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A Quadratic Spline of Sendov Type

Ioan Gavrea

For a compact interval [a, b], a < b, on the real axis we denote by [a, b] the
space of all real-valued continuous functions on [a, b], equipped with the sup
norm given by

‖f‖C[a,b] = ‖f‖∞ = max{|f(x)| : x ∈ [a, b]}.

For a natural number r we write

Cr[a, b] = {f ∈ C[a, b] : f (r) ∈ C[a, b]},

and

Wr,∞[a, b] = {f ∈ C[a, b] : f (r−1) abs. cont., ‖f (r)‖L∞[a,b] <∞}

where ‖f‖L∞[a,b] = ‖f‖L∞ = sup{|f(x)| : x ∈ [a, b]}.
The following theorem due to Brudnyi [1] is very important in approxima-

tion theory.

Theorem 1. Let f ∈ C[0, 1] and s be a prescribed natural number. Then
there exists a family of functions {fs,h : 0 < h < s−1} from Ws,∞[0, 1] such
that

‖f − fs,h‖∞ ≤ Asωs(f ;h),

‖f (s)s,h‖L∞ ≤ Bsh
−sωs(f ;h),

where the constants As and Bs depend only on s and ωs is the s-th order
modulus of continuity.

It is of interest to have information about the magnitude of the constants
As and Bs. Zhuk [7] gave lower bounds for the constants As and Bs for the
case s = 1 and s = 2 using an extension of the function f to a larger interval.
In [4] a pointwise refinement of Zhuk results was obtained.

A genuinely different approach to constructing smoothing functions fh is
to define appropriate spline functions whose definition does not require an
extension of f . This was done by Sendov [6]. Sendov proved the following
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Theorem 2. Let f ∈ C[0, 1]. Then there exists a family of functions{
fh : h =

1

m
, m ≥ 2, m ∈ N

}
⊂W2,∞[0, 1]

such that

‖f − f1/m‖∞ ≤
9

8
ω2

(
f ;

1

m

)
,

‖f ′′1/m‖∞ ≤ m2 ω2

(
f ;

1

m

)
.

Sendov’s functions f1,m are quadratic splines S2(f ; ·) ∈W2,∞[0, 1]. Gonska
and Kovacheva [4] proved that the constant 9/8 figuring in Theorem 2 can be
replaced by 1.

Our aim is to construct smoothing functions fh such that

‖f − fh‖∞ ≤ Aωϕ2 (f ;h),

‖f ′′h ‖∞ ≤ B ωϕ2 (f ;h),

where the constants A and B are independent on the function f and ωϕ2 (f ; ·)
is Ditzian-Totik modulus defined by

ωϕ2 (f ; t) = sup
0≤h≤t

‖∆2
hϕf‖∞

where

∆2
hϕf(x) =


f(x− hϕ(x))− 2f(x) + f(x+ hϕ(x)),

if [x− hϕ(x), x+ hϕ(x)] ⊂ [0, 1]

0, otherwise,

ϕ(x) =
√
x(1− x). The functions fh will be quadratic splines of Sendov-type.

Such functions were considered for the first time by Gonska and Tachev [3].
In [2] Gavrea considered a new quadratic C1-spline g and proved the fol-

lowing:

Theorem 3. Let f ∈ C[0, 1]. Then

‖f − g‖∞ ≤ ωϕ2

(
f ; sin

π

2(m+ 1)

)
,

‖ϕ2g′′‖∞ ≤
2

sin2 π
4(m+1)

ωϕ2

(
f ; sin

π

2(m+ 1)

)
,

m being a natural number.

The following result (see [2]) will be used in this paper.
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Let θ1, θ2 be two distinct points such that 0 ≤ θ1 < θ2 ≤ π
2 . If a = sin2 θ1,

b = sin2 θ2, then for every f ∈ C[0, 1] the following estimate holds

|L1(f ; a, b)(x)− f(x)| ≤ ωϕ2 (f ; sin(θ2 − θ1)) (1)

where L1(f ; a, b) is the Lagrange polynomial which interpolates the function f
at the points a and b.

Let ∆2n+3 : 0 = x0 < x1 < · · · < xn < xn+2 < · · · < x2n+2 = 1 be a
partition of the interval [0, 1] such that

x1 − x0 ≤ x2 − x1 ≤ · · · ≤ xn − xn−1,
xn − xn−1 ≥ xn+1 − xn ≥ · · · ≥ x2n+2 − x2n+1.

We denote by S̃n(f) the continuous polygonal line having as knots the
points xk, k = 0, 1, . . . , 2n + 2. With each such knot xk, k = 1, 2, . . . , 2n + 2,
we associate the numbers ak and bk, defined in the following way:

a1 = 0, b1 = 2x1

and

ak =
xk + xk−1

2
, bk − xk = xk − ak, k = 2, . . . , n+ 1.

For k = n+ 2, . . . , 2n+ 1 we define the numbers ak and bk by symmetry with
respect to 1/2. It is supposed that 2x1 ≤ a2.

We construct the function g in the following way. For x ∈ [ak, bk], k =
1, 2, . . . , 2n + 1, g is the second degree Bernstein polynomial over the in-
terval [ak, bk], determined by the ordinates S̃n(f ; ak), f(xk), S̃n(f ; bk). For

x ∈ [bk, ak+1], k = 1, 2, . . . , 2n, g(x) = S̃n(f ;x).
It is easy to show that for x ∈ [ak, bk], k = 1, 2, . . . , 2n + 1, the function g

is given by

g(x) =
1

2

xk+1 − xk−1
xk − xk−1

[xk−1, xk, xk+1; f ]
(
x− xk−1 + xk

2

)2
+
f(xk)− f(xk−1)

xk − xk−1

(
x− xk−1 + xk

2

)
+
f(xk) + f(xk−1)

2
.

