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1. Introduction

In a number of approximation processes the approximation error is equiv-
alent to (or is estimated by means of) an appropriate K-functional. This
functional has generally the form

K(f, t) = K(f, t;X,Y,D) = inf
{
‖f − g‖X + t‖Dg‖X : g ∈ Y ∩ D−1(X)

}
,

where X is a Banach space, D is a differential operator of the form

Dg =

r∑
k=0

ϕkD
kg, D =

d

dx
, ϕk ∈ X, k = 0, . . . , r, ϕr > 0 a. e,

D−1(X) = {g ∈ X : Dg ∈ X} ⊂ X

and Y is a dense subspace of X.
In this article we shall be concerned with spaces of univariate functions

X = Lp(w) = Lp(w)[a, b] =
{
f : wf ∈ Lp[a, b]

}
, Lp(1) = Lp,

where w is a Jacobean weight of the type (x−a)κa(b−x)κb and Lp is equipped
with the usual norm ‖ · ‖p. By ‖ · ‖∞ we denote the uniform norm. As a main
example for Y one may have in mind the largest possible space on which the
infimum in the K-functional can be taken, i.e., Y = ACr−1loc being the set of all
functions with locally absolutely continuous derivatives of order up to r − 1.

Examples of such K-functionals are:

• for the best weighted approximation of a function f ∈ Lp(w)[−1, 1],
1 ≤ p ≤ ∞, by algebraic polynomials: r ∈ N, D = ϕrDr with ϕ(x) =√

1− x2;
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• for Bernstein operators Bn: [a, b] = [0, 1], p =∞, r = 2, D = ϕ2D2 with
ϕ(x) =

√
x− x2 and Y = AC1

loc[0, 1];

• for Szász-Mirakjan operators Sn: [a, b] = [0,∞), p =∞, r = 2, D = ϕ2D2

with ϕ(x) =
√
x and Y = AC1

loc[0,∞);

• for Kantorovich Pn and Durrmeyer Mn operators: [a, b] = [0, 1], 1 ≤ p ≤
∞, r = 2, D = DφD = φD2 + φ′D with φ(x) = x− x2 and Y = C2[0, 1].

There is a number of studies (see e.g. [2], [6], [8]) devoted to construction
of moduli of functions that are equivalent to the weighted Peetre K-functionals
of the type K(f, tr;Lp(w), ACr−1loc , ϕ

rDr).
An approach that differs from those in the above mentioned papers is de-

veloped in [3], [4], [7]. The approach has two aspects. From one side we study
conditions on the triples (X1, Y1,D1) and (X2, Y2,D2) under which one can
construct a linear operator A : X1 → X2 such that

K(f, t;X1, Y1,D1) ∼ K(Af, t;X2, Y2,D2). (1)

By K1(f, t) ∼ K2(f, t) we mean c−1K1(f, t) ≤ K2(f, t) ≤ cK1(f, t), where c
denotes a positive constant independent of f and t.

On the other side, for given (X1, Y1,D1) we try to choose (X2, Y2,D2) in
(1) in such a way that the K-functional in the right-hand side has a known
equivalent modulus Ω(F, t), i.e.,

K(F, t;X2, Y2,D2) ∼ Ω(F, t). (2)

From (1) and (2) one gets K(f, t;X1, Y1,D1) ∼ Ω(Af, t). In order to make
this equivalence effective for computations one has to require some additional
properties of A as explicitness, simple form, easy to calculate for a given f , etc.

Constructions of operators A as in (1) for arbitrary r (the degree of the
differential operator) were earlier done by B. Draganov in [3]. In this lecture
we give a scheme which allows the described approach to be implemented for
a variety of weighted Peetre K-functionals.

2. Construction of the Operator A in (1)

A sufficient condition for the validity of (1) is:

There exists a bounded linear operator A : X1 → X2, which is invertible,
its inverse A−1 : X2 → X1 is also bounded, A(Y1 ∩D−11 (X1)) = Y2 ∩D−12 (X2),
and

(a) ‖D2Af‖X2 ≤ c ‖D1f‖X1 for any f ∈ Y1 ∩ D−11 (X1);

(b) ‖D1A−1F‖X1
≤ c ‖D2F‖X2

for any F ∈ Y2 ∩ D−12 (X2).



