A Quadratic Spline of Sendov Type

Ioan Gavrea

For a compact interval $[a, b], a<b$, on the real axis we denote by $[a, b]$ the space of all real-valued continuous functions on $[a, b]$, equipped with the sup norm given by

$$
\|f\|_{C[a, b]}=\|f\|_{\infty}=\max \{|f(x)|: x \in[a, b]\}
$$

For a natural number r we write

$$
C^{r}[a, b]=\left\{f \in C[a, b]: f^{(r)} \in C[a, b]\right\},
$$

and

$$
W_{r, \infty}[a, b]=\left\{f \in C[a, b]: f^{(r-1)} \text { abs. cont., }\left\|f^{(r)}\right\|_{L_{\infty}[a, b]}<\infty\right\}
$$

where $\|f\|_{L_{\infty}[a, b]}=\|f\|_{L_{\infty}}=\sup \{|f(x)|: x \in[a, b]\}$.
The following theorem due to Brudnyi [1] is very important in approximation theory.

Theorem 1. Let $f \in C[0,1]$ and s be a prescribed natural number. Then there exists a family of functions $\left\{f_{s, h}: 0<h<s^{-1}\right\}$ from $W_{s, \infty}[0,1]$ such that

$$
\begin{aligned}
\left\|f-f_{s, h}\right\|_{\infty} & \leq A_{s} \omega_{s}(f ; h) \\
\left\|f_{s, h}^{(s)}\right\|_{L_{\infty}} & \leq B_{s} h^{-s} \omega_{s}(f ; h)
\end{aligned}
$$

where the constants A_{s} and B_{s} depend only on s and ω_{s} is the s-th order modulus of continuity.

It is of interest to have information about the magnitude of the constants A_{s} and B_{s}. Zhuk [7] gave lower bounds for the constants A_{s} and B_{s} for the case $s=1$ and $s=2$ using an extension of the function f to a larger interval. In [4] a pointwise refinement of Zhuk results was obtained.

A genuinely different approach to constructing smoothing functions f_{h} is to define appropriate spline functions whose definition does not require an extension of f. This was done by Sendov [6]. Sendov proved the following

Theorem 2. Let $f \in C[0,1]$. Then there exists a family of functions

$$
\left\{f_{h}: h=\frac{1}{m}, m \geq 2, m \in \mathbb{N}\right\} \subset W_{2, \infty}[0,1]
$$

such that

$$
\begin{aligned}
\left\|f-f_{1 / m}\right\|_{\infty} & \leq \frac{9}{8} \omega_{2}\left(f ; \frac{1}{m}\right) \\
\left\|f_{1 / m}^{\prime \prime}\right\|_{\infty} & \leq m^{2} \omega_{2}\left(f ; \frac{1}{m}\right)
\end{aligned}
$$

Sendov's functions $f_{1, m}$ are quadratic splines $S_{2}(f ; \cdot) \in W_{2, \infty}[0,1]$. Gonska and Kovacheva [4] proved that the constant $9 / 8$ figuring in Theorem 2 can be replaced by 1 .

Our aim is to construct smoothing functions f_{h} such that

$$
\begin{aligned}
\left\|f-f_{h}\right\|_{\infty} & \leq A \omega_{2}^{\varphi}(f ; h), \\
\left\|f_{h}^{\prime \prime}\right\|_{\infty} & \leq B \omega_{2}^{\varphi}(f ; h),
\end{aligned}
$$

where the constants A and B are independent on the function f and $\omega_{2}^{\varphi}(f ; \cdot)$ is Ditzian-Totik modulus defined by

$$
\omega_{2}^{\varphi}(f ; t)=\sup _{0 \leq h \leq t}\left\|\Delta_{h \varphi}^{2} f\right\|_{\infty}
$$

where

$$
\Delta_{h \varphi}^{2} f(x)= \begin{cases}f(x-h \varphi(x))-2 f(x)+f(x+h \varphi(x)) \\ 0, & \text { if }[x-h \varphi(x), x+h \varphi(x)] \subset[0,1] \\ \text { otherwise }\end{cases}
$$

$\varphi(x)=\sqrt{x(1-x)}$. The functions f_{h} will be quadratic splines of Sendov-type. Such functions were considered for the first time by Gonska and Tachev [3].