(2)

Using the estimate (1) we obtain the following theorem.

Theorem 4. Let f ∈ C[0, 1]. Then

‖f − g‖∞ ≤ ωϕ2 (f ; dn), (3)

‖ϕ2g′′‖∞ ≤ Cnωϕ2 (f ; dn) (4)

where dn := max
k∈{1,2,...,2n+1}

sin(θk+1−θk−1), θi = arcsin
√
xi, i = 0, 1, . . . , 2n+2,

and

cn = max
k∈{1,2,...,2n+1}

xk+1 − xk−1
(xk+1 − xk)(xk − xk−1)2

‖ϕ2‖[ak,bk].
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Let m be a fixed natural number, m ≥ 1, and

∆m : 0 = x0 < x1 < · · · < x2m+2 = 1

where xk = sin2 kπ
4(m+1) , k = 0, 1, . . . , 2m+ 2.

Theorem 5. Let f ∈ C[0, 1] and g be the function constructed above for
the partition ∆m. Then

‖f − g‖∞ ≤ ωϕ2

(
f ; sin

π

2(m+ 1)

)
, (5)

‖ϕ2g′′‖∞ ≤
4

3 sin2 π
4(m+1)

ωϕ2

(
f ; sin

π

2(m+ 1)

)
. (6)

Proof. From (3) we obtain (5). For the proof of inequality (6) we distinguish
three cases: (I) x ∈ [0, 2x1], (II) x ∈ [ak, bk], k = 2, . . . ,m, (III) k = m+ 1.

Case I. From (2) we get

g′′(x) =
x2
2x1

[0, x1, x2; f ] =
x2

2x21(x2 − x1)

(
L1(f ; 0, x2)(x1)− f(x1)

)
. (7)

From (7) and (3), after a tedious manipulation, we get

|x(1− x)g′′(x)| ≤
4 cos 2π

4(m+1) · cos π
4(m+1)

sin2 π
4(m+1)

(
4 cos2 π

4(m+1) − 1
) ωϕ2 (f ; sin

π

2(m+ 1)

)
. (8)

It is easy to show that

cos 2π
4(m+1) · cos π

4(m+1)

4 cos2 π
4(m+1) − 1

≤ 1

3
. (9)

From (8) and (9) we obtain (6).

Case II. x ∈ [ak, bk], k = 2, . . . ,m. From (4) we get

‖ϕ2g′′‖∞ ≤
bk(1− bk)(xk+1 − xk−1)

(xk+1 − xk)(xk − xk−1)2
ωϕ2

(
f ; sin

π

2(m+ 1)

)
.

It is straightforward to show that

bk(1− bk)(xk+1 − xk−1)

(xk+1 − xk)(xk − xk−1)2
≤ 1

4 sin2 π
4(m+1)

g
((

tan
(2k − 1)π

4(m+ 1)

)−1)
(10)

where

g(t) =
(

1 +
1

t sin 2α+ cos 2α

)
(t2 sin2 α− 1 + 2t sin 2α+ 2 cos 2α)

for t ∈
[

tanα, 1
tan 3α

]
, α = π

4(m+1) .
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The function g is increasing and thus

g(t) ≤ 176

45
<

16

3
. (11)

The inequalities (10) and (11) solve the Case II.

Case III. k = m+ 1.

Because x(1− x) ≤ 1

4
we have

‖ϕ2g′′‖∞ ≤
1

4
· 1

sin2 π
4(m+1) · cos3 π

4(m+1)

ωϕ2

(
f ; sin

π

2(m+ 1)

)
≤ 4

3 sin2 π
4(m+1)

ωϕ2

(
f ; sin

π

2(m+ 1)

)
.

The last inequality proves our theorem.

From Theorem 4 we obtain the following theorems (see [2], [3]).

Theorem 6. Let m be a natural number, m ≥ 1, and L : C[0, 1]→ C[0, 1]
a linear positive operator which preserves linear functions. For any h, h ∈[

sin π
2(m+1) , 1

]
, the following inequality holds

|(Lf)(x)− f(x)| ≤
[
2 +

4

3 sin2 π
4(m+1)

(
(Lu)(x)− u(x)

)]
ωϕ2 (f ;h)

where u(x) = x lnx+ (1− x) ln(1− x) for x ∈ (0, 1), u(0) = u(1) = 0.

The Kϕ
2 -functional is defined by

Kϕ
2 (f ; t) = inf

g∈Wϕ
2,∞

{
‖f − g‖∞ + t2‖ϕ2g′′‖∞

}
where

Wϕ
2,∞ =

{
g : g′ ∈ ACloc[0, 1], ‖ϕ2g′′‖∞ <∞

}
.

Using quadratic C1-spline g, we get

Theorem 7. Let t ∈
[

sin π
2(m+1) , 1

]
and f ∈ C[0, 1]. Then

Kϕ
2 (f ; t) ≤ 19 + 8

√
2

3
ωϕ2 (f ; t).

Remark. Tachev [5] obtained

Kϕ
2 (f ; t) ≤ 15ωϕ2 (f ; t).
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