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Jackson Order of Approximation by Riesz
Means for Freud Weights

Ágota P. Horváth

1. Introduction

Using the well-known Jackson theorem, proved by Ditzian and Lubinsky [2],
we give an explicit form of the order of approximation by Riesz means of a
function in some weighted Lipschitz classes.

We have to note that such a theorem appears at first in Joó’s paper [4] in
1991 on the Riesz means with parameter 1

2 , and when the function itself is in
the Lipschitz class Lip (α, p)w. Lemma 1 appeared also in that paper at first.
We give an elementary proof of it. Using the theory of selfadjoint differential
operators, statements 5.8 and 6.6 of Ditzian [1] give that lemma in general case,
but this technique does not work for Freud weights.

We will use the following notations.

Definition 1. w(x) = e−Q(x) is a Freud weight, if Q : R −→ R is an even
continuous function, Q′′ is continuous and Q′ > 0 in (0,∞). Furthermore, for
some 1 < A < B,

A ≤
(
xQ′(x)

)′
Q′(x)

≤ B, x ∈ (0,∞).

Definition 2. The Riesz means of a function f are

Rνn(f, x) =

n∑
k=0

(
1− kν

(n+ 1)ν

)
ak pk(w2, x),

where ν > 0, pk(w2, x) are the orthonormal polynomials with respect to w2, ak
are the Fourier coefficients of f , if they exist.

The de la Vallée Poussin means of a function f are defined by

ϑνn(f, x) =
1

2ν − 1

2n+1∑
k=n+1

(k + 1)ν − kν

(n+ 1)ν
Sk(f, x),

where Sk(f, x) are the Fourier partial sums of f , if they exist.
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We shall use the so-called Mhaskar-Rahmanov-Saff number, which is the
solution of the equation

u =
2

π

∫ 1

0

autQ
′(aut)(1− t2)−1/2 dt,

and the abbreviation

a′u :=
∂au
∂u

.

The modulus of smoothness we use is defined by

ωr,p(f, w, t) := sup
0<h≤t

‖w∆r
h(f, x,R)‖Lp(Ih) + inf

p∈Pr−1

‖(f − p)w‖Lp(R\It),

where Ih is an interval depending on h, and ∆r
h(f, x,R) is the r-th symmetric

difference of f.
The weighted best approximation of a function f is denoted by

En(f)w,p := inf
p∈Pn

‖(f − p)w‖Lp(R).

2. The Result

Theorem 1. Let w = e−Q be a Freud weight, and let us assume further
that (x2Q′′)′ = O(xQ′′). If 1 ≤ p ≤ ∞, α < min{r, AB

B−A}, ν > α(1− 1
B ), and

[ν 6= α+ 1, α+ 2; if α ≥ 1, then ν < α+ 2], or instead of [. . . ] we can assume
that [(x2Q′′)′ ∼ xQ′′]. With these assumptions we have

‖(Rνn(f)− f)w‖Lp(R) = O
((an

n

)α)
if and only if

ωr,p(f, w, t) = O(tα).

Lemma 1. Let w = e−Q be a Freud weight, fw ∈ Lp(R), 1 ≤ p ≤ ∞, and
let ν > 0 be arbitrary. Then

‖(Rνn(f)− f)w‖Lp(R) ≤
C

(n+ 1)ν

n∑
k=0

(k + 1)ν−1Ek(f)w,p.

Proof. For a ν > 0 we have

(n+ 1)νRνn(f) = S0 + (2ν − 1)

m−1∑
k=0

2kνϑν2k−1(f) +

n∑
k=2m

((k + 1)ν − kν)Sk(f),
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that is,

Rνn(f)− f =
1

(n+ 1)ν

{
S0 − f + (2ν − 1)

m−1∑
k=0

2kν(ϑν2k−1(f)− f)

+
(
(n+ 1)ν − 2mν

)( n∑
k=2m

(k + 1)ν − kν

(n+ 1)ν − 2mν
Sk − f

)}
.

