cσ(z) − f(z) vanishes identically or has only real
zeros with a zero distribution, described by Theorem 2 .

Remark 4. Theorem A is the particular case m := 1 , yk := 1 (k ∈ Z) and
Cσ(z) := cosσz of Corollary 2.

Remark 5. Let m be even and let f ∈ Eσ,R. Then, assuming more
generally that f(x) = O(xm), |x| → ∞ (x ∈ R), or assuming more generally
that, f(x) = o(xm+1), |x| → ∞ (x ∈ R), by Theorem 2 A, we may have at
most m additional zeros.

Example 3. Let m be odd. Then, the Chebyshev function Cs,σ(z) :=
z2s cosσz (s = 0, 1, . . . , (m − 1)/2) has an even number, possibly from 0 to
m−1, additional zeros, counting multiplicities. The Chebyshev barrier function
C0,σ has been used in Theorem A .

Example 4. Let m be odd. Then,

Cσ(z) := (σz)m
∑

k∈Z\{0}

(−1)k

(kπ)m
· sin(σz − kπ)

σz − kπ

is another example of a Chebyshev function which is o(xm), |x| → ∞ (x ∈
R). The Chebyshev function Cσ has a zero at the point 0 with multiplicity
m+1, and from here, no zeros in (−π/σ , 0) ∪ (0 , π/σ) . In addition, for ε > 0,
Cε,σ(z) := ε sinσz/σz + Cm,σ(z) is an example of a Chebyshev function that
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is o(xm) |x| → ∞ (x ∈ R), takes values (−1)k at kπ/σ (k ∈ Z \ {0}), and a
value ε for z = 0. Cε,σ has simple zeros in (−π/σ, 0) and (0, π/σ) and m − 1
additional zeros, close to the point z = 0 for ε sufficiently small.

Example 5. Let m be even. Let Cσ(z) := z2k h(z) (k = 0, . . . ,m/2),
where h(z) ∈ Eσ,R is uniquely determined by the interpolation conditions
h(0) = 1, and h(kπ/σ) = (−1)k/|k| (k ∈ Z \ {0}) as a function which is
o(1), |x| → ∞ (x ∈ R) (see Theorem 1). Then, the Chebyshev function Cσ(x)
is o(x2k) , |x| → ∞ (x ∈ R) and it has a zero with multiplicity 2k at the point
zero (k ∈ {0, 1, . . . ,m/2}). Cσ has one simple zero in (−π/σ, 0), one simple
zero in (0, π/σ) and no other zeros in (−π/σ, 0) ∪ (0, π/σ).

The sharpness of Theorem 2

Estimating the sharpness of Theorem 2 we may ask the following question.
Can we claim the same zero distribution in the case of O(xm), |x| → ∞ (x ∈ R)
functions (m odd) ? We shall answer this question by two more examples.

Example 6. Let m be odd. Then, the real entire function

Cσ(z) := (z − π/2σ)
m

sinσz

satisfies the condition of Theorem 2 with yk := 0, k ∈ Z, except that Cσ(x) =
O(xm) but not o(xm), |x| → ∞ (x ∈ R) . Evidently, the function Cσ has
m > m− 1 additional zeros.

Example 7. Let m ≥ 1 be odd. Let Cσ(z) := zm−1 cos z and let

fκ(z) := zm−1
(

sinσz

σz
− κ z sinσz

)
.

Then, the function Cσ is a Chebyshev function in DSσ,m,y, where yk :=

(−1)k (kπ/σ)
m−1

(k ∈ Z\{0}) and y0 = 0 (m ≥ 3), y0 = 1 (m = 1). The func-
tion fκ satisfies the conditions of Theorem 2, except that fκ(x) = O(xm) but
not o(xm), |x| → ∞ (x ∈ R) . The real entire function Cσ(z)−fκ(z) (κ > σ/3)
has a zero with multiplicity m+ 1 at z = 0 and two additional simple zeros in
each of the intervals (−π/σ, 0) and (0, π/σ), so the conclusions of Theorem 2
are violated.

4. Extension of a Result of L. Hörmander

The following result is due to Hörmander [5, Corollary, p. 26].

Theorem B (L. Hörmander). Let f ∈ Eσ,R satisfy |f(x)| ≤ M for all
x ∈ R. Furthermore, let f(0) = M ( and implicitly f ′(0) = 0 ). Then

f(x) ≥M cos σx (−π/σ ≤ x ≤ π/σ) .

The estimate is best possible as the example f(z) := M cosσz shows.
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We prove the following theorem.

Theorem 3. Let m be odd. Let f ∈ DSσ,m,y and let Cσ(z) be a Chebyshev
function from DSσ,m,y . Then we have the following.

A) Let f (j)(0) = C
(j)
σ (0), j = 0, 1, . . . ,m . Then

f(x) ≥ Cσ(x) (−π/σ ≤ x ≤ π/σ)

with an equality case for some x ∈ {(−π/σ , 0) ∪ (0 , π/σ)} if and only if
f(z) ≡ Cσ(z).

B) Let f(0) = Cσ(0), f ′(0) = C ′σ(0) , and f (j)(xs) = C
(j)
σ (xs) (j = 0, 1) at

the real points xs, s = 1, . . . , (m− 1)/2 (xs 6= kπ/σ , k ∈ Z). Then

f(x) ≥ Cσ(x) (−π/σ ≤ x ≤ π/σ)

with an equality case for some

x ∈ {{(−π/σ , 0) ∪ (0 , π/σ)} \ {xs, s = 1, . . . , (m− 1)/2}}

if and only if f(z) ≡ Cσ(z).

C) Let f(0) = Cσ(0) and f ′(0) = C ′σ(0) . Let f(zs) = Cσ(zs) at the complex
points zs (={zs} 6= 0), s = 1, . . . , (m− 1)/2 . Then

f(x) ≥ Cσ(x) (−π/σ ≤ x ≤ π/σ)

with an equality case for some x ∈ {(−π/σ , 0) ∪ (0 , π/σ)} if and only if
f(z) ≡ Cσ(z).

Remark 6. The particular case m = 1 and Cσ(z) := cosσz of Theo-
rem 3 A) implies the result, given in Theorem B.

Remark 7. The conclusion of Theorem 3 will hold if we have m + 1
Hermite interpolation conditions of type A), B), and C), simultaneously. For

example, let f (j)(0) = C
(j)
σ (0), j = 0, 1, . . . , 2l1 + 1 (l1 ≥ 0 , integer ) and

suppose that at l2 real points xs, s = 1, . . . , l2, xs 6= kπ/σ, k ∈ Z (l2 ≥ 0,

integer) we have f (j)(xs) = C
(j)
σ (xs), j = 0, 1 . (We can also use Hermite

interpolation conditions with different, even number multiplicities at each real
interpolation node.) Let also at l3 (l3 ≥ 0, integer) complex points zs (={zs} 6=
0), s = 1, . . . , l3, f(zs) = Cσ(zs). ( Here, we can also use Hermite interpolation
conditions with different multiplicities at each complex interpolation node. ) If
l1 + l2 + l3 = (m− 1)/2, then the conclusion of Theorem 3 holds also.

This paper is based on some joint work done in collaboration with Dr. M. A.
Qazi and Professor Q. I. Rahman.
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des fonctions entières de degré fini. III, C. R. (Doklady) Acad. Sci. URSS (N.S.)
52 (1946) 563–566.

[2] S. Bernstein, Sur la meilleure approximation des fonctions sur l’axe réel par
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