Jackson Order of Approximation by Riesz Means for Freud Weights

Ágota P. Horváth

1. Introduction

Using the well-known Jackson theorem, proved by Ditzian and Lubinsky [2], we give an explicit form of the order of approximation by Riesz means of a function in some weighted Lipschitz classes.

We have to note that such a theorem appears at first in Joó's paper [4] in 1991 on the Riesz means with parameter $\frac{1}{2}$, and when the function itself is in the Lipschitz class Lip $(\alpha, p)_{w}$. Lemma 1 appeared also in that paper at first. We give an elementary proof of it. Using the theory of selfadjoint differential operators, statements 5.8 and 6.6 of Ditzian [1] give that lemma in general case, but this technique does not work for Freud weights.

We will use the following notations.
Definition 1. $w(x)=e^{-Q(x)}$ is a Freud weight, if $Q: \mathbb{R} \longrightarrow \mathbb{R}$ is an even continuous function, $Q^{\prime \prime}$ is continuous and $Q^{\prime}>0$ in $(0, \infty)$. Furthermore, for some $1<A<B$,

$$
A \leq \frac{\left(x Q^{\prime}(x)\right)^{\prime}}{Q^{\prime}(x)} \leq B, \quad x \in(0, \infty)
$$

Definition 2. The Riesz means of a function f are

$$
R_{n}^{\nu}(f, x)=\sum_{k=0}^{n}\left(1-\frac{k^{\nu}}{(n+1)^{\nu}}\right) a_{k} p_{k}\left(w^{2}, x\right)
$$

where $\nu>0, p_{k}\left(w^{2}, x\right)$ are the orthonormal polynomials with respect to w^{2}, a_{k} are the Fourier coefficients of f, if they exist.

The de la Vallée Poussin means of a function f are defined by

$$
\vartheta_{n}^{\nu}(f, x)=\frac{1}{2^{\nu}-1} \sum_{k=n+1}^{2 n+1} \frac{(k+1)^{\nu}-k^{\nu}}{(n+1)^{\nu}} S_{k}(f, x),
$$

where $S_{k}(f, x)$ are the Fourier partial sums of f, if they exist.

We shall use the so-called Mhaskar-Rahmanov-Saff number, which is the solution of the equation

$$
u=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right)\left(1-t^{2}\right)^{-1 / 2} d t
$$

and the abbreviation

$$
a_{u}^{\prime}:=\frac{\partial a_{u}}{\partial u} .
$$

The modulus of smoothness we use is defined by

$$
\omega_{r, p}(f, w, t):=\sup _{0<h \leq t}\left\|w \Delta_{h}^{r}(f, x, \mathbb{R})\right\|_{L_{p}\left(I_{h}\right)}+\inf _{p \in P_{r-1}}\|(f-p) w\|_{L_{p}\left(\mathbb{R} \backslash I_{t}\right)}
$$

where I_{h} is an interval depending on h, and $\Delta_{h}^{r}(f, x, \mathbb{R})$ is the r-th symmetric difference of f.

The weighted best approximation of a function f is denoted by

$$
E_{n}(f)_{w, p}:=\inf _{p \in P_{n}}\|(f-p) w\|_{L_{p}(\mathbb{R})}
$$

2. The Result

Theorem 1. Let $w=e^{-Q}$ be a Freud weight, and let us assume further that $\left(x^{2} Q^{\prime \prime}\right)^{\prime}=O\left(x Q^{\prime \prime}\right)$. If $1 \leq p \leq \infty, \alpha<\min \left\{r, \frac{A B}{B-A}\right\}, \nu>\alpha\left(1-\frac{1}{B}\right)$, and $[\nu \neq \alpha+1, \alpha+2$; if $\alpha \geq 1$, then $\nu<\alpha+2]$, or instead of [...] we can assume that $\left[\left(x^{2} Q^{\prime \prime}\right)^{\prime} \sim x Q^{\prime \prime}\right]$. With these assumptions we have

$$
\left\|\left(R_{n}^{\nu}(f)-f\right) w\right\|_{L_{p}(\mathbb{R})}=O\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right)
$$