We use here the de la Vallée Poussin means because they have the reconstruct-
ing property, that is, ϑνn(pk) = pk if pk ∈ Pk is a polynomial of degree k, k ≤ n,
and the operator Tn : Lp,w(R) −→ Lp,w(R); f → ϑνn(f), is bounded. That is

‖ϑνn(f)w‖Lp(R) ≤ C‖fw‖Lp(R),

where C does not depend on n and f. The last inequality follows immediately
from Freud’s theorem on strong (C, 1) means [3]. These two properties together
yield

‖(ϑνn(f)− f)w‖Lp(R) ≤ CEn(f)w,p.

Similarly, the reminder term

Mn
2m :=

n∑
k=2m

(k + 1)ν − kν

(n+ 1)ν − 2mν
Sk

also has the reconstructing property, and if we choose m such that

c 2mν < (n+ 1)ν − 2mν

for an arbitrary but fixed c, then we get as before that

‖(Mn
2m(f)− f)w‖Lp(R) ≤ CE2m(f)w,p.

Using further the elementary fact that

2kνE2k−1(f)p,w ≤ C
2k−1∑
j=2k−1

(j + 1)ν−1Ej(f)p,w,

and (
(n+ 1)ν − 2mν

)
E2m(f)p,w ≤ C2mνE2m(f)p,w,

we get the statement of the lemma.

Lemma 2 ([2, Corollary 1.6]).

Ek(f)w,p = O
((ak

k

)α)
if and only if ωr,p(f, w, t) = O (tα) ,

where α < r.
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Lemma 3 ([5, Lemma 5.2]).

1

B
≤ ua′u

au
≤ 1

A
, u ∈ (0,∞),

u1/B ≤ au
a1
≤ u1/A, u ∈ [1,∞).

Lemma 4. If w = e−Q is a Freud weight with (x2Q′′)′ = O(xQ′′), then

|a′′u| = O
(au
u2

)
.

Proof. After twice differentiation of the defining equality of au we obtain

− a′′u
∫ 1

0

t√
1− t2

(
Q′(aut) + autQ

′′(aut)
)
dt

=

∫ 1

0

t2(a′u)2√
1− t2

(
2Q′′(aut) + autQ

′′′(aut)
)
dt,

and thus

−a
′′
u

a′u
u =

2

π
u

∫ 1

0

t2(a′u)2√
1− t2

(
2Q′′(aut) + autQ

′′′(aut)
)
dt.

Hence, ∣∣∣∣a′′ua′u u
∣∣∣∣ ≤ C 1

u
· u

2(a′u)2

a2u

∫ 1

0

aut√
1− t2

(
autQ

′′(aut)
)
dt ≤ C,

and the last inequality follows from the previous lemma and the definition of au.

Lemma 5. Under the assumptions of Theorem 1 we have

1

(n+ 1)ν

n∑
k=0

(k + 1)ν−1
(
ak+1

k + 1

)α
= O

((an
n

)α)
.

We have to note that if Q(x) = xγ , then an = n1/γ , and the statement is

trivial, but if e.g. au =
(
ub

lnu

)1/α
, α > 0, and ν = α− b, then au is monotone

increasing, au
u ∼ a′u (au < u1/B , B > 1 does not hold), but

∫ n
1
aαuu

ν−α−1du 6=
O(aαnn

ν−α).

Proof. Let

F (u) = uν−α−1aαu .

If we can decompose F (u) = F1(u) +F2(u) so that f1(u) := F ′1(u) is monotone
increasing and tends to infinity, and f2(u) := F ′2(u) is monotone and tends to
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zero, then we could use Euler’s summation formula which yields that

1

nν

n+1∑
k=1

kν−1
(ak
k

)α
=

1

nν

{
F (1) + F (n+ 1)

2
+

∫ n+1

1

F (u) du

+O(f1(n+ 1)) +O(f2(n+ 1))

}
. (1)

For giving such a decomposition we first compute the second derivative of F (u):

F ′′(u) = (ν − α− 1)(ν − α− 2)uν−α−3aαu + α(α− 1)uν−α−1aα−2u (a′u)2

− αuν−α−1aα−1u a′′u,− + 2α(ν − α− 1)uν−α−2aα−1u a′u

+ αuν−α−1aα−1u a′′u,+

= g1(u) + g2(u) + g3(u) + g4(u) + g5(u).

