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Walsh-Fourier Series with Respect to Weights

TiMEA EISNER *

It is known that the trigonometric Fourier series converges in L”-norm if
1 < p < co. This claim is false for p = 1 and p = co. Similar statements
are true for the Walsh-system. The domain of parameter p for the LP-
norm convergence in the case of orthogonal polynomials depends on the
weight function. For example, for Legendre polynomials, the LP-norm
convergence holds only for 4/3 < p < 4 (see [5]).

Bl. Sendov introduced in 1999 a generalization of the Walsh-system,
the so-called “Walsh-similar” functions (see [10]). These are special cases
of the Walsh system with respect the weight p (W* = ¥” = (¢f,n € N)),
which was introduced by Schipp (see [7], [8]).

We show that if the weight function p belongs to the class Lip (o, W)
(0 < a <1),and p > po > 0, then the W?-Walsh-Fourier-series is
convergent in Lb-norm if 1 < p < co. We study the behavior of such
WP-systems too, whose weight function has not positive lower bound.
For example, for p(z) = 2 (a > —1) the W’-system is not uniformly
bounded. We give an exact estimation for the norm of the functions

¥, and show for pg = %thatifl <p<poorp, <p< oo,
then there exists a function f € LY with divergent W?”-Fourier series in
Lf-norm.

1. Introduction

In this paper we fix a weight function p € L1([0, 1)), p > 0, with fol p(z)dr=1
and investigate dyadic martingales, with respect to the probability measure
spaces (I, A, 1), where A is the collection of Lebesgue-measurable sets in I :=
[0,1) and pu(A) = [, p(x) dz (A € A). Let us denote by

T,= (k27" (k+ )27 k=0,1,...,2" =1} (neN)

the set of dyadic intervals with length 27", and let A,, be the o-algebra, gene-
rated by Z,. The set of real, A,-measurable functions, defined on I is denoted
by L(A,). Obviously

L(Ay,) =span{xs:I € In} (neN),
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where X7 is the characteristic function of the set I. The conditional expectation
E? with respect to A, is of the form

_ i f(s)p(s) ds .
(ERf)(z) = T ods (releA,, feLlI).
In the case p = 1 we shall use the notation E,, := E! (n € N). Obviously
E,
Eﬁf:];:/f) (f € LD, neN). 0

The sequence ® = (¢,,,n € N) is called a normalized dyadic martingale differ-
ence sequence in the probability space (I,.A4, ), if

i) ¢n € L(Any1), i) EP(¢,) =0, iii) EX(|pn]?) =1 (neN). (2

It is clear that in the case p = 1 the Rademacher system (R = (r,,n € N))
satisfies (2). In the general case, taking the standardization of r,, in the space
(I, A, ), we get the system

n — EP n n — bn En n
b = " n” =T , by :=Efr, = M (neN)
\/EZ(\Tn — Ebral?) \/1 —b2 En(p) (3)

satisfying (2). (See [8].)
The product system of the system ®” = (¢,,n € N) (see [1], [6], [9]) is
defined by

Ym = H ¢?k (m € N)’ (4)
k=0

where the numbers my € {0,1} are the digits in the dyadic representation
m=> 1 my2F. BEspecially the product system of the Rademacher system
is the Walsh system in Paley’s enumeration, which is orthonormed in L?(I)
(see [9]). It is known that the product system P = (¢,,,n € N) is orthonormal
in L2 (see [8]). The weight function p can be written in the form

p=Tl0+br), b= (7 €N) (5)
=0

(see [8]). By (3), the reciprocal of the function ¢,, is of the form
¢! =1/¢y = == (neN).

The functions
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form a dyadic martingale with respect to the Lebesgue-space, and the mar-
tingale (p,;,n € N) is L'-bounded. This implies that the infinite product

H;’io(l — bjr;) converges a.e. to the limit

p_ = H(]. - bj'l"j), (6)
7=0

and p~ >0 and p~ € L'(I) (see [2], [3]). It is proved in [8] that if the maximal
function of the martingale (p,,,n € N) satisfies

sup p; € (D),
neN

then U1 is an orthonormal system with respect to weight function p~. We
introduce the martingale transform operators

Th f=Y abEL (¢ fleyt  (FeL. (I), meN), (7)

k=0

where the Ag-measurable coefficients are defined by
(m,k € N). (8)

It is proved in [8] that for any function f € L (I) we have

Shf = vnTh (fpm/p™)  (meN). (9)

2. Results

Recall that the functions f : [0,1) — R belong to the class Lip (a, W)
(0 < a < 1) if there exists a constant K > 0 such that |f(z+h)— f(z)| < K h*
for all z,h € 1.

