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Localization of the Spherical Gauss-Weierstrass
Kernel

Noeḿı Láın Fernández∗ and Jürgen Prestin

In [2], Narcowich and Ward introduced a new uncertainty product U
for functions on the sphere. In this paper we show that the spherical
Gauss-Weierstrass kernel is asymptotically best localized with respect to
the product U . The method of proof is based on series expansions of the
corresponding inner products.

1. An Uncertainty Relation

In many occasions one is interested in working with functions that are
somehow concentrated in both space and momentum domain. As is known,
it is not possible to confine a function arbitrarily and simultaneously to space
and momentum. Nevertheless, it is possible to derive a so-called uncertainty
relation which measures a trade-off between space localization and angular
momentum. In [2], Narcowich and Ward introduced an uncertainty principle
for the unit sphere Ω ⊂ R3 using the operator O : F 7→ OF , which maps
any real-valued function F ∈ L2(Ω) into the normal field OF : Ω → R3,
ξ 7→ ξF (ξ), as position operator and the surface curl operator L∗ : F 7→
L∗F , which associates to any real-valued function F the tangential vector field
L∗F : Ω → R3, ξ 7→ L∗F (ξ) = ξ ×∇∗F (ξ), as momentum operator. Here, ∇∗

denotes the surface gradient. Before establishing the uncertainty principle, let
us introduce the following notation, cf. also [1, 2].

(I) Localization in space domain: We define the “center of gravity of the
spherical window” in space domain ξOF as the expectation value of the position
operator O, i.e.,

ξOF := ⟨OF,F ⟩ =
∫
Ω

OF (η)F (η) dw(η) =

∫
Ω

ηF (η)2 dw(η) ∈ R3.
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In a similar way, we can define the variance in space domain as the variance
of the operator O, i.e.,

σO
F :=

∫
Ω

∥OF (η)− ξOF F∥22 dw(η) = 1− ∥ξOF ∥22.

(II) Localization in momentum domain: As mentioned at the beginning,
we make now use of the surface curl operator L∗ : F 7→ L∗F , where L∗F is the
tangential vector field which associates to each point ξ ∈ Ω the vector L∗F (ξ) =
ξ×∇∗F (ξ). In a similar way, we can introduce the center in momentum domain
as the expectation value of the operator L∗:

ξL
∗

F := ⟨L∗F, F ⟩ =
∫
Ω

(L∗F (η))F (η) dw(η) ∈ R3.

It can be shown that if F is a twice-continuously differentiable function then
the expectation value ξL

∗

F is equal to 0. Defining the variance in momentum
domain as the variance of the operator L∗, one obtains

σL∗

F :=

∫
Ω

∥L∗F (η)− ξL
∗

F F (η)∥22 dw(η) =
∫
Ω

L∗F (η) · L∗F (η) dw(η)

=−
∫
Ω

F (η)∆∗F (η) dw(η) = ξ−∆∗

F ,

where in the penultimate step we have applied Stokes’ Theorem to the func-
tion FL∗F and used the fact that Ω is closed. Now that we have introduced
the fundamental concepts concerning localization in space and in momentum
domain we are in a position to state the uncertainty principle. For the proof
we refer to [1, Chapter 5] and [2].

Theorem 1. Let F be a twice-continuously differentiable real-valued func-
tion on Ω with ∥F∥=1. Then

σO
F σL∗

F ≥ ∥ξOF ∥22.

If ξOF is non-vanishing, then

varO(F ) · var L∗(F ) ≥ 1,

where varO(F ) :=

(
σO
F

)1/2
∥ξOF ∥2

and var L∗(F ) :=
(
σL∗

F

)1/2
.

For simplicity of notation we will denote by U(F ) the uncertainty product,

U(F ) = varO(F ) · var L∗ (F ).

In the next corollary we establish an explicit formula for the computation
of the uncertainty product of zonal functions of the form

F (ξ) =

∞∑
k=0

ck
2k + 1

4π
Pk(ξ · e3), (1)
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where Pk denotes the Legendre polynomial of degree k normalized according
to the condition Pk(1) = 1 and {

√
2k + 1 ck} ∈ ℓ2(N0).

Corollary 1. Let F ∈ C2(Ω) be of the form (1) and F ̸= const. The
uncertainty product U(F ) of the function F is then evaluated as

U(F ) =




∞∑
k=0

(2k + 1) c2k

2
∞∑
k=1

k ck ck−1


2

− 1


1/2

∞∑
k=1

k(k + 1)(2k + 1) c2k

∞∑
k=0

(2k + 1) c2k


1/2

. (2)

For the proof and further localization results we refer to [3].

