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Walsh-Fourier Series with Respect to Weights

T́ımea Eisner ∗

It is known that the trigonometric Fourier series converges in Lp-norm if
1 < p <∞. This claim is false for p = 1 and p =∞. Similar statements
are true for the Walsh-system. The domain of parameter p for the Lp-
norm convergence in the case of orthogonal polynomials depends on the
weight function. For example, for Legendre polynomials, the Lp-norm
convergence holds only for 4/3 < p < 4 (see [5]).

Bl. Sendov introduced in 1999 a generalization of the Walsh-system,
the so-called “Walsh-similar” functions (see [10]). These are special cases
of the Walsh system with respect the weight ρ (W ρ = Ψρ = (ψρn, n ∈ N)),
which was introduced by Schipp (see [7], [8]).

We show that if the weight function ρ belongs to the class Lip (α,W )
(0 < α ≤ 1), and ρ ≥ ρ0 > 0, then the W ρ-Walsh-Fourier-series is
convergent in Lpρ-norm if 1 < p < ∞. We study the behavior of such
W ρ-systems too, whose weight function has not positive lower bound.
For example, for ρ(x) = xα (α > −1) the W ρ-system is not uniformly
bounded. We give an exact estimation for the norm of the functions
ψρn, and show for pα0 = 2(α+1) ln 2

ln(2α+1−1)
that if 1 ≤ p ≤ p0 or p′0 ≤ p ≤ ∞,

then there exists a function f ∈ Lpρ with divergent W ρ-Fourier series in
Lpρ-norm.

1. Introduction

In this paper we fix a weight function ρ ∈L1([0, 1)), ρ ≥ 0, with
∫ 1

0
ρ(x)dx=1

and investigate dyadic martingales, with respect to the probability measure
spaces (I,A, µ), where A is the collection of Lebesgue-measurable sets in I :=
[0, 1) and µ(A) =

∫
A
ρ(x) dx (A ∈ A). Let us denote by

In := {(k2−n, (k + 1)2−n) : k = 0, 1, . . . , 2n − 1} (n ∈ N)

the set of dyadic intervals with length 2−n, and let An be the σ-algebra, gene-
rated by In. The set of real, An-measurable functions, defined on I is denoted
by L(An). Obviously

L(An) = span {χI : I ∈ In} (n ∈ N),
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where χI is the characteristic function of the set I. The conditional expectation
Eρn with respect to An is of the form

(Eρnf)(x) =

∫
I
f(s)ρ(s) ds∫
I
ρ(s) ds

(x ∈ I ∈ An, f ∈ L1
ρ(I)).

In the case ρ = 1 we shall use the notation En := E1
n (n ∈ N). Obviously

Eρnf =
En(ρf)

Enρ
(f ∈ L1

ρ(I), n ∈ N). (1)

The sequence Φ = (φn, n ∈ N) is called a normalized dyadic martingale differ-
ence sequence in the probability space (I,A, µ), if

i) φn ∈ L(An+1), ii) Eρn(φn) = 0, iii) Eρn(|φn|2) = 1 (n ∈ N). (2)

It is clear that in the case ρ = 1 the Rademacher system (R = (rn, n ∈ N))
satisfies (2). In the general case, taking the standardization of rn in the space
(I,A, µ), we get the system

φn :=
rn − Eρnrn√

Eρn(|rn − Eρnrn|2)
=

rn − bn√
1− b2n

, bn := Eρnrn =
En(ρrn)

En(ρ)
(n ∈ N)

(3)

satisfying (2). (See [8].)
The product system of the system Φρ = (φn, n ∈ N) (see [1], [6], [9]) is

defined by

ψm :=

∞∏
k=0

φmkk (m ∈ N), (4)

where the numbers mk ∈ {0, 1} are the digits in the dyadic representation
m =

∑∞
k=0mk2k. Especially the product system of the Rademacher system

is the Walsh system in Paley’s enumeration, which is orthonormed in L2(I)
(see [9]). It is known that the product system Ψρ = (ψn, n ∈ N) is orthonormal
in L2

ρ (see [8]). The weight function ρ can be written in the form

ρ =

∞∏
j=0

(1 + bjrj), bj =
Ej(ρrj)

Ej(ρ)
(j ∈ N) (5)

(see [8]). By (3), the reciprocal of the function φn is of the form

φ−1n := 1/φn =
rn + bn√

1− b2n
(n ∈ N).