Lemma 1. (i) If p>po>0onlandp € Lip(a, W) (0 < a < 1), then
[onlloo <1 (n€N) and > ||bnlloco < 0.
n=0

(#) If > |Ibnlloo < 00 and ||bn|lec < 1 (n € N), then the function sequences
n=0

af and W, are uniformly bounded, and the functions p, p~ and p% are

bounded.

From Lemma 1 and (9) we get
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Theorem 1. If p > pg >0 on 1 and p € Lip (o, W) (0 < a < 1), then
155 flize < [Ifllzz
for 0 < p < oo.
Lemma 2. If p(z) = 2® (a > —1), then

2 (1 )"~ ke = (g 1)
(k + 1)0¢+1 _ ka+1

bu(z) = (10)

if v €[, 5L (k=0,...,2" —1).
Lemma 3. Let x € [274271) (1 =1,2,...) and p(z) = z°.
(¢) If n < and o > —1, then by, (z) = (%)a - 1.

(@) If n > L€ and a > —1, o # 1, then there exists a constant B, depending
only on a, such that |b,(x)| < B2 ",

(iii) If n > € and o =1, then 2773 < |b, (z)] < 27" H-2,
Lemma 4. Let o be a positive real number with 2°°~2ag = 1. If p(x) =
% (ag > a>—1) and x € 27427 (£ =1,2,...), then

£—1
1 mi

() = (@)@ — 1) 5™ 2 (@), (1)

where w(z) is the n-th Walsh function in Paley’s enumeration, |Cy, ,(7)] < Ka,
and K, is a constant depending only on a.

Let 0 < N e N, mpy := QZOI 2% Tt follows from (11) that
[V (2)] < Ko (27 = 1)2/2a (12)

and

1
|thmy ()] = E(2a+1 - 1),
if p(r) = 2% (@ > =1, # 0), and if x € [274,27F!) (¢ = 1,2,...). From
these estimations we get the following

Theorem 2. Let p(z) = 2 (ag > a > 0), where o is a positive real
number with 2°°~2ag = 1, and p§ := % There exists a function f € LY

with divergent WP-Fourier series in Lb-norm if 1 <p <po or Py < p < oo.
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3. Proofs

Proof of Lemma 1. It follows immediately from (3) that if p > pg > 0 on I,
then ||by|lec < 1 (n € N). We get by definition that in this case |E,p| > po, and
it is known that if p € Lip (o, W) (0 < a < 1), then ||[Enp — plloc < Ca27™9,
where C, is a constant depending only on « (see [9]). Using these estimations
we get

‘b | = En(an) _ ’I“nEn(prn) _ Ent1p— Enp
! E,p Enp Enp
|Epi1p — p|l + |Enp — p < CQQ—(n—H)a + 0,27 .
B |Eﬂp| - Lo

where A, = Cu(27* + 1)/po and taking the supremum we get ||bplloo <
An27". Since the series Y >~ ;27" is convergent if a > 0, it follows that
the series >~ ||bn]/oo is convergent too, and (i) is proved. Since the series
Yoo o llbnllee is convergent, it follows that there exists a constant K(< 1),
and N € N with [|b]lc < K for n > N. Since |bj| < 1 (j = 0,1,...,N)
and b; is continuous on the group, and the group is compact, it follows that
Ibjllcc < 1 (5 =0,...,N), and we get that for all n € N, [|by]e0c < K :=
max{K, ||bolloos - - ||bnlloc} < 1.
Since |bn\ <1 (n € N), we get by (8) that

1+ b ’“’11+|bj|
kH(l—b;) <Ili=p 09

br]
1+b7‘]

Since 14+ u < e* (u € R), and if |u| < K < 1, then - < e*“, where s = 1,
we get by (13) that

k—1
(s+1) z 115511
lak | < H elbileslbil < ¢ i=0 , (14)
j=0
if |b] < K <1 (j€N),and s = 2.

