# Walsh-Fourier Series with Respect to Weights 

Tímea Eisner *


#### Abstract

It is known that the trigonometric Fourier series converges in $L^{p}$-norm if $1<p<\infty$. This claim is false for $p=1$ and $p=\infty$. Similar statements are true for the Walsh-system. The domain of parameter $p$ for the $L^{p}$ norm convergence in the case of orthogonal polynomials depends on the weight function. For example, for Legendre polynomials, the $L^{p}$-norm convergence holds only for $4 / 3<p<4$ (see [5]).

Bl. Sendov introduced in 1999 a generalization of the Walsh-system, the so-called "Walsh-similar" functions (see [10]). These are special cases of the Walsh system with respect the weight $\rho\left(W^{\rho}=\Psi^{\rho}=\left(\psi_{n}^{\rho}, n \in \mathbb{N}\right)\right)$, which was introduced by Schipp (see [7], [8]).

We show that if the weight function $\rho$ belongs to the class $\operatorname{Lip}(\alpha, W)$ $(0<\alpha \leq 1)$, and $\rho \geq \rho_{0}>0$, then the $W^{\rho}$-Walsh-Fourier-series is convergent in $L_{\rho}^{p}$-norm if $1<p<\infty$. We study the behavior of such $W^{\rho}$-systems too, whose weight function has not positive lower bound. For example, for $\rho(x)=x^{\alpha}(\alpha>-1)$ the $W^{\rho}$-system is not uniformly bounded. We give an exact estimation for the norm of the functions $\psi_{n}^{\rho}$, and show for $p_{0}^{\alpha}=\frac{2(\alpha+1) \ln 2}{\ln \left(2^{\alpha+1}-1\right)}$ that if $1 \leq p \leq p_{0}$ or $p_{0}^{\prime} \leq p \leq \infty$, then there exists a function $f \in L_{\rho}^{p}$ with divergent $W^{\rho}$-Fourier series in $L_{\rho}^{p}$-norm.


## 1. Introduction

In this paper we fix a weight function $\rho \in L^{1}([0,1)), \rho \geq 0$, with $\int_{0}^{1} \rho(x) d x=1$ and investigate dyadic martingales, with respect to the probability measure spaces $(\mathbb{I}, \mathcal{A}, \mu)$, where $\mathcal{A}$ is the collection of Lebesgue-measurable sets in $\mathbb{I}:=$ $[0,1)$ and $\mu(A)=\int_{A} \rho(x) d x(A \in \mathcal{A})$. Let us denote by

$$
\mathcal{I}_{n}:=\left\{\left(k 2^{-n},(k+1) 2^{-n}\right): k=0,1, \ldots, 2^{n}-1\right\} \quad(n \in \mathbb{N})
$$

the set of dyadic intervals with length $2^{-n}$, and let $\mathcal{A}_{n}$ be the $\sigma$-algebra, generated by $\mathcal{I}_{n}$. The set of real, $\mathcal{A}_{n}$-measurable functions, defined on $\mathbb{I}$ is denoted by $L\left(\mathcal{A}_{n}\right)$. Obviously

$$
L\left(\mathcal{A}_{n}\right)=\operatorname{span}\left\{\chi_{I}: I \in \mathcal{I} n\right\} \quad(n \in \mathbb{N}),
$$

[^0]where $\chi_{I}$ is the characteristic function of the set $I$. The conditional expectation $E_{n}^{\rho}$ with respect to $\mathcal{A}_{n}$ is of the form
$$
\left(E_{n}^{\rho} f\right)(x)=\frac{\int_{I} f(s) \rho(s) d s}{\int_{I} \rho(s) d s} \quad\left(x \in I \in \mathcal{A}_{n}, f \in L_{\rho}^{1}(\mathbb{I})\right)
$$

In the case $\rho=1$ we shall use the notation $E_{n}:=E_{n}^{1}(n \in \mathbb{N})$. Obviously

$$
\begin{equation*}
E_{n}^{\rho} f=\frac{E_{n}(\rho f)}{E_{n} \rho} \quad\left(f \in L_{\rho}^{1}(\mathbb{I}), n \in \mathbb{N}\right) \tag{1}
\end{equation*}
$$