The functions

ρ−0 := 1, ρ−n :=

n−1∏
j=0

(1− bjrj) (n ∈ N∗)
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form a dyadic martingale with respect to the Lebesgue-space, and the mar-
tingale (ρ−n , n ∈ N) is L1-bounded. This implies that the infinite product∏∞
j=0(1− bjrj) converges a.e. to the limit

ρ− :=

∞∏
j=0

(1− bjrj), (6)

and ρ− ≥ 0 and ρ− ∈ L1(I) (see [2], [3]). It is proved in [8] that if the maximal
function of the martingale (ρ−n , n ∈ N) satisfies

sup
n∈N

ρ−n ∈ L1(I),

then Ψ−1 is an orthonormal system with respect to weight function ρ−. We
introduce the martingale transform operators

T ρ
−

m f :=

∞∑
k=0

akmE
ρ−

k (φ−1k f)φ−1k (f ∈ L1
ρ−(I), m ∈ N), (7)

where the Ak-measurable coefficients are defined by

akm := mk

k−1∏
j=0

(1− bjrj)1−mj
(1 + bjrj)1−mj

(m, k ∈ N). (8)

It is proved in [8] that for any function f ∈ L1
ρ(I) we have

Sρmf = ψmT
ρ−

m (fρψm/ρ
−) (m ∈ N). (9)

2. Results

Recall that the functions f : [0, 1) → R belong to the class Lip (α,W )
(0 < α ≤ 1) if there exists a constant K > 0 such that |f(x+h)−f(x)| ≤ K hα

for all x, h ∈ I.

Lemma 1. (i) If ρ ≥ ρ0 > 0 on I and ρ ∈ Lip (α,W ) (0 < α ≤ 1), then

‖bn‖∞ < 1 (n ∈ N) and
∞∑
n=0
‖bn‖∞ <∞.

(ii) If
∞∑
n=0
‖bn‖∞ < ∞ and ‖bn‖∞ < 1 (n ∈ N), then the function sequences

akm and Ψm are uniformly bounded, and the functions ρ, ρ− and ρ
ρ− are

bounded.

From Lemma 1 and (9) we get
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Theorem 1. If ρ ≥ ρ0 > 0 on I and ρ ∈ Lip (α,W ) (0 < α ≤ 1), then

‖Sρnf‖Lpρ ≤ ‖f‖Lpρ

for 0 < p <∞.

Lemma 2. If ρ(x) = xα (α > −1), then

bn(x) =
2
(
k + 1

2

)α+1 − kα+1 − (k + 1)α+1

(k + 1)α+1 − kα+1
(10)

if x ∈
[
k
2n ,

k+1
2n

]
(k = 0, . . . , 2n − 1).

Lemma 3. Let x ∈ [2−`, 2−`+1) (` = 1, 2, . . . ) and ρ(x) = xα.

(i) If n < ` and α > −1, then bn(x) =
(
1
2

)α − 1.

(ii) If n ≥ ` and α > −1, α 6= 1, then there exists a constant Bα depending
only on α, such that |bn(x)| ≤ Bα2−n+`.

(iii) If n ≥ ` and α = 1, then 2−n+`−3 < |bn(x)| ≤ 2−n+`−2.

Lemma 4. Let α0 be a positive real number with 2α0−2 α0 = 1. If ρ(x) =
xα (α0 ≥ α > −1) and x ∈ [2−`, 2−`+1) (` = 1, 2, . . . ), then

ψm(x) = wm(x)(2α+1 − 1)
1
2

`−1∑
k=0

mk
· Cαm,`(x), (11)

where w(x) is the n-th Walsh function in Paley’s enumeration, |Cαm,`(x)| ≤ Kα,
and Kα is a constant depending only on α.

Let 0 < N ∈ N, mN :=
∑N−1
k=0 2k. It follows from (11) that

|ψm(x)| ≤ Kα(2α+1 − 1)`/2, (12)

and

|ψmN (x)| ≥ 1

Kα
(2α+1 − 1)`/2,

if ρ(x) = xα (α > −1, α 6= 0), and if x ∈ [2−`, 2−`+1) (` = 1, 2, . . . ). From
these estimations we get the following

Theorem 2. Let ρ(x) = xα (α0 ≥ α > 0), where α0 is a positive real

number with 2α0−2α0 = 1, and pα0 := 2(α+1) ln 2
ln(2α+1−1) . There exists a function f ∈ Lpρ

with divergent W ρ-Fourier series in Lpρ-norm if 1 ≤ p ≤ p0 or p′0 ≤ p ≤ ∞.
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3. Proofs