2. The Gauss-Weierstrass Kernel

By using the integral formulation of the uncertainty principle for zonal
functions and making use of the so-called Gaussian kernel

G(t) := e−
λ
2 (1−t), t ∈ [−1, 1], λ > 0,

it is shown in [1, Chapter 5] that the best lower bound of the uncertainty
product U is one. Additionally, numerical experiments have given evidence of
the fact that the Gauss-Weierstrass kernel Wρ, defined by

Wρ(t) :=

∞∑
n=0

e−n(n+1)ρ 2n+ 1

4π
Pn(t), t ∈ [−1, 1],

also yields the best value of the uncertainty product when ρ tends to zero.
In this section we prove that indeed U(Wρ) → 1 as ρ → 0 by studying the
behavior of the uncertainty product in its series representation (2).

Theorem 2. Let Wρ be the Gauss-Weierstrass kernel. Then

lim
ρ→0

U(Wρ)
2

= lim
ρ→0

varO(Wρ)
2 · var L∗(Wρ)

2

= lim
ρ→0




∞∑
k=0

(2k + 1)e−2k(k+1)ρ

2
∞∑
k=1

k e−2k2ρ


2

− 1

 ·

∞∑
k=1

k (k + 1)(2k + 1) e−2k(k+1)ρ

∞∑
k=0

(2k + 1) e−2k(k+1)ρ

= 1.
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Figure 1: Plots of the Gauss-Weierstrass kernel: on the left as spherical function,

on the right as function in spherical coordinates for values of ρ = 0.1 and ρ = 0.01.

For the proof of the theorem we need the following two lemmas.

Lemma 1. Let 0 < ρ < 1. It holds

(i) 1 + 1
2ρ − e(ρ−1)/2

√
ρ <

∞∑
k=0

(2k + 1)e−2k(k+1)ρ < 1 + 1
2ρ + e(ρ−1)/2

√
ρ ,

(ii) 1
4ρ − 1

2e
√
ρ <

∞∑
k=1

k e−2k2ρ < 1
4ρ + 1

2e
√
ρ + e−2ρ−1

4ρ ,

(iii) 1
4ρ2 − 3

2
√
2 ρ3/2

<
∞∑
k=1

k(k + 1)(2k + 1)e−2k(k+1)ρ < 1
4ρ2 + 3

2
√
2 ρ3/2

.

Moreover,

∞∑
k=1

kαe−2k2ρ < ρ−(α+1)/2(1 + δα,0) (α = 0, . . . , 4). (3)
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Proof. The proof follows directly from applying the trapezoidal quadrature
rule∫ ∞

0

f(x) dx− max
x∈R+

f(x) <

∞∑
k=1

f(k) <

∫ ∞

0

f(x) dx+ max
x∈R+

f(x)−
∫ 1

0

f(x) dx

to the functions

(i) f(x) = (2x+ 1) e−2x(x+1)ρ,

(ii) f(x) = x e−2x2ρ,

(iii) f(x) = x (x+ 1) (2x+ 1) e−2x(x+1)ρ, and finally

f(x) = xαe−2x2ρ, (α = 0, . . . , 4).

Lemma 2. Let 0 < ρ < 1. Then it holds

lim
ρ→0

( ∞∑
k=0

(2k + 1) e−2k(k+1)ρ − 2

∞∑
k=1

k e−2k2ρ

)
=

1

2
.

Proof. As a first step we apply the Euler-Maclaurin summation formula to
the function

f(x) = (2x+ 1) e−2x(x+1)ρ − 2x e−2x2ρ

and obtain

m∑
k=0

f(k) =

∫ m

0

f(x) dx+
f(0)

2
− f(m)

2
+

∫ m

0

f ′(x)

(
x− ⌊x⌋ − 1

2

)
dx

=

∫ m

0

f(x) dx+
f(0)

2
− f(m)

2
+

m−1∑
q=0

∫ q+1

q

f ′(x)

(
x− q − 1

2

)
dx.

Observe that, by taking the limit m → ∞,

lim
m→∞

∫ m

0

f(x)d x =

∫ ∞

0

(
(2x+ 1) e−2x(x+1)ρ − 2x e−2x2ρ

)
dx = 0

and limm→∞ f(b) = 0. Since f(0) = 1, our problem reduces to showing that

lim
ρ→0

∞∑
q=0

∫ q+1

q

f ′(x)

(
x− q − 1

2

)
dx = 0.

Some calculations with Mathematica yield that

gq(ρ) :=

∫ q+1

q

f ′(x)

(
x− q − 1

2

)
dx =

1

2ρ
e−2ρ(q2+3q+2) Gq(ρ),

with

Gq(ρ) := ρ
(
− 2 e6qρ+4ρ q + e4ρ(q+1) (2q + 1)− 2 e2ρ(q+1) (q + 1) + 2q + 3

)
+ e6qρ+4ρ − e4ρ(q+1) − e2ρ(q+1) + 1.
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Expanding now Gq(ρ) in Taylor series around the origin gives

Gq(ρ) = −2ρ2 +
ρ3

6
G(3)

q (ξ)

where 0 < ξ < ρ. After some straightforward calculations, using also the mean
value theorem, one can estimate∣∣∣G(3)

q (ξ)
∣∣∣ ≤ 16 e6ρq+4ρ

×max{27ρq2 (q + 1)2 + q (3q + 2), 12 (q + 1)2 + 4ρq3 (1 + 3q)}.

