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A Pompeiu-Type Mean-Value Theorem and
Divided Differences

MIRCEA IVAN AND ULRICH ABEL

1. Introduction and Preliminary Results

In [1] Pompeiu gave the following variant of the Lagrange mean value the-
orem.

Theorem 1 (Pompeiu, [1]). Let f : [a,b] — R be continuous on [a,b],
differentiable on (a,b) and 0 & [a,b]. Then there exists a point ¢ € (a,b) such

that
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A geometric interpretation of Theorem 1 is given in Figure 1.
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Figure 1: The graph of the Taylor polynomial T4 (f;c), the graph of the Lagrange
interpolating polynomial L1[a,b; f] and the Oy axis intersect in the same point.

Another Pompeiu-type mean-value theorem is given in [2].

Theorem 2 (Ivan, [2]). Let f : [a,b] — R be continuous on [a,b] and dif-
ferentiable on (a,b). If f has no roots in (a,b) and f(a) # f(b), then there
exists a point ¢ € (a,b) such that
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We point out that f” can have roots in (a,b). A geometric interpretation of
Theorem 2 is given in Figure 2.
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Figure 2: The graph of the Taylor polynomial 7% (f;c), the graph of the Lagrange
interpolating polynomial L1[a,b; f] and the Ox axis intersect in the same point.

In what follows we consider the points a < zg < -+ < xz, < b, n > 1.
Let f : [a,b] — R. As usual, we denote by L(zo,...,z,; f) the Lagrange
polynomial interpolating f at the points xg, ... ,z,. We have

Lo, s P)(a) = 3 fl) [[ 2
i=0 j=0"" J
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The divided difference of f on the distinct knots xg, ... , x, is defined to be

the coefficient of z™ in L(xg,... ,z,; f) and is denoted by [xo, ... ,xn; f]

Let us denote by D, [a,b] the set of all functions f continuous on [a, b] and
possessing a derivative of order n on (a,b).

If f has a derivative of order n at a point ¢, we denote by T,,(f;¢) the
Taylor polynomial of degree n associated with f at c,

n o)
T(fie)a) =3

=0

©) (z — ).
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Recall also a well-known extension of Lagrange’s Mean Value Theorem to the
case of divided differences.

Proposition 1 (Cauchy, [3, p. 36]). If f € Dyla,b], then there exists ¢ €
(a,b) such that
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Among the many other extensions of the Pompeiu’s Theorem we focus on
that of Stamate [4].
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Theorem 3 (Stamate, [4]). If f € Dyla,b] and 0 ¢ [a,b], then there exists
a point ¢ € (a,b) such that

o n ) (e

Stamate proved his theorem by applying Proposition 1 to ¢(t) = ™ f(1/%)
for t; = %, i=20,1,...,n. Since

n n
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we can rewrite Theorem 3 in the form:

Theorem 4 (Reformulation of Stamate’s Theorem 3). If 0 ¢ [a,b] and f €
Dyla,b], then there exists a point ¢ € (a,b) such that

Ln(xo, ... @n; [)(0) = Tu(f;¢)(0). (2)
Let k € {0,... ,n}. Szasz [5] obtained the following theorem.

Theorem 5 (Szasz, [5]). If f is continuous on [a,b] and possesses a deriva-
tive of order k on (a,b), then there exist points Ty, ... , Tk n—k, such that

L(k) (:E07 cee Ty f) = L(xk,07 s s Thn—k; f(k)) (3)

We note that, by using (3) and Stamate’s Theorem 3, Szasz obtained mean-
value type formulas for all coefficients of the Lagrange polynomial.

Problem 1. Let f € Dy[a,b] and p € R\ [a,b]. Find g € R such that there
exists ¢ € (a,b) with ¢ =T, (f;¢)(p).

Of course, for some ¢, Problem 1 has no solution (see Figure 4).

2. Main Results

Let k € {0,...,n}. The following is a generalization of Stamate’s Theo-
rem 3.

Theorem 6. If f € Dyla,b] and p € R\ [a,b], then there exists a point
¢ € (a,b) such that

Tk (f®50)(p) = (Lnlwo, - .- 2as f1)™ (). (4)
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Proof. Let xi0,... 2k n—k be given by Theorem 5. Since the degree of the
polynomial (Ln[xo, e X f])(k) (p) is at most n — k, we get

k
{p,Ik,O,---Ik,nfk; (Ln[zos - - -, ¥n; f])( )} =0,

where xo ==z (k=0,...,n). We have:

k
0 :|:p7xk,07" -y Tkn—k; (Ln[wa' -y Ty f])( ):|

[ (Lnlwo,- - v am; )W) = (Lulzo, - - 2 f])““’(p)]
tL—p

= | Tk,05- -+ s Lh,n—k;
t

= [Tk,05- - Thn—k;

Lolero, o s @i SO = (Lalwo, ... an; £)" <p>]

t—op .

= | Tk,05- -+ s Lh,n—k;

F®) = (Lulo, . .. n; f])(k)(p)]

t—p .

By Proposition 1, there exists ¢ € (a,b) such that

ne k
1A (OO = Laleo s TN
n! \ dt t—p t:C_ '
Application of Leibniz’s derivation rule yields
n—k . (n—k—1)
n—k (4) 1
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The following consequence of Theorem 6 gives a sufficient condition related
to Problem 1.

Corollary 1. If f € D,[a,b], then there exists ¢ € (a,b) such that

Ly (o, ... 203 f)(p) = Tu(f; ¢)(p).

(For a geometric interpretation of Corollary 1, see Figure 3.)
Note that, in the special case of f = L, (o, ... x,;g), since f is a polynomial
of degree at most n, we obtain

Tn(f,:Z?) =1 Ln(xo,...xn;f)(p):f(p):Tn(f,x)(p), Va € (aab)'
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Remark. The following results are particular cases of Theorem 6:
e Theorem 1 of Pompeiu (n =1, k=0, 29 =a, 21 =b, p=10);

_ _ _ _ _ bf(a)—af(b)y,
e Theorem2 (n=1, k=0, g =a, 1 =D, p—W),
e Theorem 4 of Stamate (k =0, p = 0);

e The mean value formulas for the coefficients of the Lagrange Polynomial
L, (xo,...,x,; [) obtained by Szasz (p = 0).

Figure 3: For ¢ = Ln[zo,...,2n; f](0), there exists a point ¢ € (a,b) such that
To(f,0)(0) = q.
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Figure 4: There exists no ¢ € (a,b) such that T1(f;c)(p) = q.
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