Proof of Lemma 1. It follows immediately from (3) that if ρ ≥ ρ0 > 0 on I,
then ‖bn‖∞ < 1 (n ∈ N). We get by definition that in this case |Enρ| ≥ ρ0, and
it is known that if ρ ∈ Lip (α,W ) (0 < α ≤ 1), then ‖Enρ − ρ‖∞ ≤ Cα2−nα,
where Cα is a constant depending only on α (see [9]). Using these estimations
we get

|bn| =
∣∣∣∣En(ρrn)

Enρ

∣∣∣∣ =

∣∣∣∣rnEn(ρrn)

Enρ

∣∣∣∣ =

∣∣∣∣En+1ρ− Enρ
Enρ

∣∣∣∣
≤ |En+1ρ− ρ|+ |Enρ− ρ|

|Enρ|
≤ Cα2−(n+1)α + Cα2−nα

ρ0
= Aα2−nα,

where Aα = Cα(2−α + 1)/ρ0 and taking the supremum we get ‖bn‖∞ ≤
Aα2−nα. Since the series

∑∞
n=0 2−nα is convergent if α > 0, it follows that

the series
∑∞
n=0 ‖bn‖∞ is convergent too, and (i) is proved. Since the series∑∞

n=0 ‖bn‖∞ is convergent, it follows that there exists a constant K̃(< 1),

and N ∈ N with ‖bn‖∞ ≤ K̃ for n > N . Since |bj | < 1 (j = 0, 1, . . . , N)
and bj is continuous on the group, and the group is compact, it follows that
‖bj‖∞ < 1 (j = 0, . . . , N), and we get that for all n ∈ N, ‖bn‖∞ ≤ K :=

max{K̃, ‖b0‖∞, . . . , ‖bn‖∞} < 1.
Since |bn| < 1 (n ∈ N), we get by (8) that

|akm| = mk

k−1∏
j=0

∣∣∣∣1− bjrj1 + bjrj

∣∣∣∣1−mj≤ mk

k−1∏
j=0

(
1 + |bj |
1− |bj |

)1−mj
≤
k−1∏
j=0

1 + |bj |
1− |bj |

. (13)

Since 1 + u ≤ eu (u ∈ R), and if |u| ≤ K < 1, then 1
1−u ≤ e

su, where s = 1
1−K ,

we get by (13) that

|akm| ≤
k−1∏
j=0

e|bj |es|bj | ≤ e
(s+1)

k−1∑
j=0
‖bj‖∞

, (14)

if |bj | ≤ K < 1 (j ∈ N), and s = 1
1−K .

Since |bn| < 1, and r2n = 1 we can write in view of (3) the functions φn in
the form

φn =
rn(1− rnbn)√

1− r2nb2n
= rn

√
1− rnbn
1 + rnbn

. (15)

From (15) and (4) we get similarly as in (13) and (14) that

|ψm| ≤ e
s+1
2

∞∑
k=0

‖bk‖∞
,

where |bk| ≤ K < 1 (k ∈ N), and s = 1
1−K . Since the series

∑∞
n=0 ‖bn‖∞

is convergent, the function series akm and ψm are uniformly bounded. We get
similarly by (5) and (6) that the function ρ

ρ− is bounded. �
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Proof of Theorem 1. It follows from (7) and (9) that the partial sums can
be expressed by martingale transforms operators. It is known (see [9]) that if in
the martingale transforms operators the function sequences akm are uniformly
bounded, then the martingale transforms operator is bounded in Lp-norm if
1 < p < ∞. Since the function sequences ψm are uniformly bounded too and
the function ρ

ρ− is bounded (see Lemma 1), it follows by (9) that the partial

sums Sρmf are bounded in Lp-norm (1 < p <∞). �

Proof of Lemma 2. Suppose that x ∈
[
k
2n ,

k+1
2n

]
(k = 0, . . . , 2n− 1). We get

with easy enumeration that

(Enρ)(x) = 2n
∫ (k+1)2−n

k2−n
tα dt =

(k + 1)α+1 − kα+1

2nα(α+ 1)
, (16)

and

(Enρrn)(x) = 2n
∫ (k+1)2−n

k2−n
tαrn(t) dt

=
2(k + 1/2)α+1 − (k + 1)α+1 − kα+1

2nα(α+ 1)
.

