A Pompeiu-Type Mean-Value Theorem and Divided Differences

Mircea Ivan and Ulrich Abel

1. Introduction and Preliminary Results

In [1] Pompeiu gave the following variant of the Lagrange mean value theorem.

Theorem 1 (Pompeiu, [1]). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$, differentiable on (a, b) and $0 \notin[a, b]$. Then there exists a point $c \in(a, b)$ such that

$$
\frac{a f(b)-b f(a)}{a-b}=f(c)-c f^{\prime}(c)
$$

A geometric interpretation of Theorem 1 is given in Figure 1.

Figure 1: The graph of the Taylor polynomial $T_{1}(f ; c)$, the graph of the Lagrange interpolating polynomial $L_{1}[a, b ; f]$ and the $O y$ axis intersect in the same point.

Another Pompeiu-type mean-value theorem is given in [2].
Theorem 2 (Ivan, [2]). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If f has no roots in (a, b) and $f(a) \neq f(b)$, then there exists a point $c \in(a, b)$ such that

$$
\frac{a f(b)-b f(a)}{f(b)-f(a)}=c-\frac{f(c)}{f^{\prime}(c)}
$$

We point out that f^{\prime} can have roots in (a, b). A geometric interpretation of Theorem 2 is given in Figure 2.

Figure 2: The graph of the Taylor polynomial $T_{1}(f ; c)$, the graph of the Lagrange interpolating polynomial $L_{1}[a, b ; f]$ and the $O x$ axis intersect in the same point.

In what follows we consider the points $a \leq x_{0}<\cdots<x_{n} \leq b, n \geq 1$. Let $f:[a, b] \rightarrow \mathbb{R}$. As usual, we denote by $L\left(x_{0}, \ldots, x_{n} ; f\right)$ the Lagrange polynomial interpolating f at the points x_{0}, \ldots, x_{n}. We have

$$
L\left(x_{0}, \ldots, x_{n} ; f\right)(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

The divided difference of f on the distinct knots x_{0}, \ldots, x_{n} is defined to be the coefficient of x^{n} in $L\left(x_{0}, \ldots, x_{n} ; f\right)$ and is denoted by $\left[x_{0}, \ldots, x_{n} ; f\right]$.

Let us denote by $\mathcal{D}_{n}[a, b]$ the set of all functions f continuous on $[a, b]$ and possessing a derivative of order n on (a, b).

If f has a derivative of order n at a point c, we denote by $T_{n}(f ; c)$ the Taylor polynomial of degree n associated with f at c,

$$
T_{n}(f ; c)(x):=\sum_{i=0}^{n} \frac{f^{(i)}(c)}{i!}(x-c)^{i}
$$

Recall also a well-known extension of Lagrange's Mean Value Theorem to the case of divided differences.

Proposition 1 (Cauchy, [3, p. 36]). If $f \in \mathcal{D}_{n}[a, b]$, then there exists $c \in$ (a, b) such that

$$
\left[x_{0}, \ldots, x_{n} ; f\right]=\frac{f^{(n)}(c)}{n!}
$$

Among the many other extensions of the Pompeiu's Theorem we focus on that of Stamate [4].

Theorem 3 (Stamate, [4]). If $f \in \mathcal{D}_{n}[a, b]$ and $0 \notin[a, b]$, then there exists a point $c \in(a, b)$ such that

$$
\begin{equation*}
\sum_{i=0}^{n} f\left(x_{i}\right) \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x_{j}}{x_{j}-x_{i}}=\sum_{i=0}^{n}(-1)^{i} c^{i} \frac{f^{(i)}(c)}{i!} \tag{1}
\end{equation*}
$$

Stamate proved his theorem by applying Proposition 1 to $\varphi(t)=t^{n} f(1 / t)$ for $t_{i}=\frac{1}{x_{i}}, i=0,1, \ldots, n$. Since

$$
L\left(x_{0}, \ldots, x_{n} ; f\right)(0)=\sum_{i=0}^{n} f\left(x_{i}\right) \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x_{j}}{x_{j}-x_{i}}, \quad T_{n}(f ; c)(0):=\sum_{i=0}^{n} \frac{f^{(i)}(c)}{i!}(-c)^{i} .
$$

we can rewrite Theorem 3 in the form:
Theorem 4 (Reformulation of Stamate's Theorem 3). If $0 \notin[a, b]$ and $f \in$ $\mathcal{D}_{n}[a, b]$, then there exists a point $c \in(a, b)$ such that

$$
\begin{equation*}
L_{n}\left(x_{0}, \ldots x_{n} ; f\right)(0)=T_{n}(f ; c)(0) . \tag{2}
\end{equation*}
$$

Let $k \in\{0, \ldots, n\}$. Szasz [5] obtained the following theorem.
Theorem 5 (Szasz, [5]). If f is continuous on $[a, b]$ and possesses a derivative of order k on (a, b), then there exist points $x_{k, 0}, \ldots, x_{k, n-k}$, such that

$$
\begin{equation*}
L^{(k)}\left(x_{0}, \ldots, x_{n} ; f\right)=L\left(x_{k, 0}, \ldots, x_{k, n-k} ; f^{(k)}\right) \tag{3}
\end{equation*}
$$

We note that, by using (3) and Stamate's Theorem 3, Szasz obtained meanvalue type formulas for all coefficients of the Lagrange polynomial.

Problem 1. Let $f \in \mathcal{D}_{n}[a, b]$ and $p \in \mathbb{R} \backslash[a, b]$. Find $q \in \mathbb{R}$ such that there exists $c \in(a, b)$ with $q=T_{n}(f ; c)(p)$.