In [2] Gavrea considered a new quadratic C^{1}-spline g and proved the following:

Theorem 3. Let $f \in C[0,1]$. Then

$$
\begin{aligned}
\|f-g\|_{\infty} & \leq \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right) \\
\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty} & \leq \frac{2}{\sin ^{2} \frac{\pi}{4(m+1)}} \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right)
\end{aligned}
$$

m being a natural number.
The following result (see [2]) will be used in this paper.

Let θ_{1}, θ_{2} be two distinct points such that $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$. If $a=\sin ^{2} \theta_{1}$, $b=\sin ^{2} \theta_{2}$, then for every $f \in C[0,1]$ the following estimate holds

$$
\begin{equation*}
\left|L_{1}(f ; a, b)(x)-f(x)\right| \leq \omega_{2}^{\varphi}\left(f ; \sin \left(\theta_{2}-\theta_{1}\right)\right) \tag{1}
\end{equation*}
$$

where $L_{1}(f ; a, b)$ is the Lagrange polynomial which interpolates the function f at the points a and b.

Let $\Delta_{2 n+3}: 0=x_{0}<x_{1}<\cdots<x_{n}<x_{n+2}<\cdots<x_{2 n+2}=1$ be a partition of the interval $[0,1]$ such that

$$
\begin{gathered}
x_{1}-x_{0} \leq x_{2}-x_{1} \leq \cdots \leq x_{n}-x_{n-1} \\
x_{n}-x_{n-1} \geq x_{n+1}-x_{n} \geq \cdots \geq x_{2 n+2}-x_{2 n+1}
\end{gathered}
$$

We denote by $\widetilde{S}_{n}(f)$ the continuous polygonal line having as knots the points $x_{k}, k=0,1, \ldots, 2 n+2$. With each such knot $x_{k}, k=1,2, \ldots, 2 n+2$, we associate the numbers a_{k} and b_{k}, defined in the following way:

$$
a_{1}=0, \quad b_{1}=2 x_{1}
$$

and

$$
a_{k}=\frac{x_{k}+x_{k-1}}{2}, \quad b_{k}-x_{k}=x_{k}-a_{k}, \quad k=2, \ldots, n+1
$$

For $k=n+2, \ldots, 2 n+1$ we define the numbers a_{k} and b_{k} by symmetry with respect to $1 / 2$. It is supposed that $2 x_{1} \leq a_{2}$.

We construct the function g in the following way. For $x \in\left[a_{k}, b_{k}\right], k=$ $1,2, \ldots, 2 n+1, g$ is the second degree Bernstein polynomial over the interval $\left[a_{k}, b_{k}\right]$, determined by the ordinates $\widetilde{S}_{n}\left(f ; a_{k}\right), f\left(x_{k}\right), \widetilde{S}_{n}\left(f ; b_{k}\right)$. For $x \in\left[b_{k}, a_{k+1}\right], k=1,2, \ldots, 2 n, g(x)=\widetilde{S}_{n}(f ; x)$.

It is easy to show that for $x \in\left[a_{k}, b_{k}\right], k=1,2, \ldots, 2 n+1$, the function g is given by

$$
\begin{align*}
g(x)= & \frac{1}{2} \frac{x_{k+1}-x_{k-1}}{x_{k}-x_{k-1}}\left[x_{k-1}, x_{k}, x_{k+1} ; f\right]\left(x-\frac{x_{k-1}+x_{k}}{2}\right)^{2} \\
& +\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}\left(x-\frac{x_{k-1}+x_{k}}{2}\right)+\frac{f\left(x_{k}\right)+f\left(x_{k-1}\right)}{2} . \tag{2}
\end{align*}
$$