The sequence $\Phi=\left(\phi_{n}, n \in \mathbb{N}\right)$ is called a normalized dyadic martingale difference sequence in the probability space $(\mathbb{I}, \mathcal{A}, \mu)$, if

$$
\begin{equation*}
\text { i) } \phi_{n} \in L\left(\mathcal{A}_{n+1}\right), \quad \text { ii) } E_{n}^{\rho}\left(\phi_{n}\right)=0, \quad \text { iii) } E_{n}^{\rho}\left(\left|\phi_{n}\right|^{2}\right)=1 \quad(n \in \mathbb{N}) \tag{2}
\end{equation*}
$$

It is clear that in the case $\rho=1$ the Rademacher system $\left(R=\left(r_{n}, n \in \mathbb{N}\right)\right)$ satisfies (2). In the general case, taking the standardization of $r_{n}$ in the space $(\mathbb{I}, \mathcal{A}, \mu)$, we get the system

$$
\phi_{n}:=\frac{r_{n}-E_{n}^{\rho} r_{n}}{\sqrt{E_{n}^{\rho}\left(\left|r_{n}-E_{n}^{\rho} r_{n}\right|^{2}\right)}}=\frac{r_{n}-b_{n}}{\sqrt{1-b_{n}^{2}}}, \quad b_{n}:=E_{n}^{\rho} r_{n}=\frac{E_{n}\left(\rho r_{n}\right)}{E_{n}(\rho)}
$$

satisfying (2). (See [8].)
The product system of the system $\Phi^{\rho}=\left(\phi_{n}, n \in \mathbb{N}\right)($ see [1], [6], [9]) is defined by

$$
\begin{equation*}
\psi_{m}:=\prod_{k=0}^{\infty} \phi_{k}^{m_{k}} \quad(m \in \mathbb{N}) \tag{4}
\end{equation*}
$$

where the numbers $m_{k} \in\{0,1\}$ are the digits in the dyadic representation $m=\sum_{k=0}^{\infty} m_{k} 2^{k}$. Especially the product system of the Rademacher system is the Walsh system in Paley's enumeration, which is orthonormed in $L^{2}(\mathbb{I})$ (see [9]). It is known that the product system $\Psi^{\rho}=\left(\psi_{n}, n \in \mathbb{N}\right)$ is orthonormal in $L_{\rho}^{2}$ (see [8]). The weight function $\rho$ can be written in the form

$$
\begin{equation*}
\rho=\prod_{j=0}^{\infty}\left(1+b_{j} r_{j}\right), \quad b_{j}=\frac{E_{j}\left(\rho r_{j}\right)}{E_{j}(\rho)} \quad(j \in \mathbb{N}) \tag{5}
\end{equation*}
$$

(see [8]). By (3), the reciprocal of the function $\phi_{n}$ is of the form

$$
\phi_{n}^{-1}:=1 / \phi_{n}=\frac{r_{n}+b_{n}}{\sqrt{1-b_{n}^{2}}} \quad(n \in \mathbb{N})
$$

The functions

$$
\rho_{0}^{-}:=1, \quad \rho_{n}^{-}:=\prod_{j=0}^{n-1}\left(1-b_{j} r_{j}\right) \quad\left(n \in \mathbb{N}^{*}\right)
$$

form a dyadic martingale with respect to the Lebesgue-space, and the martingale $\left(\rho_{n}^{-}, n \in \mathbb{N}\right)$ is $L^{1}$-bounded. This implies that the infinite product $\prod_{j=0}^{\infty}\left(1-b_{j} r_{j}\right)$ converges a.e. to the limit

$$
\begin{equation*}
\rho^{-}:=\prod_{j=0}^{\infty}\left(1-b_{j} r_{j}\right) \tag{6}
\end{equation*}
$$