(17)

Using (16) and (17), we get our statement by (1). �

Proof of Lemma 3. If n < `, then for all n ∈ N x ∈ [0, 2−n), and so k = 0
in (10), and bn(x) = (1/2)α − 1. If n ≥ `, then 2n−` ≤ k < k + 1 ≤ 2n−`+1

in (10). Taking the function f(u) = uα+1 and using the Lagrange theorem in
(10) we get that there exist real numbers ξ1 ∈ (k, k+ 1/2), ξ2 ∈ (k+ 1/2, k+ 1)
and ξ3 ∈ (k, k + 1) such that

bn(x) =
1

2
· f
′(ξ1)− f ′(ξ2)

f ′(ξ3)
=
ξα1 − ξα2

2ξα3
. (18)

Applying the Lagrange theorem again for the function g(u) = uα and for the
interval (ξ1, ξ2), we get by (18) that there exists a real number η ∈ (ξ1, ξ2) for
which

bn(x) =
(ξ1 − ξ2)g′(η)

2ξα3
=

(ξ1 − ξ2)αηα−1

2ξα3
. (19)

Since ξ1 < ξ2, we conclude that bn(x) has negative sign if α > 0 and has
positive sign if −1 < α < 0. If α > 1, then we get by (19) that

|bn(x)| ≤ αξα−12

2kα
<
α(k + 1)α−1

2kα
≤ 2α−2α2−n+`. (20)

If 0 < α < 1, then we get similarly by (19) that

|bn(x)| ≤ αξα−11

2kα
<
α(k + 1/2)α−1

2kα
≤ α

2
2−n+`. (21)
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If −1 < α < 0, then we get similarly by (19) that

|bn(x)| ≤ |α|ξα−11

2(k + 1)α
<
|α|kα−1

2(k + 1)α
≤ |α|

2
2−α · 2−n+`. (22)

With (20), (21), and (22), (ii) is proved. If α = 1, then we get by (10) that
bn(x) = − 1

4k+2 , if x ∈
[
k
2n ,

k+1
2n

]
(k = 0, . . . , 2n − 1), which is a monotone

function on (0, 1) and (iii) follows easily. �

Proof of Lemma 4. Suppose that x ∈ [2−`, 2−`+1) (` = 1, 2, . . . ). Let α0 be
a positive real number with 2α0−2α0 = 1, and let

Bα :=


α2α−2, if 1 < α ≤ α0

α/2, if 0 < α ≤ 1
|α|
2 2−α, if −1 < α ≤ 0.

Then, for all n ∈ N, ‖bn‖∞ ≤ K := max{|(1/2)α − 1|, Bα} < 1.
Since rk(x) = 1 if k < `, we get by (4), (15) and Lemma 3 that

ψm(x) =

∞∏
k=0

(rk(x))mk
`−1∏
k=0

(√
1− bk(x)

1 + bk(x)

)mk ∞∏
k=`

(√
1− rk(x)bk(x)

1 + rk(x)bk(x)

)mk
= wm(x) (2α+1 − 1)

1
2

∑`−1
k=0mk · Cαm,`(x),

where Cαm,`(x) =
∏∞
k=`

(√
1−rk(x)bk(x)
1+rk(x)bk(x)

)mk
. Then, by Lemma 3, we obtain

|Cαm,`(x)| ≤
∞∏
k=`

√
1 + |bk(x)|
1− |bk(x)|

≤
∞∏
k=`

√
e(s+1)|bk(x)| ≤ e(s+1)Bα =: Kα,

and Lemma 4 is proved. �

Proof of Theorem 2. It was proved by Newman and Rudin in [4] that a
necessary condition for the Lpρ-convergence of the W ρ-Fourier series of any
function f ∈ Lpρ is

‖ψm‖Lpρ · ‖ψm‖Lp′ρ = O(1), (23)

where 1/p + 1/p′ = 1. We denote by χ`(x) the characteristic function of the
interval [2−`, 2−`+1) (` = 1, 2, . . . ). If ρ(x) = xα (α0 ≥ α > −1), 0 < N ∈ N,

mN :=
∑N−1
k=0 2k, then we get by (12) that

‖ψmN ‖
p
Lpρ

=

∫ 1

0

|ψmN (x)|pρ(x) dx =

∫ 1

0

∞∑
`=1

χ`(x)|ψmN (x)|pρ(x) dx

≥
∫ 1

0

N∑
`=1

χ`(x)
(2α+1 − 1)`p/2

Kp
α

ρ(x) dx

=
2α+1 − 1

(α+ 1)Kp
α

N∑
`=1

(
(2α+1 − 1)p/2

2α+1

)`
=: Cα,p

N∑
`=1

q`α,p.

(24)
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The last series in (24) is divergent if qα,p ≥ 1. This inequality is true, if

p ≥ 2(α+1) ln 2
ln(2α+1−1) = pα0 , and 0 < α ≤ α0. It follows by (23) that the necessary

condition for the Lpρ-convergence of the W ρ-Fourier series of any function f ∈
Lpρ is that p′0 < p < p0, and Theorem 2 is proved. �
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HUNGARY
E-mail: eisner@ttk.pte.hu


