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In 1912 Bernstein [1] gave his famous proof of the Weierstrass Approx-
imation Theorem based on some probabilistic reasoning. For any function
f : [0, 1]→ R he defined the following polynomials

Bn(f ;x) :=

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k, n = 1, 2, . . . (1)

and proved that if f is continuous on [0, 1], then the sequence Bn(f ;x) is uni-
formly convergent to f on [0, 1]. The polynomials (1) are called now Bernstein
polynomials. They have been studied in a great number of papers.

A rich variety of generalizations of Bernstein polynomials is known (cf. [2]).
One more generalization was suggested by Phillips [3] in 1997, who considered
Bernstein polynomials based on the q-integers. In case q = 1 these polynomials
coincide with the classical ones. For q 6= 1 one gets a new class of polynomials
having interesting properties. Generalized Bernstein polynomials based on the
q-integers were studied by Phillips, Goodman, and Oruç in [3] – [7]. In par-
ticular, Phillips obtained analogs of Bernstein’s and Voronovskaya’s theorems
for generalized Bernstein polynomials. A survey of these results is presented
in [8].

We present new results concerning convergence properties of generalized
Bernstein polynomials based on the q-integers in case q ∈ (0, 1). Our results
show that these properties are significantly different from those in the classical
case.

To present our results we need the following definitions. Let q > 0. For any
n = 0, 1, 2, . . . the q-integer [n]q and the q-factorial [n]q! are defined as

[n]q := 1 + q + . . .+ qn−1, [n]q! := [1]q[2]q . . . [n]q, n = 1, 2, . . . ,

[0]q := 0, [0]q! := 1.

For integers 0 ≤ k ≤ n the q-binomial or the Gaussian coefficient is defined as[n
k

]
q

:=
[n]q!

[k]q![n− k]q!
.
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Definition 1 (Phillips [3]). Let f : [0, 1] → R. The generalized Bernstein
polynomial based on the q-integers is defined by

Bn(f, q;x) :=

n∑
k=0

f ([k]q/[n]q) pnk(q;x), (2)

where

pnk(q;x) :=
[n
k

]
q
xk

n−1−k∏
s=0

(1− qsx), n = 1, 2, . . .

(An empty product is taken to be equal to 1.) Note that for q = 1 the poly-
nomials (2) coincide with the classical Bernstein polynomials: Bn(f, 1;x) =
Bn(f ;x). Phillips obtained the following analog of Bernstein’s Theorem.

Theorem A ([3]). Let a sequence {qn} satisfy 0 < qn < 1 and qn → 1 as
n→∞. If f ∈ C[0, 1], then

Bn(f, qn;x) ⇒ f(x) [x ∈ [0, 1] ; n→∞].

(The expression gn(x) ⇒ g(x) [x ∈ E ; n → ∞] means convergence of gn to g
uniformly on E as n→∞.)

It is shown in [3] that

Bn(at+ b, q;x) = ax+ b, q > 0, n = 1, 2, . . . (3)

Further, it follows directly from (2) that

Bn(f, q; 0) = f(0), Bn(f, q; 1) = f(1), q > 0, n = 1, 2, . . . (4)

Formulae (3) and (4) show that the generalized Bernstein polynomials repro-
duce linear functions and possess the endpoint interpolation property, similarly
to the classical ones. The question arises about approximating properties of
the sequence {Bn(f, q;x)}. Direct calculations (cf. [3, formula (13)]) show that

Bn(t2, q;x) = x2 +
x(1− x)

[n]q
,

and hence for q ∈ (0, 1) we get

Bn(t2, q;x) ⇒ x2 + (1− q)x(1− x) 6= x2 [x ∈ [0, 1] ; n→∞].

Therefore, in general, the sequence {Bn(f, q;x)} is not an approximating one
for the function f .