and $\rho^{-} \geq 0$ and $\rho^{-} \in L^{1}(\mathbb{I})$ (see [2], [3]). It is proved in [8] that if the maximal function of the martingale $\left(\rho_{n}^{-}, n \in \mathbb{N}\right)$ satisfies

$$
\sup _{n \in \mathbb{N}} \rho_{n}^{-} \in L^{1}(\mathbb{I})
$$

then $\Psi^{-1}$ is an orthonormal system with respect to weight function $\rho^{-}$. We introduce the martingale transform operators

$$
\begin{equation*}
T_{m}^{\rho^{-}} f:=\sum_{k=0}^{\infty} a_{m}^{k} E_{k}^{\rho^{-}}\left(\phi_{k}^{-1} f\right) \phi_{k}^{-1} \quad\left(f \in L_{\rho^{-}}^{1}(\mathbb{I}), m \in \mathbb{N}\right) \tag{7}
\end{equation*}
$$

where the $\mathcal{A}_{k}$-measurable coefficients are defined by

$$
\begin{equation*}
a_{m}^{k}:=m_{k} \prod_{j=0}^{k-1} \frac{\left(1-b_{j} r_{j}\right)^{1-m_{j}}}{\left(1+b_{j} r_{j}\right)^{1-m_{j}}} \quad(m, k \in \mathbb{N}) \tag{8}
\end{equation*}
$$

It is proved in [8] that for any function $f \in L_{\rho}^{1}(\mathbb{I})$ we have

$$
\begin{equation*}
S_{m}^{\rho} f=\psi_{m} T_{m}^{\rho^{-}}\left(f \rho \psi_{m} / \rho^{-}\right) \quad(m \in \mathbb{N}) \tag{9}
\end{equation*}
$$

## 2. Results

Recall that the functions $f:[0,1) \rightarrow \mathbb{R}$ belong to the class $\operatorname{Lip}(\alpha, W)$ $(0<\alpha \leq 1)$ if there exists a constant $K>0$ such that $|f(x+h)-f(x)| \leq K h^{\alpha}$ for all $x, h \in \mathbb{I}$.

Lemma 1. (i) If $\rho \geq \rho_{0}>0$ on $\mathbb{I}$ and $\rho \in \operatorname{Lip}(\alpha, W)(0<\alpha \leq 1)$, then $\left\|b_{n}\right\|_{\infty}<1(n \in \mathbb{N})$ and $\sum_{n=0}^{\infty}\left\|b_{n}\right\|_{\infty}<\infty$.
(ii) If $\sum_{n=0}^{\infty}\left\|b_{n}\right\|_{\infty}<\infty$ and $\left\|b_{n}\right\|_{\infty}<1(n \in \mathbb{N})$, then the function sequences $a_{m}^{k}$ and $\Psi_{m}$ are uniformly bounded, and the functions $\rho, \rho^{-}$and $\frac{\rho}{\rho^{-}}$are bounded.

From Lemma 1 and (9) we get

Theorem 1. If $\rho \geq \rho_{0}>0$ on $\mathbb{I}$ and $\rho \in \operatorname{Lip}(\alpha, W)(0<\alpha \leq 1)$, then

$$
\left\|S_{n}^{\rho} f\right\|_{L_{\rho}^{p}} \leq\|f\|_{L_{\rho}^{p}}
$$

for $0<p<\infty$.
Lemma 2. If $\rho(x)=x^{\alpha}(\alpha>-1)$, then

$$
\begin{equation*}
b_{n}(x)=\frac{2\left(k+\frac{1}{2}\right)^{\alpha+1}-k^{\alpha+1}-(k+1)^{\alpha+1}}{(k+1)^{\alpha+1}-k^{\alpha+1}} \tag{10}
\end{equation*}
$$

if $x \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]\left(k=0, \ldots, 2^{n}-1\right)$.
Lemma 3. Let $x \in\left[2^{-\ell}, 2^{-\ell+1}\right)(\ell=1,2, \ldots)$ and $\rho(x)=x^{\alpha}$.
(i) If $n<\ell$ and $\alpha>-1$, then $b_{n}(x)=\left(\frac{1}{2}\right)^{\alpha}-1$.
(ii) If $n \geq \ell$ and $\alpha>-1, \alpha \neq 1$, then there exists a constant $B_{\alpha}$ depending only on $\alpha$, such that $\left|b_{n}(x)\right| \leq B_{\alpha} 2^{-n+\ell}$.
(iii) If $n \geq \ell$ and $\alpha=1$, then $2^{-n+\ell-3}<\left|b_{n}(x)\right| \leq 2^{-n+\ell-2}$.