Now we have to distinguish some cases. In addition to the assumptions of the
theorem let:

Case 1. If ν < α+ 1, α ≤ 1, then

f ′1(u) = g1(u) + g5(u),

f ′2(u) = g2(u) + g3(u) + g4(u).

Case 2. If α+ 1 ≤ ν < α+ 2, α ≤ 1, then

f ′1(u) = g4(u) + g5(u),

f ′2(u) = g1(u) + g2(u) + g3(u).

Case 3. If ν ≥ α+ 2, α ≤ 1, then

f ′1(u) = g1(u) + g4(u) + g5(u),

f ′2(u) = g2(u) + g3(u).

Case 4. If ν < α+ 1, α > 1, then

f ′1(u) = g1(u) + g2(u) + g5(u),

f ′2(u) = g3(u) + g4(u).

Case 5. If α+ 1 ≤ ν < α+ 2, α > 1, then

f ′1(u) = g2(u) + g4(u) + g5(u),

f ′2(u) = g1(u) + g3(u).

Case 6. If ν ≥ α+ 2, α > 1, then

f ′1(u) = g1(u) + g2(u) + g4(u) + g5(u),

f ′2(u) = g3(u).
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(The last case could occur only when (x2Q′′(x))′ ∼ xQ′′(x).) Since the functions
f1 and f2 are monotone, adding a constant we can achieve that they tend to
zero or infinity. Now we have to estimate the right-hand side of (1).

1

nν
· F (1) + F (n+ 1)

2
=

1

nν
(
aα1 + aαn+1(n+ 1)ν−α−1

)
= o

((an
n

)α)
. (2)

The last equality follows from Lemma 3 (b) under the assumption that ν >
α(1− 1

B ).
By the assumption on ν and Lemma 3 again, and after integration by parts,

we have

1

nν

∫ n+1

1

F (u) du ∼ 1

nν

∫ n+1

1

uν−αaα−1u a′u du

∼ 1

nν

{
aαn+1(n+ 1)ν−α − aα1 − (ν − α)

∫ n+1

1

F (u) du

}
,

that is,

1

nν

∫ n+1

1

F (u) du = O
((an

n

)α)
. (3)

Now we have to estimate only the reminder terms. Lemma 3 (a) and Lemma 4
yield

|gi(u)| = O(uν−α−3aαu),

which implies

|fi(n)| ≤ K + C

∫ n

1

aαuu
ν−α−3 du = K + CIn.

If ν > α(1− 1
B ) + 2, as before, with an integration by parts we get(
1 +

B

α
(ν − α− 2)

)
In ≤

B

α

(
aαnn

ν−α−2 − aα1
)
,

that is, the assumption on ν and Lemma 3 yield that the coefficient of In is
positive, and

1

nν
|fi(n)| = o

((an
n

)α)
. (4)

If α(1− 1
B ) < ν ≤ α(1− 1

A ) + 2, then

In ≤
∫ n

1

xα/A+ν−α−3 dx ≤ c lnn,

and by the first inequality on ν we get the same estimation of the reminder term
as before. (We have to note that this case exists according to the assumption
of the theorem on α.)
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If α(1− 1
B ) < α(1− 1

A ) + 2 < ν ≤ α(1− 1
B ) + 2, we have

In ≤
∫ n

1

aαuu
ν−α−1 du = Jn,

and in the same way we get that

1

nν
Jn = O

((an
n

)α)
.

Therefore

1

nν
|fi(n)| = O

((an
n

)α)
. (5)

Now, taking into account (1)–(5), we finish the proof of Lemma 5.

Proof of Theorem 1. The proof follows immediately from Lemma 2 and
Lemma 5.
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