Consequently, for

27ρq2 (q + 1)2 + q (3q + 2) ≥ 12 (q + 1)2 + 4ρq3 (1 + 3q),

one obtains that

|gq(ρ)| =
∣∣∣∣ 12ρ e−2ρ(q2+3q+2)

(
−2ρ2 +

ρ3

6
G(3)

q (ξ)

)∣∣∣∣
≤ e−2ρq2

(
ρ+

8

3
ρ2q +

(
4ρ2 + 36ρ3

)
q2 + 72ρ3q3 + 36ρ3q4

)
.

Hence,

∞∑
k=0

(2k + 1) e−2k(k+1)ρ − 2
∞∑
k=1

k e−2k2ρ ≤ 1

2
+ |g0(ρ)|+

∞∑
q=1

|gq(ρ)|

≤ 1

2
+ |g0(ρ)|+ 42

√
ρ+

224

3
ρ+ 36ρ3/2

≤ 1

2
+ |g0(ρ)|+ 42

√
ρ+ 111ρ,

where in the last two steps we have applied the estimate (3) to each of the

terms qαe−2ρq2 (α = 0, . . . , 4) and made use of the fact that ρ < 1. Since

lim
ρ→0

|g0(ρ)| = lim
ρ→0

∣∣∣∣∫ 1

0

f ′(x)

(
x− 1

2

)
dx

∣∣∣∣ = 0,

the result follows now from taking the limit ρ → 0.

In a similar way, if

27ρq2 (q + 1)2 + q (3q + 2) < 12 (q + 1)2 + 4ρq3 (1 + 3q),

then

|gq(ρ)| ≤ e−2ρq2
(
ρ+ 16ρ2 + 32ρ2q + 16ρ2q2 +

16

3
ρ3q3 + 16ρ3q4

)
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and consequently,

∞∑
k=0

(2k + 1) e−2k(k+1)ρ − 2
∞∑
k=1

k e−2k2ρ ≤ 1

2
+ |g0(ρ)|+

∞∑
q=1

|gq(ρ)|

≤ 1

2
+ |g0(ρ)|+ 34

√
ρ+

112

3
ρ+ 32ρ3/2

≤ 1

2
+ |g0(ρ)|+ 34

√
ρ+ 70ρ.

Accordingly, the result follows from considering ρ → 0.

Now, after we have collected the necessary ingredients, we are in a position
to prove our main result.

Proof of Theorem 2. In order to show the theorem it is sufficient to find an
upper bound of U(Wρ) which tends to one when ρ approximates zero. Since

U(Wρ) =

∞∑
k=0

(
(2k + 1) e−2k(k+1)ρ + 2k e−2k2ρ

)
(
2

∞∑
k=1

k e−2k2ρ

)2

×
∞∑
k=0

(
(2k + 1) e−2k(k+1)ρ − 2k e−2k2ρ

)
·

∞∑
k=1

k (k + 1) (2k + 1) e−2k(k+1)ρ

∞∑
k=0

(2k + 1) e−2k(k+1)ρ

,

we can now use the asymptotics established in Lemma 1 and Lemma 2. Simply
note that for ρ < 1

∞∑
k=0

(
(2k + 1) e−2k(k+1)ρ + 2k e−2k2ρ

)
(
2

∞∑
k=1

k e−2k2ρ

)2 ·

∞∑
k=1

k (k + 1) (2k + 1) e−2k(k+1)ρ

∞∑
k=0

(2k + 1) e−2k(k+1)ρ

≤
1 + 1

2ρ + 1√
ρ + 2

(
1
4ρ + 1

2 e
√
ρ

)
(

1
2ρ − 1

e
√
ρ

)2 ·
1

4ρ2 + 3
2
√
2 ρ3/2

1 + 1
2ρ − 1√

ρ

=
2 (3

√
2ρ+ 1) e

(
eρ+ (1 + e)

√
ρ+ e

)(
2ρ− 2

√
ρ+ 1

)
(e− 2

√
ρ)2

< 2 + 504
√
ρ.

Consequently, by Lemma 2,

U(Wρ) ≤
(
1

2
+ 42

√
ρ+ 111ρ

)
· (2 + 504

√
ρ) ≤ (1 + 336

√
ρ+ 77334ρ) → 1,
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which completes the proof.

Note that the order of convergence of U(Wρ) − 1 is indeed
√
ρ. However,

the constants given here are in no way best possible.
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