Lemma 4. Let $\alpha_{0}$ be a positive real number with $2^{\alpha_{0}-2} \alpha_{0}=1$. If $\rho(x)=$ $x^{\alpha}\left(\alpha_{0} \geq \alpha>-1\right)$ and $x \in\left[2^{-\ell}, 2^{-\ell+1}\right)(\ell=1,2, \ldots)$, then

$$
\begin{equation*}
\psi_{m}(x)=w_{m}(x)\left(2^{\alpha+1}-1\right)^{\frac{1}{2} \sum_{k=0}^{\ell-1} m_{k}} \cdot C_{m, \ell}^{\alpha}(x) \tag{11}
\end{equation*}
$$

where $w(x)$ is the $n$-th Walsh function in Paley's enumeration, $\left|C_{m, \ell}^{\alpha}(x)\right| \leq K_{\alpha}$, and $K_{\alpha}$ is a constant depending only on $\alpha$.

Let $0<N \in \mathbb{N}, m_{N}:=\sum_{k=0}^{N-1} 2^{k}$. It follows from (11) that

$$
\begin{equation*}
\left|\psi_{m}(x)\right| \leq K_{\alpha}\left(2^{\alpha+1}-1\right)^{\ell / 2} \tag{12}
\end{equation*}
$$

and

$$
\left|\psi_{m_{N}}(x)\right| \geq \frac{1}{K_{\alpha}}\left(2^{\alpha+1}-1\right)^{\ell / 2}
$$

if $\rho(x)=x^{\alpha}(\alpha>-1, \alpha \neq 0)$, and if $x \in\left[2^{-\ell}, 2^{-\ell+1}\right)(\ell=1,2, \ldots)$. From these estimations we get the following

Theorem 2. Let $\rho(x)=x^{\alpha}\left(\alpha_{0} \geq \alpha>0\right)$, where $\alpha_{0}$ is a positive real number with $2^{\alpha_{0}-2} \alpha_{0}=1$, and $p_{0}^{\alpha}:=\frac{2(\alpha+1) \ln 2}{\ln \left(2^{\alpha+1}-1\right)}$. There exists a function $f \in L_{\rho}^{p}$ with divergent $W^{\rho}$-Fourier series in $L_{\rho}^{p}$-norm if $1 \leq p \leq p_{0}$ or $p_{0}^{\prime} \leq p \leq \infty$.

## 3. Proofs

Proof of Lemma 1. It follows immediately from (3) that if $\rho \geq \rho_{0}>0$ on $\mathbb{I}$, then $\left\|b_{n}\right\|_{\infty}<1(n \in \mathbb{N})$. We get by definition that in this case $\left|E_{n} \rho\right| \geq \rho_{0}$, and it is known that if $\rho \in \operatorname{Lip}(\alpha, W)(0<\alpha \leq 1)$, then $\left\|E_{n} \rho-\rho\right\|_{\infty} \leq C_{\alpha} 2^{-n \alpha}$, where $C_{\alpha}$ is a constant depending only on $\alpha$ (see [9]). Using these estimations we get

$$
\begin{aligned}
\left|b_{n}\right| & =\left|\frac{E_{n}\left(\rho r_{n}\right)}{E_{n} \rho}\right|=\left|\frac{r_{n} E_{n}\left(\rho r_{n}\right)}{E_{n} \rho}\right|=\left|\frac{E_{n+1} \rho-E_{n} \rho}{E_{n} \rho}\right| \\
& \leq \frac{\left|E_{n+1} \rho-\rho\right|+\left|E_{n} \rho-\rho\right|}{\left|E_{n} \rho\right|} \leq \frac{C_{\alpha} 2^{-(n+1) \alpha}+C_{\alpha} 2^{-n \alpha}}{\rho_{0}}=A_{\alpha} 2^{-n \alpha},
\end{aligned}
$$

