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Constructing Polynomial Surfaces
from Vector Subdivision Schemes

Kurt Jetter and Georg Zimmermann

Dedicated to Professor Blagovest Sendov on his seventieth birthday.

For a given matrix mask and the corresponding vector subdivision
scheme, we give a recursive algorithm to determine the input polyno-
mial vector sequence generating a polynomial surface.

1. Introduction

We deal with a two-scale equation

Φ(x) =
∑
α

AαΦ(2x−α) , (1)

with Φ = (φ1, . . . , φn)′ : Rd → Rn a column vector of continuous, compactly
supported functions, andA = (Aα)α∈Zd a matrix mask, i.e., a matrix sequence
of (n×n)-matrices. Throughout the paper,

∑
α is short for summation over

the entire lattice Zd, but we assume that the mask is finitely supported, i.e.,
Aα 6= 0 only for finitely many α ∈ Zd.

In order to construct, or approximately evaluate, surfaces of type

f(x) =
∑
α

ΛαΦ(x−α) =
∑
α

n∑
i=1

λα,i φi(x−α) (2)

with
Λ = (Λα)α∈Zd = (λα,1, · · · , λα,n)α∈Zd

a sequence of row vectors, one can use stationary subdivision as follows:

Λ(0) := Λ , and

Λ(k) := SΛ(k−1) , k = 1, 2, . . .
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Here, S = SA is the subdivision operator mapping an input (row) vector se-
quence d = (dα)α∈Zd onto the vector sequence Sd according to the rule

(Sd)α =
∑
β

dβAα−2β , α ∈ Zd .

Whence,

f(x) =
∑
α

Λ(k)
α Φ(2kx−α) , k = 0, 1, . . . , (3)

and the vectors Λ(k) = (Λ(k)
α )α∈Zd carry information about the function values

of f at dyadic scaled lattice points.

In this short note we deal with the generation of polynomial surfaces f(x) =

xk in terms of finding the associated input vector sequence Λ =: d(k) in (2).
The problem reduces to the question of finding polynomial eigenvector se-
quences of the subdivision operator,

S d(k) =
1

2|k|
d(k) , (4)

where d(k) has coordinate degree k. It is obvious that the set L ⊂ Nd of all
such k is of ‘lower’ type, i.e., k ∈ L implies k′ ∈ L for all 0 ≤ k′ ≤ k. Here,
and in what follows, we use usual multiindex notation. The motivation for all
this comes from the following simple observation: From (3) we see that

f(
x

2
) =

∑
α

(SΛ)αΦ(x−α) ,

while (2) and the homogeneity condition for the monomial f(x) = xk yield

f(
x

2
) =

1

2|k|

∑
α

ΛαΦ(x−α) .

Thus, at least in case of a ‘stable’ vector Φ, the homogeneity condition for
xk is equivalent to (4). Further motivation may be taken from the analysis of
polynomial reproduction as given, e.g., in [4] or [5].

The construction of these polynomial sequences is based on properties of
the scaled matrix symbol

H(ξ) :=
1

2d
Â(ξ) =

1

2d

∑
α

Aα e
−iα·ξ (5)

which is a multiple of the Fourier transform of the matrix mask. We will also
refer to the submasks

Be :=
∑
β

Ae−2β , e ∈ E , (6)
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where E denotes the set of the 2d corners of the unit cube [0, 1]d (which are
the canonical representers of the cosets of Zd/2Zd). Throughout the paper, we
make the

Standard Assumption: The common left eigenspace of the submasks Be,
e ∈ E, for the common eigenvalue 1, has dimension one.

Equivalently, the system of equations

v
(
H(πe)− δe,0 I

)
= 0 , e ∈ E , (7)

has a unique solution v0 6= 0, up to a scalar factor. This in turn is equivalent
to the fact that the constant sequence d(0) = (v0)α∈Zd satisfies the eigenvector
equation (4) for k = 0, and we shall see that v0 is the starting vector for a
recursive computation of the polynomial solutions for (4).

2. The Algorithm

For the solution of (4), we make the Ansatz

d(k)α =
∑

0≤j≤k

(
k

j

)
wk,j α

k−j , α ∈ Zd ,

which in the Fourier transform domain may be expressed as

d̂(k)(ξ) =
∑

0≤j≤k

(
k

j

)
wk,j i

|k−j| (Dk−jδ)(ξ) .

Here, we have used the fact that the Fourier transform of the monomial se-
quence (αk−j)α∈Zd is given by i|k−j|Dk−jδ. Making use of the identities(

ŜAd
)
(ξ) = d̂(2ξ) Â(ξ) ,(

Dnδ
)
(2ξ) = 2−|n|

1

2d

∑
e∈E

(
Dnδπe

)
(ξ) ,

(
Dnδξ0

)
(ξ) f(ξ) =

∑
0≤ν≤n

(
n

ν

)
(−1)|n−ν|

(
Dn−νf

)
(ξ0)

(
Dνδξ0

)
(ξ) ,

we obtain(
ŜAd(k)

)
(ξ) = 2−|k|

∑
e∈E

∑
0≤j≤k

(
k

j

)
w̃k,j,e i

|k−j| (Dk−jδπe)(ξ)

with

w̃k,j,e =
∑

0≤`≤j

(
j

`

)
2|j−`|wk,j−` i

−|`| (D`H)(πe) .
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Thus, (4) is equivalent to the recursive family of linear equation systems

wk,j

(
H(πe)− δe,0

1

2|j|
I
)

= −
∑

0≤`≤j
06=`

(
j

`

)
wk,j−` (2i)−|`|

(
D`H

)
(πe) , e ∈ E ,

(8)

for 0 ≤ j ≤ k. A more detailed derivation (with a slightly modified ‘Ansatz’)
can be found in [6]. Similar ideas can also be found in [7].