322 Weighted K-functionals

Banach inverse operator theorem can be applied in such circumstances, but
the proof that the mapping is “onto” seems more difficult compared to the
direct study of the inverse operator.

This sufficient condition looks rather restrictive. Nevertheless, such opera-
tors exist in a number of cases important for the applications. Note that the
null spaces of the K-functionals in (1) have to be of equal dimensions and that
A is an “one-to-one” correspondence between them.

The construction of A goes on the following scheme. First we observe in (1)
that A can be represented as a composition of several operators solving simpler
problems. Thus, we try to reduce the problem with a differential operator D
in general form to the simpler differential operator D = φDr. For this purpose
one can use the mapping

(Af)(x) = Φr(x)f(x) +

r∑
i=1

(−1)i
(
r

i

)∫ x

ξ

(x− y)i−1

(i− 1)!
Φ(i)
r (y)f(y) dy

+

r−1∑
k=0

k∑
i=0

(−1)i
(
k

i

)∫ x

ξ

(x− y)r−k+i−1

(r − k + i− 1)!
Φ

(i)
k (y)f(y) dy,

(3)

which has the property Dr(Af) =
∑r
k=0 ΦkD

kf . The setting Φr = 1; Φk =
ϕk/ϕr, k < r, in (3) gives a linear operator A : X1 → X2 which is bounded
together with its inverse for proper pairs (X1, X2) and possesses the property

ϕrD
r(Af) =

r∑
k=0

ϕkD
kf.

In order to show that such an approach can work in the next section we apply
(3) with r = 2, Φ2(x) = 1, Φ1(x) = (1 − 2x)/(x − x2). We also demonstrate
how one can treat a case when A(Y1) 6= Y2. The results from Section 3 are
proved in [7].

In Section 4 we deal with D1 = ϕrDr, X1 = Lp(w)[a, b], 1 ≤ p ≤ ∞, the
Jacobean weights ϕ and w and the largest possible space Y1 = ACr−1loc . Using
combinations of members of two families of operators we construct an operator
A for which (1) is true when (X2, Y2,D2) = (Lp,W

r
p , D

r). Hence in (2) one can
take Ω(F, t) = ωr(F, t)p – the usual r-th modulus of smoothness. The results
from Section 4 are proved in [4].

The idea of using operators like A is not new. It can be traced back even
before the invention of the K-functional. When comparing the best approx-
imations by trigonometric polynomials and by algebraic polynomials several
mathematicians used the mapping (Bf)(y) = f(cos y) in order to establish the
so-called “effect of the end-points”. It is well-known that this mapping solves
the following problem in the case r = 1, p =∞.

Problem. Given r ∈ N and 1 ≤ p ≤ ∞. Set ϕ(x) =
√

1− x2. Find an
operator B : Lp[−1, 1] → Lp[0, π] such that for every t > 0 and f ∈ Lp[−1, 1]
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we have

inf{‖f−g‖p+tr‖ϕrg(r)‖p : g ∈ ACr−1loc }∼ inf{‖Bf−G‖p+tr‖G(r)‖p : G ∈W r
p }.

But this approach has also known difficulties when either p <∞ or r ≥ 2:

i) For p <∞ we have an additional weight: ‖Bf‖p,[0,2π] = ‖wf‖p,[−1,1] with

w(x) = (1− x2)−
1
2p .

ii) For r ≥ 2 the r-th derivative of Bg is not of the form ϕrg(r). For example,
for r = 2 we have (Bf)′′(arccosx) = (1− x2)f ′′(x)− xf ′(x).

In Section 4 we show that these difficulties can be overcomed. The partial
case w ≡ 1 of Theorem 2 gives a solution of the above problem.