where $A_{\alpha}=C_{\alpha}\left(2^{-\alpha}+1\right) / \rho_{0}$ and taking the supremum we get $\left\|b_{n}\right\|_{\infty} \leq$ $A_{\alpha} 2^{-n \alpha}$. Since the series $\sum_{n=0}^{\infty} 2^{-n \alpha}$ is convergent if $\alpha>0$, it follows that the series $\sum_{n=0}^{\infty}\left\|b_{n}\right\|_{\infty}$ is convergent too, and (i) is proved. Since the series $\sum_{n=0}^{\infty}\left\|b_{n}\right\|_{\infty}$ is convergent, it follows that there exists a constant $\tilde{K}(<1)$, and $N \in \mathbb{N}$ with $\left\|b_{n}\right\|_{\infty} \leq \tilde{K}$ for $n>N$. Since $\left|b_{j}\right|<1(j=0,1, \ldots, N)$ and $b_{j}$ is continuous on the group, and the group is compact, it follows that $\left\|b_{j}\right\|_{\infty}<1(j=0, \ldots, N)$, and we get that for all $n \in \mathbb{N},\left\|b_{n}\right\|_{\infty} \leq K:=$ $\max \left\{\tilde{K},\left\|b_{0}\right\|_{\infty}, \ldots,\left\|b_{n}\right\|_{\infty}\right\}<1$.

Since $\left|b_{n}\right|<1(n \in \mathbb{N})$, we get by (8) that

$$
\begin{equation*}
\left|a_{m}^{k}\right|=m_{k} \prod_{j=0}^{k-1}\left|\frac{1-b_{j} r_{j}}{1+b_{j} r_{j}}\right|^{1-m_{j}} \leq m_{k} \prod_{j=0}^{k-1}\left(\frac{1+\left|b_{j}\right|}{1-\left|b_{j}\right|}\right)^{1-m_{j}} \leq \prod_{j=0}^{k-1} \frac{1+\left|b_{j}\right|}{1-\left|b_{j}\right|} \tag{13}
\end{equation*}
$$

Since $1+u \leq e^{u}(u \in \mathbb{R})$, and if $|u| \leq K<1$, then $\frac{1}{1-u} \leq e^{s u}$, where $s=\frac{1}{1-K}$, we get by (13) that

$$
\begin{equation*}
\left|a_{m}^{k}\right| \leq \prod_{j=0}^{k-1} e^{\left|b_{j}\right|} e^{s\left|b_{j}\right|} \leq e^{(s+1)} \sum_{j=0}^{k-1}\left\|b_{j}\right\|_{\infty}, \tag{14}
\end{equation*}
$$

if $\left|b_{j}\right| \leq K<1(j \in \mathbb{N})$, and $s=\frac{1}{1-K}$.
Since $\left|b_{n}\right|<1$, and $r_{n}^{2}=1$ we can write in view of (3) the functions $\phi_{n}$ in the form

$$
\begin{equation*}
\phi_{n}=\frac{r_{n}\left(1-r_{n} b_{n}\right)}{\sqrt{1-r_{n}^{2} b_{n}^{2}}}=r_{n} \sqrt{\frac{1-r_{n} b_{n}}{1+r_{n} b_{n}}} \tag{15}
\end{equation*}
$$

From (15) and (4) we get similarly as in (13) and (14) that

$$
\left|\psi_{m}\right| \leq e^{\frac{s+1}{2}} \sum_{k=0}^{\infty}\left\|b_{k}\right\|_{\infty}
$$

where $\left|b_{k}\right| \leq K<1(k \in \mathbb{N})$, and $s=\frac{1}{1-K}$. Since the series $\sum_{n=0}^{\infty}\left\|b_{n}\right\|_{\infty}$ is convergent, the function series $a_{m}^{k}$ and $\psi_{m}$ are uniformly bounded. We get similarly by (5) and (6) that the function $\frac{\rho}{\rho^{-}}$is bounded.