if and only if

$$
\omega_{r, p}(f, w, t)=O\left(t^{\alpha}\right)
$$

Lemma 1. Let $w=e^{-Q}$ be a Freud weight, $f w \in L_{p}(\mathbb{R}), 1 \leq p \leq \infty$, and let $\nu>0$ be arbitrary. Then

$$
\left\|\left(R_{n}^{\nu}(f)-f\right) w\right\|_{L_{p}(\mathbb{R})} \leq \frac{C}{(n+1)^{\nu}} \sum_{k=0}^{n}(k+1)^{\nu-1} E_{k}(f)_{w, p}
$$

Proof. For a $\nu>0$ we have

$$
(n+1)^{\nu} R_{n}^{\nu}(f)=S_{0}+\left(2^{\nu}-1\right) \sum_{k=0}^{m-1} 2^{k \nu} \vartheta_{2^{k}-1}^{\nu}(f)+\sum_{k=2^{m}}^{n}\left((k+1)^{\nu}-k^{\nu}\right) S_{k}(f)
$$

that is,

$$
\begin{aligned}
R_{n}^{\nu}(f)-f= & \frac{1}{(n+1)^{\nu}}\left\{S_{0}-f+\left(2^{\nu}-1\right) \sum_{k=0}^{m-1} 2^{k \nu}\left(\vartheta_{2^{k}-1}^{\nu}(f)-f\right)\right. \\
& \left.+\left((n+1)^{\nu}-2^{m \nu}\right)\left(\sum_{k=2^{m}}^{n} \frac{(k+1)^{\nu}-k^{\nu}}{(n+1)^{\nu}-2^{m \nu}} S_{k}-f\right)\right\}
\end{aligned}
$$

We use here the de la Vallée Poussin means because they have the reconstructing property, that is, $\vartheta_{n}^{\nu}\left(p_{k}\right)=p_{k}$ if $p_{k} \in P_{k}$ is a polynomial of degree $k, k \leq n$, and the operator $T_{n}: L_{p, w}(\mathbb{R}) \longrightarrow L_{p, w}(\mathbb{R}) ; f \rightarrow \vartheta_{n}^{\nu}(f)$, is bounded. That is

$$
\left\|\vartheta_{n}^{\nu}(f) w\right\|_{L_{p}(\mathbb{R})} \leq C\|f w\|_{L_{p}(\mathbb{R})}
$$

where C does not depend on n and f. The last inequality follows immediately from Freud's theorem on strong $(C, 1)$ means [3]. These two properties together yield

$$
\left\|\left(\vartheta_{n}^{\nu}(f)-f\right) w\right\|_{L_{p}(\mathbb{R})} \leq C E_{n}(f)_{w, p}
$$

Similarly, the reminder term

$$
M_{2^{m}}^{n}:=\sum_{k=2^{m}}^{n} \frac{(k+1)^{\nu}-k^{\nu}}{(n+1)^{\nu}-2^{m \nu}} S_{k}
$$

also has the reconstructing property, and if we choose m such that

$$
c 2^{m \nu}<(n+1)^{\nu}-2^{m \nu}
$$

for an arbitrary but fixed c, then we get as before that

$$
\left\|\left(M_{2^{m}}^{n}(f)-f\right) w\right\|_{L_{p}(\mathbb{R})} \leq C E_{2^{m}}(f)_{w, p}
$$

Using further the elementary fact that

$$
2^{k \nu} E_{2^{k}-1}(f)_{p, w} \leq C \sum_{j=2^{k-1}}^{2^{k}-1}(j+1)^{\nu-1} E_{j}(f)_{p, w}
$$

and

$$
\left((n+1)^{\nu}-2^{m \nu}\right) E_{2^{m}}(f)_{p, w} \leq C 2^{m \nu} E_{2^{m}}(f)_{p, w}
$$

we get the statement of the lemma.
Lemma 2 ([2, Corollary 1.6]).

$$
E_{k}(f)_{w, p}=O\left(\left(\frac{a_{k}}{k}\right)^{\alpha}\right) \quad \text { if and only if } \omega_{r, p}(f, w, t)=O\left(t^{\alpha}\right)
$$

where $\alpha<r$.