Since |b,| < 1, and 72 = 1 we can write in view of (3) the functions ¢, in
the form

rn(l —rpby) 1—1r,b,
AN (VRS S e i O 15
¢ \/177’2[)2 " 1+rnbn ( )

From (15) and (4) we get similarly as in (13) and (14) that

oo

|¢m| <e k=0 )

where [by] < K <1 (k € N), and s = .
is convergent, the function series a¥, and v, are uniformly bounded. We get
similarly by (5) and (6) that the functlon 2 is bounded. [

Since the series Y0 ||bn |l
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Proof of Theorem 1. It follows from (7) and (9) that the partial sums can
be expressed by martingale transforms operators. It is known (see [9]) that if in
the martingale transforms operators the function sequences a¥, are uniformly
bounded, then the martingale transforms operator is bounded in LP-norm if
1 < p < oo. Since the function sequences v, are uniformly bounded too and
the function pi_ is bounded (see Lemma 1), it follows by (9) that the partial
sums SP, f are bounded in LP-norm (1 <p < oo). O

Proof of Lemma 2. Suppose that x € [2%7 k;fll] (k=0,...,2"—1). We get
with easy enumeration that

(k+1)27" (k + 1)o¢+1 _ fatl
E.p)(x) =2" t*dt = , 16
Eu) =2 [ raTa T 1) (16)

and
(k+1)27™
(Eppry)(z) = 2"/ t%r, () dt

k2—m (17)

2k +1/2)2 — (k4 1)t — ot

B 2na (o + 1) '

Using (16) and (17), we get our statement by (1). O

Proof of Lemma 3. If n < ¢, then for alln € Nz € [0,27"), and so k =0
in (10), and b, (z) = (1/2)* — 1. If n > ¢, then 2" * < k < k + 1 < 2n—+1
in (10). Taking the function f(u) = u®™! and using the Lagrange theorem in
(10) we get that there exist real numbers & € (k,k+1/2), & € (k+1/2,k+1)
and &3 € (k,k + 1) such that

bn(l’) _ % . f/(gl) — f/(£2) _ gil 763 (18)

f'(&3) 268
Applying the Lagrange theorem again for the function g(u) = u® and for the

interval (£1,&2), we get by (18) that there exists a real number n € (£1,&2) for
which

_ / _ a—1
bn(fE) _ (51 52{39 (77) _ (51 52)0?477 ) (19)
285 285
Since & < &, we conclude that b,(z) has negative sign if & > 0 and has
positive sign if —1 < a < 0. If @ > 1, then we get by (19) that

afg ™ _alk+ 1) o oon
b (2)] < 2;@ T < 207227, (20)
If 0 < a < 1, then we get similarly by (19) that

aff“*l a(k+1/2)e"t
<
b ()] < 2k« 2k«

< %2*"“. (21)
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If -1 < a < 0, then we get similarly by (19) that

et ™! okt _ o]
b <
a0 < S e < 2@+ 1 = 2
With (20), (21), and (22), (ii) is proved. If @ = 1, then we get by (10) that
bu() = —g5, if # € [95, 5] (k = 0,...,2" — 1), which is a monotone
function on (0,1) and (iii) follows easily. O

2 [e% 2 n+£ (22)

Proof of Lemma 4. Suppose that z € [27¢,271) (£ =1,2,...). Let ag be
a positive real number with 2% ~2¢y = 1, and let

a207? ifl<a<ag
B, =14 a/2, fo<a<l1
lelg=e if -1 <a <o,
Then, for all n € N, ||bp|lco < K :=max{|(1/2)* — 1], B} < 1.
Since ri(x) =1 if k < ¢, we get by (4), (15) and Lemma 3 that
_ mE mp
ﬁ 1 — by (z) (/= ()b ()
. o 1+ bp(x) P 1+ ri(z)bg(2)

= wm(x) (20+1 - 1)% Zi;é mg | Yo (J)),

m,l

| 121

where Co ,(z) = [[;2, ( L T’“(l)b’“ L)) . Then, by Lemma 3, we obtain

1+7’k bk(x)
1+ |bk 1‘ a
Ca | I | I (8+1 ‘bk | < (s+1)Ba = Ka’
| | - 1-— |bk 33 ¢ ¢

and Lemma 4 is proved. O

Proof of Theorem 2. It was proved by Newman and Rudin in [4] that a
necessary condition for the LP-convergence of the W¥-Fourier series of any
function f € LD is

[z - [mll = O(1), (23)
where 1/p + 1/p’ = 1. We denote by x¢(z) the characteristic function of the

interval 276,271 (£ = 1,2,...). If p(z) = 2% (ap > a > —1), 0 < N € N,
my = sz—Ol 2% then we get by (12) that

Wi 15 = / [ () () o = / Zx[ )t (@) p(2) da

a+1 _ Zp/2
Y& DTy de
= K& (24)

2a+1

N _1)p/2 £ . N ,
= TR 2( R X
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The last series in (24) is divergent if go, > 1. This inequality is true, if
p > % =p§, and 0 < o < ap. It follows by (23) that the necessary
condition for the LL-convergence of the W#-Fourier series of any function f €

LB is that py < p < po, and Theorem 2 is proved. [
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