Proof of Theorem 1. It follows from (7) and (9) that the partial sums can be expressed by martingale transforms operators. It is known (see [9]) that if in the martingale transforms operators the function sequences $a_{m}^{k}$ are uniformly bounded, then the martingale transforms operator is bounded in $L^{p}$-norm if $1<p<\infty$. Since the function sequences $\psi_{m}$ are uniformly bounded too and the function $\frac{\rho}{\rho^{-}}$is bounded (see Lemma 1), it follows by (9) that the partial sums $S_{m}^{\rho} f$ are bounded in $L^{p}$-norm $(1<p<\infty)$.

Proof of Lemma 2. Suppose that $x \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]\left(k=0, \ldots, 2^{n}-1\right)$. We get with easy enumeration that

$$
\begin{equation*}
\left(E_{n} \rho\right)(x)=2^{n} \int_{k 2^{-n}}^{(k+1) 2^{-n}} t^{\alpha} d t=\frac{(k+1)^{\alpha+1}-k^{\alpha+1}}{2^{n \alpha}(\alpha+1)} \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
\left(E_{n} \rho r_{n}\right)(x) & =2^{n} \int_{k 2^{-n}}^{(k+1) 2^{-n}} t^{\alpha} r_{n}(t) d t  \tag{17}\\
& =\frac{2(k+1 / 2)^{\alpha+1}-(k+1)^{\alpha+1}-k^{\alpha+1}}{2^{n \alpha}(\alpha+1)}
\end{align*}
$$

Using (16) and (17), we get our statement by (1).
Proof of Lemma 3. If $n<\ell$, then for all $n \in \mathbb{N} x \in\left[0,2^{-n}\right)$, and so $k=0$ in (10), and $b_{n}(x)=(1 / 2)^{\alpha}-1$. If $n \geq \ell$, then $2^{n-\ell} \leq k<k+1 \leq 2^{n-\ell+1}$. in (10). Taking the function $f(u)=u^{\alpha+1}$ and using the Lagrange theorem in (10) we get that there exist real numbers $\xi_{1} \in(k, k+1 / 2), \xi_{2} \in(k+1 / 2, k+1)$ and $\xi_{3} \in(k, k+1)$ such that

$$
\begin{equation*}
b_{n}(x)=\frac{1}{2} \cdot \frac{f^{\prime}\left(\xi_{1}\right)-f^{\prime}\left(\xi_{2}\right)}{f^{\prime}\left(\xi_{3}\right)}=\frac{\xi_{1}^{\alpha}-\xi_{2}^{\alpha}}{2 \xi_{3}^{\alpha}} . \tag{18}
\end{equation*}
$$

Applying the Lagrange theorem again for the function $g(u)=u^{\alpha}$ and for the interval $\left(\xi_{1}, \xi_{2}\right)$, we get by (18) that there exists a real number $\eta \in\left(\xi_{1}, \xi_{2}\right)$ for which

$$
\begin{equation*}
b_{n}(x)=\frac{\left(\xi_{1}-\xi_{2}\right) g^{\prime}(\eta)}{2 \xi_{3}^{\alpha}}=\frac{\left(\xi_{1}-\xi_{2}\right) \alpha \eta^{\alpha-1}}{2 \xi_{3}^{\alpha}} \tag{19}
\end{equation*}
$$

Since $\xi_{1}<\xi_{2}$, we conclude that $b_{n}(x)$ has negative sign if $\alpha>0$ and has positive sign if $-1<\alpha<0$. If $\alpha>1$, then we get by (19) that

$$
\begin{equation*}
\left|b_{n}(x)\right| \leq \frac{\alpha \xi_{2}^{\alpha-1}}{2 k^{\alpha}}<\frac{\alpha(k+1)^{\alpha-1}}{2 k^{\alpha}} \leq 2^{\alpha-2} \alpha 2^{-n+\ell} \tag{20}
\end{equation*}
$$