Using the estimate (1) we obtain the following theorem.
Theorem 4. Let $f \in C[0,1]$. Then

$$
\begin{gather*}
\|f-g\|_{\infty} \leq \omega_{2}^{\varphi}\left(f ; d_{n}\right) \tag{3}\\
\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty} \leq C_{n} \omega_{2}^{\varphi}\left(f ; d_{n}\right) \tag{4}
\end{gather*}
$$

where $d_{n}:=\max _{k \in\{1,2, \ldots, 2 n+1\}} \sin \left(\theta_{k+1}-\theta_{k-1}\right), \theta_{i}=\arcsin \sqrt{x_{i}}, i=0,1, \ldots, 2 n+2$, and

$$
c_{n}=\max _{k \in\{1,2, \ldots, 2 n+1\}} \frac{x_{k+1}-x_{k-1}}{\left(x_{k+1}-x_{k}\right)\left(x_{k}-x_{k-1}\right)^{2}}\left\|\varphi^{2}\right\|_{\left[a_{k}, b_{k}\right]}
$$

Let m be a fixed natural number, $m \geq 1$, and

$$
\Delta_{m}: 0=x_{0}<x_{1}<\cdots<x_{2 m+2}=1
$$

where $x_{k}=\sin ^{2} \frac{k \pi}{4(m+1)}, k=0,1, \ldots, 2 m+2$.
Theorem 5. Let $f \in C[0,1]$ and g be the function constructed above for the partition Δ_{m}. Then

$$
\begin{align*}
\|f-g\|_{\infty} & \leq \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right) \tag{5}\\
\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty} & \leq \frac{4}{3 \sin ^{2} \frac{\pi}{4(m+1)}} \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right) \tag{6}
\end{align*}
$$

Proof. From (3) we obtain (5). For the proof of inequality (6) we distinguish three cases: (I) $x \in\left[0,2 x_{1}\right]$, (II) $x \in\left[a_{k}, b_{k}\right], k=2, \ldots, m$, (III) $k=m+1$.

Case I. From (2) we get

$$
\begin{equation*}
g^{\prime \prime}(x)=\frac{x_{2}}{2 x_{1}}\left[0, x_{1}, x_{2} ; f\right]=\frac{x_{2}}{2 x_{1}^{2}\left(x_{2}-x_{1}\right)}\left(L_{1}\left(f ; 0, x_{2}\right)\left(x_{1}\right)-f\left(x_{1}\right)\right) . \tag{7}
\end{equation*}
$$

From (7) and (3), after a tedious manipulation, we get

$$
\begin{equation*}
\left|x(1-x) g^{\prime \prime}(x)\right| \leq \frac{4 \cos \frac{2 \pi}{4(m+1)} \cdot \cos \frac{\pi}{4(m+1)}}{\sin ^{2} \frac{\pi}{4(m+1)}\left(4 \cos ^{2} \frac{\pi}{4(m+1)}-1\right)} \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right) \tag{8}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
\frac{\cos \frac{2 \pi}{4(m+1)} \cdot \cos \frac{\pi}{4(m+1)}}{4 \cos ^{2} \frac{\pi}{4(m+1)}-1} \leq \frac{1}{3} \tag{9}
\end{equation*}
$$

From (8) and (9) we obtain (6).
Case II. $x \in\left[a_{k}, b_{k}\right], k=2, \ldots, m$. From (4) we get

$$
\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty} \leq \frac{b_{k}\left(1-b_{k}\right)\left(x_{k+1}-x_{k-1}\right)}{\left(x_{k+1}-x_{k}\right)\left(x_{k}-x_{k-1}\right)^{2}} \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right) .
$$

It is straightforward to show that

$$
\begin{equation*}
\frac{b_{k}\left(1-b_{k}\right)\left(x_{k+1}-x_{k-1}\right)}{\left(x_{k+1}-x_{k}\right)\left(x_{k}-x_{k-1}\right)^{2}} \leq \frac{1}{4 \sin ^{2} \frac{\pi}{4(m+1)}} g\left(\left(\tan \frac{(2 k-1) \pi}{4(m+1)}\right)^{-1}\right) \tag{10}
\end{equation*}
$$

where

$$
g(t)=\left(1+\frac{1}{t \sin 2 \alpha+\cos 2 \alpha}\right)\left(t^{2} \sin ^{2} \alpha-1+2 t \sin 2 \alpha+2 \cos 2 \alpha\right)
$$

for $t \in\left[\tan \alpha, \frac{1}{\tan 3 \alpha}\right], \alpha=\frac{\pi}{4(m+1)}$.