3. Change of the Differential Operator

The approximation errors of the Durrmeyer operators Mn and the Kan-
torovich operators Pn are characterized (in [1] and [5] respectively) as follows:

For every n ∈ N and f ∈ Lp[0, 1], 1 ≤ p ≤ ∞, we have with φ(x) = x(1−x)

‖f −Mnf‖p ∼ K(f, n−1;Lp, C
2, DφD) ∼ ‖f − Pnf‖p. (4)

It is proved in [5] that for 1 < p ≤ ∞ we have

K(f, t;Lp, C
2, DφD) ∼ K(f, t;Lp, AC

1
loc, φD

2) + ω1(f, t)p. (5)

The weighted moduli defined in [2] or [6] are equivalent to the K-functional in
the right-hand side of (5). The results in the next section can be also applied
to this functional. The equivalence (5) is NOT true for p = 1.

In order to treat the K-functional for D = DφD and p = 1 we utilize an
operator A defined by

(Af)(x) = f(x) +

∫ x

1/2

(
x

y2
− 1− x

(1− y)2

)
f(y) dy, 0 < x < 1,

for f ∈ L1[0, 1]. The values of Af at x = 0 and x = 1 are defined by continuity
when possible. The inverse operator is given by

(A−1f)(x) = f(x)−
∫ x

1/2

(
1− 2y

y(1− y)
+ 2 log

x(1− y)

(1− x)y

)
f(y) dy,

As seen from the definitions A : Lp → Lp is bounded for 1 ≤ p ≤ ∞, while
A−1 : Lp → Lp is bounded only for 1 ≤ p <∞ and A−1 : C → C is unbounded.
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One can easily see that φ(Ag)′′ = φg′′+φ′g′ and A(AC1
loc) = AC1

loc. Hence

K(f, t;Lp, AC
1
loc, DφD) ∼ K(Af, t;Lp, AC1

loc, φD
2) for 1 ≤ p <∞.

But A(C2) 6= C2! In order to apply the scheme of Section 2 we take infimums
on the C2 subspaces Z1 =

{
f ∈ C2[0, 1] : f ′(0) = 0, f ′(1) = 0

}
and

Z2 =

{
f ∈ C2[0, 1] : f(0) = 2

∫ 1/2

0

f(y) dy, f(1) = 2

∫ 1

1/2

f(y) dy

}
.

Z1 and Z2 are chosen so that A(Z1) = Z2 and the respective K-functionals are
close to those with Y1 and Y2, as shown in the next statement.

Theorem 1. For every t ∈ (0, 1] and every f ∈ L1[0, 1] we have

K(f, t;L1, C
2, DφD) = K(f, t;L1, Z1, DφD)

∼ K(Af, t;L1, Z2, φD
2) ∼ K(Af, t;L1, AC

1
loc, φD

2) + tω1(f, 1)1.

From (4), Theorem 1 and Theorem 2 below we get

Corollary 1. For every n ∈ N and every f ∈ L1[0, 1] we have

‖f − Pnf‖1 ∼ ‖f −Mnf‖1 ∼ ω2(BAf, n−1/2)1 + n−1ω1(f, 1)1,

where B is the operator from Theorem 2 with r = 2, p = 1, a = 0, b = 1,
λ0 = λ1 = 1/2, κ0 = κ1 = 0, ξ = 1/2.

4. Equivalence to Unweighted K-functionals

Let r ∈ N. For a given finite interval [a, b] let s be one of the points a or
b (s stands for singularity), let e be the other end-point, and let ξ be a fixed
point in [a, b], ξ 6= s. For given ρ, σ ∈ R, σ 6= 0, we set for every function f
which is integrable on any [c, d] ⊂ [a, b], c 6= s 6= d, and for every x ∈ [a, b]

(A(ρ)f)(x) = (A(ρ; s, e; ξ)f)(x)

=

(
x− s
e− s

)ρ
f(x) +

1

e− s

r∑
k=1

αr,k(ρ)

(
x− s
e− s

)k−1 ∫ x

ξ

(
y − s
e− s

)−k+ρ
f(y) dy,

αr,k(ρ) =
(−1)k

(r − 1)!