If $0<\alpha<1$, then we get similarly by (19) that

$$
\begin{equation*}
\left|b_{n}(x)\right| \leq \frac{\alpha \xi_{1}^{\alpha-1}}{2 k^{\alpha}}<\frac{\alpha(k+1 / 2)^{\alpha-1}}{2 k^{\alpha}} \leq \frac{\alpha}{2} 2^{-n+\ell} \tag{21}
\end{equation*}
$$

If $-1<\alpha<0$, then we get similarly by (19) that

$$
\begin{equation*}
\left|b_{n}(x)\right| \leq \frac{|\alpha| \xi_{1}^{\alpha-1}}{2(k+1)^{\alpha}}<\frac{|\alpha| k^{\alpha-1}}{2(k+1)^{\alpha}} \leq \frac{|\alpha|}{2} 2^{-\alpha} \cdot 2^{-n+\ell} \tag{22}
\end{equation*}
$$

With (20), (21), and (22), (ii) is proved. If $\alpha=1$, then we get by (10) that $b_{n}(x)=-\frac{1}{4 k+2}$, if $x \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]\left(k=0, \ldots, 2^{n}-1\right)$, which is a monotone function on $(0,1)$ and (iii) follows easily.

Proof of Lemma 4. Suppose that $x \in\left[2^{-\ell}, 2^{-\ell+1}\right)(\ell=1,2, \ldots)$. Let $\alpha_{0}$ be a positive real number with $2^{\alpha_{0}-2} \alpha_{0}=1$, and let

$$
B_{\alpha}:= \begin{cases}\alpha 2^{\alpha-2}, & \text { if } 1<\alpha \leq \alpha_{0} \\ \alpha / 2, & \text { if } 0<\alpha \leq 1 \\ \frac{|\alpha|}{2} 2^{-\alpha}, & \text { if }-1<\alpha \leq 0\end{cases}
$$

Then, for all $n \in \mathbb{N},\left\|b_{n}\right\|_{\infty} \leq K:=\max \left\{\left|(1 / 2)^{\alpha}-1\right|, B_{\alpha}\right\}<1$.
Since $r_{k}(x)=1$ if $k<\ell$, we get by (4), (15) and Lemma 3 that

$$
\begin{aligned}
\psi_{m}(x) & =\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{m_{k}} \prod_{k=0}^{\ell-1}\left(\sqrt{\frac{1-b_{k}(x)}{1+b_{k}(x)}}\right)^{m_{k}} \prod_{k=\ell}^{\infty}\left(\sqrt{\frac{1-r_{k}(x) b_{k}(x)}{1+r_{k}(x) b_{k}(x)}}\right)^{m_{k}} \\
& =w_{m}(x)\left(2^{\alpha+1}-1\right)^{\frac{1}{2} \sum_{k=0}^{\ell-1} m_{k}} \cdot C_{m, \ell}^{\alpha}(x)
\end{aligned}
$$

where $C_{m, \ell}^{\alpha}(x)=\prod_{k=\ell}^{\infty}\left(\sqrt{\frac{1-r_{k}(x) b_{k}(x)}{1+r_{k}(x) b_{k}(x)}}\right)^{m_{k}}$. Then, by Lemma 3, we obtain

$$
\left|C_{m, \ell}^{\alpha}(x)\right| \leq \prod_{k=\ell}^{\infty} \sqrt{\frac{1+\left|b_{k}(x)\right|}{1-\left|b_{k}(x)\right|}} \leq \prod_{k=\ell}^{\infty} \sqrt{e^{(s+1)\left|b_{k}(x)\right|}} \leq e^{(s+1) B_{\alpha}}=: K_{\alpha}
$$

and Lemma 4 is proved.
Proof of Theorem 2. It was proved by Newman and Rudin in [4] that a necessary condition for the $L_{\rho}^{p}$-convergence of the $W^{\rho}$-Fourier series of any function $f \in L_{\rho}^{p}$ is