Lemma 3 ([5, Lemma 5.2]).

$$
\begin{aligned}
& \frac{1}{B} \leq \frac{u a_{u}^{\prime}}{a_{u}} \leq \frac{1}{A}, \quad u \in(0, \infty) \\
& u^{1 / B} \leq \frac{a_{u}}{a_{1}} \leq u^{1 / A}, \quad u \in[1, \infty)
\end{aligned}
$$

Lemma 4. If $w=e^{-Q}$ is a Freud weight with $\left(x^{2} Q^{\prime \prime}\right)^{\prime}=O\left(x Q^{\prime \prime}\right)$, then

$$
\left|a_{u}^{\prime \prime}\right|=O\left(\frac{a_{u}}{u^{2}}\right)
$$

Proof. After twice differentiation of the defining equality of a_{u} we obtain

$$
\begin{aligned}
-a_{u}^{\prime \prime} \int_{0}^{1} \frac{t}{\sqrt{1-t^{2}}}\left(Q^{\prime}\left(a_{u} t\right)+\right. & \left.a_{u} t Q^{\prime \prime}\left(a_{u} t\right)\right) d t \\
& =\int_{0}^{1} \frac{t^{2}\left(a_{u}^{\prime}\right)^{2}}{\sqrt{1-t^{2}}}\left(2 Q^{\prime \prime}\left(a_{u} t\right)+a_{u} t Q^{\prime \prime \prime}\left(a_{u} t\right)\right) d t
\end{aligned}
$$

and thus

$$
-\frac{a_{u}^{\prime \prime}}{a_{u}^{\prime}} u=\frac{2}{\pi} u \int_{0}^{1} \frac{t^{2}\left(a_{u}^{\prime}\right)^{2}}{\sqrt{1-t^{2}}}\left(2 Q^{\prime \prime}\left(a_{u} t\right)+a_{u} t Q^{\prime \prime \prime}\left(a_{u} t\right)\right) d t
$$

Hence,

$$
\left|\frac{a_{u}^{\prime \prime}}{a_{u}^{\prime}} u\right| \leq C \frac{1}{u} \cdot \frac{u^{2}\left(a_{u}^{\prime}\right)^{2}}{a_{u}^{2}} \int_{0}^{1} \frac{a_{u} t}{\sqrt{1-t^{2}}}\left(a_{u} t Q^{\prime \prime}\left(a_{u} t\right)\right) d t \leq C
$$

and the last inequality follows from the previous lemma and the definition of a_{u}.
Lemma 5. Under the assumptions of Theorem 1 we have

$$
\frac{1}{(n+1)^{\nu}} \sum_{k=0}^{n}(k+1)^{\nu-1}\left(\frac{a_{k+1}}{k+1}\right)^{\alpha}=O\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right) .
$$

We have to note that if $Q(x)=x^{\gamma}$, then $a_{n}=n^{1 / \gamma}$, and the statement is trivial, but if e.g. $a_{u}=\left(\frac{u^{b}}{\ln u}\right)^{1 / \alpha}, \alpha>0$, and $\nu=\alpha-b$, then a_{u} is monotone increasing, $\frac{a_{u}}{u} \sim a_{u}^{\prime}\left(a_{u}<u^{1 / B}, B>1\right.$ does not hold $)$, but $\int_{1}^{n} a_{u}^{\alpha} u^{\nu-\alpha-1} d u \neq$ $O\left(a_{n}^{\alpha} n^{\nu-\alpha}\right)$.