(
r − 1

k − 1

) r−1∏
ν=0

(ρ+ r − k − ν), k = 1, 2, . . . , r,
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and

(B(σ)f)(x) = (B(σ; s, e; ξ)f)(x) = f

(
s+ (e− s)

(
x− s
e− s

)σ)
+

1

e− s

r∑
k=2

βr,k(σ)

(
x− s
e− s

)k−1 ∫ x

ξ

(
y − s
e− s

)−k
f

(
s+ (e− s)

(
y − s
e− s

)σ)
dy,

βr,k(σ) =
(−1)r−k

(r − 2)!

(
r − 2

k − 2

) r−1∏
i=1

(k − 1− iσ), k = 2, 3, . . . , r.

Some of the properties of operators A(ρ) and B(σ) for fixed r, s, e, ξ are:

a) A(ρ)A(ρ′) = A(ρ+ ρ′), i.e., {A(ρ)}ρ∈R is a commutative group of opera-
tors with A(0) as identity element and A(ρ)−1 = A(−ρ);

b) B(σ)B(σ′) = B(σσ′), i.e., {B(σ)}σ>0 and {B(σ)}σ 6=0 are commutative
groups of operators with B(1) as identity element and B(σ)−1 = B(1/σ);

c) A(ρ) and B(σ) preserve the local smoothness of the functions;

d) (A(ρ)g)(r)(x) = x̄ρg(r)(x) and (B(σ)g)(r)(x)=σrx̄r(σ−1)g(r)(s+(e−s)x̄σ)
a.e. for every g ∈ ACr−1loc [a, b], where x̄ = (x− s)/(e− s) ∈ (0, 1);

e) From d) we get A(ρ)(Πr−1) = Πr−1 and B(σ)(Πr−1) = Πr−1;

f) A(ρ; a, b; ξ)A(ρ′; b, a; ξ) = A(ρ′; b, a; ξ)A(ρ; a, b; ξ).

An analogue of property f) with operators B is not true. Note that (3) with
Φr(x) = x̄ρ, Φi(x) ≡ 0 for i < r reduces to A(ρ). In the next theorem we show
how combinations of operators of type A and B can “clear” singularities of the
weights ϕ and w in K(f, tr;Lp(w), ACr−1loc , ϕ

rDr). The boundedness properties
of these operators are governed by Hardy’s inequality and its limitations reflects
the restrictions on κ’s and λ’s.

Theorem 2. Let r ∈ N, 1 ≤ p ≤ ∞, ϕ(x) = (x − a)λa(b − x)λb with
λa, λb < 1, w(x) = (x − a)κa(b − x)κb with −1/p < κa, κb if p < ∞ and
κa = κb = 0 if p =∞. For fixed ξ ∈ (a, b), set

B = A(ρb; b, a; ξ)B(σb; b, a; ξ)A(ρa; a, b; ξ)B(σa; a, b; ξ),

ρa =
κa + 1/p

1− λa
− 1

p
, σa =

1

1− λa
, ρb =

κb + 1/p

1− λb
− 1

p
, σb =

1

1− λb
.

Then, for every t > 0 and every f ∈ Lp(w)[a, b], we have

K(f, tr;Lp(w), ACr−1loc , ϕ
rDr) ∼ K(Bf, tr;Lp, ACr−1loc , D

r) ∼ ωr(Bf, t)p.
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On can extend the range of κ’s and λ’s for which statements like Theorem 2
are true by taking ξ = e (the other end-point of the domain than the singularity
treated by A(ρ) or B(σ)). The approach also covers unbounded domains.

As general rules for applying operators A(ρ) and B(σ) we may say that:

• the operators allow separate treatment of the singularities at both ends
of the domain;

• A(ρ) “clears” a singularity in the weight w leaving ϕ untouched;

• B(σ) “clears” a singularity in the weight ϕ of D = ϕrDr, but introduces
an additional singularity at w.
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