$$
\begin{equation*}
\left\|\psi_{m}\right\|_{L_{\rho}^{p}} \cdot\left\|\psi_{m}\right\|_{L_{\rho}^{p^{\prime}}}=O(1) \tag{23}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$. We denote by $\chi_{\ell}(x)$ the characteristic function of the interval $\left[2^{-\ell}, 2^{-\ell+1}\right)(\ell=1,2, \ldots)$. If $\rho(x)=x^{\alpha}\left(\alpha_{0} \geq \alpha>-1\right), 0<N \in \mathbb{N}$, $m_{N}:=\sum_{k=0}^{N-1} 2^{k}$, then we get by (12) that

$$
\begin{align*}
\left\|\psi_{m_{N}}\right\|_{L_{\rho}^{p}}^{p} & =\int_{0}^{1}\left|\psi_{m_{N}}(x)\right|^{p} \rho(x) d x=\int_{0}^{1} \sum_{\ell=1}^{\infty} \chi_{\ell}(x)\left|\psi_{m_{N}}(x)\right|^{p} \rho(x) d x \\
& \geq \int_{0}^{1} \sum_{\ell=1}^{N} \chi_{\ell}(x) \frac{\left(2^{\alpha+1}-1\right)^{\ell p / 2}}{K_{\alpha}^{p}} \rho(x) d x  \tag{24}\\
& =\frac{2^{\alpha+1}-1}{(\alpha+1) K_{\alpha}^{p}} \sum_{\ell=1}^{N}\left(\frac{\left(2^{\alpha+1}-1\right)^{p / 2}}{2^{\alpha+1}}\right)^{\ell}=: C_{\alpha, p} \sum_{\ell=1}^{N} q_{\alpha, p}^{\ell}
\end{align*}
$$

The last series in (24) is divergent if $q_{\alpha, p} \geq 1$. This inequality is true, if $p \geq \frac{2(\alpha+1) \ln 2}{\ln \left(2^{\alpha+1}-1\right)}=p_{0}^{\alpha}$, and $0<\alpha \leq \alpha_{0}$. It follows by (23) that the necessary condition for the $L_{\rho}^{p}$-convergence of the $W^{\rho}$-Fourier series of any function $f \in$ $L_{\rho}^{p}$ is that $p_{0}^{\prime}<p<p_{0}$, and Theorem 2 is proved.

Acknowledgment. I wish to express my gratitude to Professor Ferenc Schipp and Professor Péter Simon for their help and advice in preparing this paper.

## References

[1] G. Alexits, "Convergence Problems of Orthogonal Functions", Pergamon Press, New York, 1961.
[2] A. M. Garsia, "Martingale Inequalities. Seminar Notes on Recent Progress", Benjamin, Inc., London, Amsterdam, Sydney, Tokyo, 1973.
[3] J. Neveu, "Discrete-Parameter Martingales", North Holland. Publ., Amsterdam, 1975.
[4] J. Newman and W. Rudin, Mean convergence of orthogonal series, Proc. Amer. Math. Soc. 3 (1952), 219-222.
[5] H. Pollard, The mean convergence of orthogonal series I., Trans. AMS 62 (1947), 387-403.
[6] F. Schipp, On $L^{p}$-norm convergence of series with respect to product systems, Analysis Math. 2 (1976), 49-64.
[7] F. Schipp, On adapted orthonormed systems, East J. Approx., 6, 2 (2000), 157-188.
[8] F. Schipp, On Walsh-functions with respect weights, Math. Balkanica (N. S.).
[9] F. Schipp, W. R. Wade, and P. Simon, "Walsh Series", Adam Hilger, BristolNew York, 1990.
[10] Bl. Sendov, Walsh-similar functions, East J. Approx. 5, 1 (1999), 1-65.

## Tímea Eisner

University of Pécs
Institute of Mathematics and Informatics
7624 Pécs, Ifjúság u. 6
HUNGARY
E-mail: eisner@ttk.pte.hu


[^0]:    *Supported by the Grant OTKA/T032719.