Note that these recursions do not depend on k, except as termination index!
In particular, for j = 0, this is just (7), so by the Standard Assumption, we
have (w.l.o.g.) wk,0 = v0. So it makes sense to denote the solutions of (8) by

vj = wk,j for all k,

and we obtain

d(k)α =
∑

0≤j≤k

(
k

j

)
vj α

k−j , α ∈ Zd .

Maximal values for k can thus be determined by running the recursion (8) until
it stops.

Naturally, the next question is about uniqueness of the vj . The Standard
Assumption ensures (essential) uniqueness of v0, but it might happen that the
system (8) has nonunique solutions from some j 6= 0 on.

One possibility is to replace the Standard Assumption by the somewhat
stronger condition that the system of linear equations

vH(πe) = 0 , e ∈ E \ {0} ,

has a unique solution v0 6= 0, up to a scalar factor, and that this solution also
satisfies

v0
(
H(0)− I

)
= 0 .

This ensures that a vector in the joint kernel of the matrices appearing on the
left hand side of (8) must be of the form λv0, with λ = 0 for j 6= 0. Therefore,
the solution of (8) is unique, if it exists.

Once we have determined the polynomial eigensequence d(k), assuming con-
vergence of the subdivision scheme and due to the Standard Assumption, we
know that there is a scalar valued function fk such that

lim
n→∞

∥∥fk∣∣
n
v0 − Snd(k)

∥∥
∞ = 0 . (9)

Here, fk
∣∣
n

denotes the sequence
(
fk( α2n )

)
α∈Zd , and the convergence in (9) is

uniform on compact sets. Since

Snd(k) = 2−|k|n d(k) ,
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given a dyadic point

x =
β

2m
=

2n−mβ

2n
,

say, we find

fk(x)v0 = lim
n→∞

(
Snd(k)

)
2n−mβ

= lim
n→∞

2−|k|n
∑

0≤j≤k

(
k

j

)
vj
(
2n

β

2m
)k−j

=
( β

2m
)k
v0 ,

whence fk(x) = xk.

3. An Example

As an example, we start with the refinement mask for the piecewise linear
splines on the four-directional mesh as studied, e.g., in [1]. Obviously, this
scheme reproduces linear functions, but no polynomials of higher degree. In an
attempt to increase the degree of reproduced polynomials, we introduce two
parameters ϑ and ω in such a way as to preserve the inherent symmetry of the
mask and then run our algorithm in order to determine optimal values for the
parameters. The mask with parameters is

0

(
-ϑ 0
0 0

)
0

(
-ω 0
0 -ϑ

) (
0 0
0 -ϑ

) (
-ϑ 0
0 0

)
0

(
-ϑ 0
0 0

)
0

(
ϑ -ϑ
0 -ω

) (
0 -ϑ
0 ϑ

) (
ϑ 0
0 ϑ

) (
0 0
0 -ω

) (
-ϑ 0
0 0

)

0

(
ϑ -ω
0 -ϑ

) (
0 ϑ
0 ϑ

) (
1
2+ω ϑ
0 1

2+ω

)(
0 -ω
1 1

2+ω

) (
ϑ 0
0 ϑ

) (
0 0
0 -ϑ

)
(

-ω -ϑ
0 0

) (
0 ϑ
0 -ϑ

)(
1
2+ω 1

2+ω
0 ϑ

)(
1 1

2+ω
0 1

2+ω

)(
1
2+ω ϑ
0 1

2+ω

)(
0 -ϑ
0 ϑ

) (
-ω 0
0 -ϑ

)
(

0 -ϑ
0 0

) (
ϑ ϑ
0 0

) (
0 1

2+ω
0 -ω

)(
1
2+ω 1

2+ω
0 ϑ

) (
0 ϑ
0 ϑ

) (
ϑ -ϑ
0 -ω

)
0

(
-ϑ 0
0 0

) (
0 -ω
0 0

) (
ϑ ϑ
0 0

) (
0 ϑ
0 -ϑ

) (
ϑ -ω
0 -ϑ

)
0

(
-ϑ 0
0 0

)

0

(
-ϑ 0
0 0

) (
0 -ϑ
0 0

) (
-ω -ϑ
0 0

)
0

(
-ϑ 0
0 0

)
0



← α2=0

↑
α1=0

.
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Our algorithm shows that for arbitrary ϑ and ω, this scheme still reproduces
linear polynomials; each of the three polynomials of total degree 2 requires
ω = 1

16 − 2ϑ, and under this condition, the algorithm shows that the scheme
reproduces polynomials up to total degree 3, but no monomials of higher order.
The vectors vj are

v0 =
(

1 , 1
)

and vj =
(

0 , 2−|j|
)
, 1 ≤ |j| ≤ 3 ,

independent of the choice for ϑ. We obtain

d(k)α =
(
αk , (α+ ( 1

2 ,
1
2 ))k

)
for 0 ≤ |k| ≤ 3 ,

since the scheme is interpolating on the set Zd ∪ (Zd+( 1
2 ,

1
2 )).

It is worth noting that for ϑ = 0, i.e., ω = 1
16 , the mask shows a remarkable

connection with the “four point scheme” described, e.g., in [2] and [3].
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