The function g is increasing and thus

$$
\begin{equation*}
g(t) \leq \frac{176}{45}<\frac{16}{3} \tag{11}
\end{equation*}
$$

The inequalities (10) and (11) solve the Case II.
Case III. $k=m+1$.
Because $x(1-x) \leq \frac{1}{4}$ we have

$$
\begin{aligned}
\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty} & \leq \frac{1}{4} \cdot \frac{1}{\sin ^{2} \frac{\pi}{4(m+1)} \cdot \cos ^{3} \frac{\pi}{4(m+1)}} \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right) \\
& \leq \frac{4}{3 \sin ^{2} \frac{\pi}{4(m+1)}} \omega_{2}^{\varphi}\left(f ; \sin \frac{\pi}{2(m+1)}\right)
\end{aligned}
$$

The last inequality proves our theorem.
From Theorem 4 we obtain the following theorems (see [2], [3]).
Theorem 6. Let m be a natural number, $m \geq 1$, and $L: C[0,1] \rightarrow C[0,1]$ a linear positive operator which preserves linear functions. For any $h, h \in$ $\left[\sin \frac{\pi}{2(m+1)}, 1\right]$, the following inequality holds

$$
|(L f)(x)-f(x)| \leq\left[2+\frac{4}{3 \sin ^{2} \frac{\pi}{4(m+1)}}((L u)(x)-u(x))\right] \omega_{2}^{\varphi}(f ; h)
$$

where $u(x)=x \ln x+(1-x) \ln (1-x)$ for $x \in(0,1), u(0)=u(1)=0$.
The K_{2}^{φ}-functional is defined by

$$
K_{2}^{\varphi}(f ; t)=\inf _{g \in W_{2, \infty}^{\varphi}}\left\{\|f-g\|_{\infty}+t^{2}\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty}\right\}
$$

where

$$
W_{2, \infty}^{\varphi}=\left\{g: g^{\prime} \in A C_{l o c}[0,1],\left\|\varphi^{2} g^{\prime \prime}\right\|_{\infty}<\infty\right\}
$$

Using quadratic C^{1}-spline g, we get
Theorem 7. Let $t \in\left[\sin \frac{\pi}{2(m+1)}, 1\right]$ and $f \in C[0,1]$. Then

$$
K_{2}^{\varphi}(f ; t) \leq \frac{19+8 \sqrt{2}}{3} \omega_{2}^{\varphi}(f ; t)
$$

Remark. Tachev [5] obtained

$$
K_{2}^{\varphi}(f ; t) \leq 15 \omega_{2}^{\varphi}(f ; t)
$$

References

[1] Ju. A. Brudnyi, Approximation of functions of n variables by quasipolynomials, Izv. Akad. Nauk SSSR, Ser. Mat. 34 (1970), 564-583. [In Russian]
[2] I. Gavrea, Estimates for positive linear operators in terms of the second order Ditzian-Totik modulus of smoothness, Rend. Circ. Mat. Palermo, Serie II, Suppl. 68 (2002), 439-454.
[3] H. Gonska and G. Tachev, On the constants in ω_{2}^{φ} inequalities, Rend. Circ. Mat. Palermo, Serie II, Suppl. 68 (2002), 467-478.
[4] H. Gonska and R. Kovacheva, The second order modulus revisited: remarks, applications, problems, Conferenze del Sem. di Matematico 257 (1994).
[5] G. Tachev, On the constants in the equivalence between Ditzian-Totik moduli of smoothness and K-functional, Preprint, Duisburg, 2000.
[6] BL. Sendov, On a theorem of Ju. Brudnyi, Math. Balkanica (NS) 1, 1 (1987), 106-111.
[7] V. Zhuk, Functions of Lip 1 class and S. N. Bernstein polynomials, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (1989), Vyp. 1, 25-30.

Ioan Gavrea

Technical University Cluj-Napoca
C. Daicoviciu Street 15

3400 Cluj-Napoca
ROMANIA
E-mail: Ioan.Gavrea@math.utcluj.ro