Of course, for some q, Problem 1 has no solution (see Figure 4).

2. Main Results

Let $k \in\{0, \ldots, n\}$. The following is a generalization of Stamate's Theorem 3.

Theorem 6. If $f \in \mathcal{D}_{n}[a, b]$ and $p \in \mathbb{R} \backslash[a, b]$, then there exists a point $c \in(a, b)$ such that

$$
\begin{equation*}
T_{n-k}\left(f^{(k)} ; c\right)(p)=\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p) . \tag{4}
\end{equation*}
$$

Proof. Let $x_{k, 0}, \ldots x_{k, n-k}$ be given by Theorem 5. Since the degree of the polynomial $\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p)$ is at most $n-k$, we get

$$
\left[p, x_{k, 0}, \ldots x_{k, n-k} ;\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}\right]=0
$$

where $x_{0, k}:=x_{k}(k=0, \ldots, n)$. We have:

$$
\begin{aligned}
0 & =\left[p, x_{k, 0}, \ldots, x_{k, n-k} ;\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}\right] \\
& =\left[x_{k, 0}, \ldots, x_{k, n-k} ; \frac{\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(t)-\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p)}{t-p}\right]_{t} \\
& =\left[x_{k, 0}, \ldots x_{k, n-k} ; \frac{L_{n}\left[x_{k, 0}, \ldots, x_{k, n-k} ; f^{(k)}\right](t)-\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p)}{t-p}\right]_{t} \\
& =\left[x_{k, 0}, \ldots, x_{k, n-k} ; \frac{f^{(k)}(t)-\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p)}{t-p}\right]_{t}
\end{aligned}
$$

By Proposition 1, there exists $c \in(a, b)$ such that

$$
\left.\frac{1}{n!}\left(\frac{d}{d t}\right)^{n-k}\left(\frac{f^{(k)}(t)-\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p)}{t-p}\right)\right|_{t=c}=0
$$

Application of Leibniz's derivation rule yields

$$
\left.\sum_{i=0}^{n-k}\binom{n-k}{i}\left(f^{(k)}(t)-\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p)\right)^{(i)}\left(\frac{1}{t-p}\right)^{(n-k-i)}\right|_{t=c}=0
$$

hence

$$
\left(L_{n}\left[x_{0}, \ldots, x_{n} ; f\right]\right)^{(k)}(p)=\sum_{i=0}^{n-k} \frac{f^{(k+i)}(c)}{i!}(p-c)^{i}=T_{n-k}\left(f^{(k)} ; c\right)(p)
$$

The following consequence of Theorem 6 gives a sufficient condition related to Problem 1.

Corollary 1. If $f \in \mathcal{D}_{n}[a, b]$, then there exists $c \in(a, b)$ such that

$$
L_{n}\left(x_{0}, \ldots x_{n} ; f\right)(p)=T_{n}(f ; c)(p)
$$

(For a geometric interpretation of Corollary 1, see Figure 3.)
Note that, in the special case of $f=L_{n}\left(x_{0}, \ldots x_{n} ; g\right)$, since f is a polynomial of degree at most n, we obtain

$$
T_{n}(f, x)=f, \quad L_{n}\left(x_{0}, \ldots x_{n} ; f\right)(p)=f(p)=T_{n}(f, x)(p), \quad \forall x \in(a, b)
$$

Remark. The following results are particular cases of Theorem 6:

- Theorem 1 of Pompeiu ($\left.n=1, k=0, x_{0}=a, x_{1}=b, p=0\right)$;
- Theorem $2\left(n=1, k=0, x_{0}=a, x_{1}=b, p=\frac{b f(a)-a f(b)}{f(a)-f(b)}\right)$;
- Theorem 4 of Stamate $(k=0, p=0)$;
- The mean value formulas for the coefficients of the Lagrange Polynomial $L_{n}\left(x_{0}, \ldots, x_{n} ; f\right)$ obtained by Szasz $(p=0)$.

Figure 3: For $q=L_{n}\left[x_{0}, \ldots, x_{n} ; f\right](0)$, there exists a point $c \in(a, b)$ such that $T_{n}(f, c)(0)=q$.

Figure 4: There exists no $c \in(a, b)$ such that $T_{1}(f ; c)(p)=q$.

References

[1] D. Pompeiu, Sur une proposition analogue áu théorème des accroissements finis, Mathematica 22 (1946), 143-146.
[2] M. Ivan, On some mean value theorems, Atheneum, Cluj (1970), 23-25.
[3] T. Popoviciu, Sur quelques propriété des fonctions d'une ou de deux variables réelles, Mathematica, Cluj 8 (1933), 1-85.
[4] I. Stamate, On a proposition of Pompeiu, Scientific Works of the Politechnic Institute of Cluj 1 (1958), 75-78.
[5] C. Szasz, On a mean-value theorem, Gazeta de Matematica si Fizica (Series A) no. 10 (1961), 526-528. [In Romanian]

Mircea Ivan
Department of Mathematics
Technical University of Cluj-Napoca
C. Daicoviciu Street 15

3400 Cluj-Napoca
ROMANIA
E-mail: mircea.ivan@math.utcluj.ro
Ulrich Abel
Fachbereich MND
Fachhochschule Giessen-Friedberg
University of Applied Sciences
Wilhelm-Leuschner-Straße 13
D-61169 Friedberg
GERMANY
E-mail: Ulrich.Abel@mnd.fh-friedberg.de