To investigate the problem of convergence for {Bn(f, q;x)}, consider the
limits

lim
n→∞

[k]q
[n]q

= 1− qk, k = 0, 1, 2, . . .
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and

lim
n→∞

pnk(q;x) =
xk

(1− q)k[k]q!

∞∏
s=0

(1− qsx) =: p∞k(q;x).

Note that the functions p∞k(q;x) are transcendental entire functions. Obvi-
ously p∞k(q;x) ≥ 0 for x ∈ [0, 1] and by Euler’s Identity we have

∞∑
k=0

p∞k(q;x) = 1, x ∈ [0, 1).

For f : [0, 1]→ R we set

B∞(f, q;x) =

{ ∑∞
k=0 f(1− qk)p∞k(q;x), if x ∈ [0, 1)

f(1), if x = 1.
(5)

Note that the function B∞(f, q;x) is well-defined on [0, 1], whenever the func-
tion f(x) is bounded on the interval.

Our main results on convergence are Theorems 1–3 below. Let us point out
to the fact that in Theorem 1 the parameter q remains fixed.

Theorem 1. Let 0 < q < 1 and 0 < α < 1. If f ∈ C[0, 1], then

Bn(f, q;x) ⇒ B∞(f, q;x) [(q, x) ∈ [α, 1]× [0, 1] ; n→∞].

Therefore, for any f ∈ C[0, 1] the sequence {Bn(f, q;x)}∞n=1 is uniformly
convergent on [0, 1], but, in general, the limit function is not equal to f . How-
ever, the following statement is true.

Theorem 2. If f ∈ C[0, 1], then

B∞(f, q;x) ⇒ f(x) [x ∈ [0, 1] ; q ↑ 1].

Evidently, Theorem A follows from Theorems 1 and 2.

Suppose that q ∈ (0, 1) is fixed. Let Bn(f, q;x) ⇒ f(x) [x ∈ [0, 1] ; n→∞].
What can be said about the function f? The following theorem provides an
exhaustive answer to this question.

Theorem 3. Let f ∈ C[0, 1]. Then B∞(f, q;x) = f(x) for all x ∈ [0, 1] if
and only if f(x) = ax+ b, where a and b are constants.

This means that the sequence {Bn(f, q;x)} is not an approximating one for
the function f(x) unless f(x) is a linear function.

It is natural to ask how properties of f(x) affect the limit functionB∞(f, q;x).
The following theorem treats analytic properties of B∞(f, q;x).
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Theorem 4. i) For any f ∈ C[0, 1] the function B∞(f, q;x) is continuous
on [0, 1] and analytic in the unit disk {x ∈ C : |x| < 1}.
ii) If f satisfies the Lipschitz condition at 1, then B∞(f, q;x) is differentiable
from the left at 1.

iii) If f is a polynomial, then B∞(f, q;x) is a polynomial, and degB∞(f, q;x) =
deg f.

Remark. In general B∞(f, q;x) may not be differentiable at 1. For exam-
ple, let f ∈ C[0, 1], f(0) = f(1) = 0, and f(1− qk) = 1/k, k = 1, 2, . . . Direct
calculations show that

lim
h→0+

h−1[B∞(f, q; 1)−B∞(f, q; 1− h)] =∞.

It follows from (5) that the function B∞(f, q;x) depends only on the values
of f at the points {1−qk}, k = 0, 1, 2, . . . In fact, the following unicity theorem
is true.

Theorem 5. B∞(f, q;x) = B∞(g, q;x) for x ∈ [0, 1] if and only if f(1 −
qk) = g(1− qk) for all k = 0, 1, 2 . . .

In particular, there exist functions f different from polynomials such that
B∞(f, q;x) is a polynomial. However, the following statement holds.

Theorem 6. Let f ∈ C[0, 1] and let there exists a sequence qj ↑ 1 such
that B∞(f, qj ;x) is a polynomial of degree ≤ m for each qj , j = 1, 2, . . . Then
f is a polynomial of degree ≤ m.

The proofs of these theorems are given in [9].
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