Proof. Let

$$
F(u)=u^{\nu-\alpha-1} a_{u}^{\alpha}
$$

If we can decompose $F(u)=F_{1}(u)+F_{2}(u)$ so that $f_{1}(u):=F_{1}^{\prime}(u)$ is monotone increasing and tends to infinity, and $f_{2}(u):=F_{2}^{\prime}(u)$ is monotone and tends to
zero, then we could use Euler's summation formula which yields that

$$
\begin{align*}
\frac{1}{n^{\nu}} \sum_{k=1}^{n+1} k^{\nu-1}\left(\frac{a_{k}}{k}\right)^{\alpha}=\frac{1}{n^{\nu}}\left\{\frac{F(1)+F(n+1)}{2}\right. & +\int_{1}^{n+1} F(u) d u \\
& \left.+O\left(f_{1}(n+1)\right)+O\left(f_{2}(n+1)\right)\right\} \tag{1}
\end{align*}
$$

For giving such a decomposition we first compute the second derivative of $F(u)$:

$$
\begin{aligned}
F^{\prime \prime}(u)= & (\nu-\alpha-1)(\nu-\alpha-2) u^{\nu-\alpha-3} a_{u}^{\alpha}+\alpha(\alpha-1) u^{\nu-\alpha-1} a_{u}^{\alpha-2}\left(a_{u}^{\prime}\right)^{2} \\
& -\alpha u^{\nu-\alpha-1} a_{u}^{\alpha-1} a_{u,-}^{\prime \prime}+2 \alpha(\nu-\alpha-1) u^{\nu-\alpha-2} a_{u}^{\alpha-1} a_{u}^{\prime} \\
& +\alpha u^{\nu-\alpha-1} a_{u}^{\alpha-1} a_{u,+}^{\prime \prime} \\
= & g_{1}(u)+g_{2}(u)+g_{3}(u)+g_{4}(u)+g_{5}(u) .
\end{aligned}
$$

Now we have to distinguish some cases. In addition to the assumptions of the theorem let:

Case 1. If $\nu<\alpha+1, \alpha \leq 1$, then

$$
\begin{aligned}
f_{1}^{\prime}(u) & =g_{1}(u)+g_{5}(u) \\
f_{2}^{\prime}(u) & =g_{2}(u)+g_{3}(u)+g_{4}(u)
\end{aligned}
$$

Case 2. If $\alpha+1 \leq \nu<\alpha+2, \alpha \leq 1$, then

$$
\begin{aligned}
f_{1}^{\prime}(u) & =g_{4}(u)+g_{5}(u) \\
f_{2}^{\prime}(u) & =g_{1}(u)+g_{2}(u)+g_{3}(u)
\end{aligned}
$$

Case 3. If $\nu \geq \alpha+2, \alpha \leq 1$, then

$$
\begin{aligned}
& f_{1}^{\prime}(u)=g_{1}(u)+g_{4}(u)+g_{5}(u) \\
& f_{2}^{\prime}(u)=g_{2}(u)+g_{3}(u)
\end{aligned}
$$

Case 4. If $\nu<\alpha+1, \alpha>1$, then

$$
\begin{aligned}
f_{1}^{\prime}(u) & =g_{1}(u)+g_{2}(u)+g_{5}(u) \\
f_{2}^{\prime}(u) & =g_{3}(u)+g_{4}(u)
\end{aligned}
$$

Case 5. If $\alpha+1 \leq \nu<\alpha+2, \alpha>1$, then

$$
\begin{aligned}
f_{1}^{\prime}(u) & =g_{2}(u)+g_{4}(u)+g_{5}(u) \\
f_{2}^{\prime}(u) & =g_{1}(u)+g_{3}(u)
\end{aligned}
$$

Case 6. If $\nu \geq \alpha+2, \alpha>1$, then

$$
\begin{aligned}
& f_{1}^{\prime}(u)=g_{1}(u)+g_{2}(u)+g_{4}(u)+g_{5}(u) \\
& f_{2}^{\prime}(u)=g_{3}(u)
\end{aligned}
$$

(The last case could occur only when $\left(x^{2} Q^{\prime \prime}(x)\right)^{\prime} \sim x Q^{\prime \prime}(x)$.) Since the functions f_{1} and f_{2} are monotone, adding a constant we can achieve that they tend to zero or infinity. Now we have to estimate the right-hand side of (1).

$$
\begin{equation*}
\frac{1}{n^{\nu}} \cdot \frac{F(1)+F(n+1)}{2}=\frac{1}{n^{\nu}}\left(a_{1}^{\alpha}+a_{n+1}^{\alpha}(n+1)^{\nu-\alpha-1}\right)=o\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right) \tag{2}
\end{equation*}
$$

The last equality follows from Lemma 3 (b) under the assumption that $\nu>$ $\alpha\left(1-\frac{1}{B}\right)$.

By the assumption on ν and Lemma 3 again, and after integration by parts, we have

$$
\begin{aligned}
\frac{1}{n^{\nu}} \int_{1}^{n+1} F(u) d u & \sim \frac{1}{n^{\nu}} \int_{1}^{n+1} u^{\nu-\alpha} a_{u}^{\alpha-1} a_{u}^{\prime} d u \\
& \sim \frac{1}{n^{\nu}}\left\{a_{n+1}^{\alpha}(n+1)^{\nu-\alpha}-a_{1}^{\alpha}-(\nu-\alpha) \int_{1}^{n+1} F(u) d u\right\}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\frac{1}{n^{\nu}} \int_{1}^{n+1} F(u) d u=O\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right) \tag{3}
\end{equation*}
$$

Now we have to estimate only the reminder terms. Lemma 3 (a) and Lemma 4 yield

$$
\left|g_{i}(u)\right|=O\left(u^{\nu-\alpha-3} a_{u}^{\alpha}\right)
$$

which implies

$$
\left|f_{i}(n)\right| \leq K+C \int_{1}^{n} a_{u}^{\alpha} u^{\nu-\alpha-3} d u=K+C I_{n}
$$

If $\nu>\alpha\left(1-\frac{1}{B}\right)+2$, as before, with an integration by parts we get

$$
\left(1+\frac{B}{\alpha}(\nu-\alpha-2)\right) I_{n} \leq \frac{B}{\alpha}\left(a_{n}^{\alpha} n^{\nu-\alpha-2}-a_{1}^{\alpha}\right),
$$

that is, the assumption on ν and Lemma 3 yield that the coefficient of I_{n} is positive, and

$$
\begin{equation*}
\frac{1}{n^{\nu}}\left|f_{i}(n)\right|=o\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right) \tag{4}
\end{equation*}
$$

If $\alpha\left(1-\frac{1}{B}\right)<\nu \leq \alpha\left(1-\frac{1}{A}\right)+2$, then

$$
I_{n} \leq \int_{1}^{n} x^{\alpha / A+\nu-\alpha-3} d x \leq c \ln n
$$

and by the first inequality on ν we get the same estimation of the reminder term as before. (We have to note that this case exists according to the assumption of the theorem on α.)

If $\alpha\left(1-\frac{1}{B}\right)<\alpha\left(1-\frac{1}{A}\right)+2<\nu \leq \alpha\left(1-\frac{1}{B}\right)+2$, we have

$$
I_{n} \leq \int_{1}^{n} a_{u}^{\alpha} u^{\nu-\alpha-1} d u=J_{n}
$$

and in the same way we get that

$$
\frac{1}{n^{\nu}} J_{n}=O\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right) .
$$

Therefore

$$
\begin{equation*}
\frac{1}{n^{\nu}}\left|f_{i}(n)\right|=O\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right) . \tag{5}
\end{equation*}
$$

Now, taking into account (1)-(5), we finish the proof of Lemma 5.
Proof of Theorem 1. The proof follows immediately from Lemma 2 and Lemma 5.

References

[1] Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hung. 81, 4 (1998), 323-348.
[2] Z. Ditzian and D. S. Lubinsky, Jackson and smoothness theorems for Freud weights in $L_{p},(0<p \leq \infty)$, Constr. Approx. 13 (1997), 99-152.
[3] G. Freud, On polynomial approximation with the weight $\exp \left(-\frac{1}{2} x^{2 k}\right)$, Acta Math. Hung. 24, 3-4 (1973), 363-371.
[4] I. Joó, Saturation theorems for Hermite-Fourier series, Acta Math. Hung. 57, 1-2 (1991), 169-179.
[5] A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.

Ágota P. Horváth

Department of Analysis
Technical University of Budapest
1111 Ergi J. u. 1-3, Budapest
HUNGARY
E-mail: ahorvath@chardonnay.math.bme.hu

