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Constructing Polynomial Surfaces
from Vector Subdivision Schemes
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Dedicated to Professor Blagovest Sendov on his seventieth birthday.

For a given matrix mask and the corresponding vector subdivision
scheme, we give a recursive algorithm to determine the input polyno-
mial vector sequence generating a polynomial surface.

1. Introduction

We deal with a two-scale equation

®(x) = ZAQ P2zx—a),

(1)

with @ = (¢1,...,6,)" : R — R™ a column vector of continuous, compactly
supported functions, and A = (Aq)qeze & matrix mask, i.e., a matrix sequence
of (nxn)-matrices. Throughout the paper, )"  is short for summation over
the entire lattice Z¢, but we assume that the mask is finitely supported, i.e.,

Agq # 0 only for finitely many o € Z4.

In order to construct, or approximately evaluate, surfaces of type

f@)=> Aa®@—0) =) Y laidi(z—a)

a =1
with
A= (Aa)aezd = ()\a,la T 7)\cx,n)and

a sequence of row vectors, one can use stationary subdivision as follows:

AD=A, and
AR = SAFD k=12 ..
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Here, S = Sa is the subdivision operator mapping an input (row) vector se-
quence d = (dy)qeze onto the vector sequence Sd according to the rule

(Sd)a = dgAq 25, acZ’.
B

Whence,

fl@) =Y AP e2*z-a), k=01,..., (3)

[o7

and the vectors A®) = (A®))_ ;4 carry information about the function values
of f at dyadic scaled lattice points.

In this short note we deal with the generation of polynomial surfaces f(x) =
x® in terms of finding the associated input vector sequence A =: d® in (2).
The problem reduces to the question of finding polynomial eigenvector se-
quences of the subdivision operator,

1
(k) — = 4(k)

Sd\"¥ = S| ar (4)
where d® has coordinate degree k. It is obvious that the set L C N? of all
such k is of ‘lower’ type, i.e., k € L implies k' € L for all 0 < k' < k. Here,
and in what follows, we use usual multiindex notation. The motivation for all
this comes from the following simple observation: From (3) we see that

[(5) = (SM)a®(@—a),

(4
while (2) and the homogeneity condition for the monomial f(x) = x* yield

xr

1G) = 5 S AaBla—a).

Thus, at least in case of a ‘stable’ vector ®, the homogeneity condition for
x¥ is equivalent to (4). Further motivation may be taken from the analysis of

polynomial reproduction as given, e.g., in [4] or [5].

The construction of these polynomial sequences is based on properties of
the scaled matrix symbol

1

H(E) =5,

A(g) = 2% > Agei et (5)

which is a multiple of the Fourier transform of the matrix mask. We will also
refer to the submasks

Bei=Y Ac o3, eckE, (6)
B
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where E denotes the set of the 2¢ corners of the unit cube [0, 1]¢ (which are
the canonical representers of the cosets of Z?/2Z%). Throughout the paper, we
make the

Standard Assumption: The common left eigenspace of the submasks Be,
e € E, for the common eigenvalue 1, has dimension one.

Equivalently, the system of equations
’U(H(TFC)—éepI):O, eckE, (7)

has a unique solution vg # 0, up to a scalar factor. This in turn is equivalent
to the fact that the constant sequence d© = (Vo) qeza satisfies the eigenvector
equation (4) for k = 0, and we shall see that v is the starting vector for a
recursive computation of the polynomial solutions for (4).

2. The Algorithm

For the solution of (4), we make the Ansatz
k )
dff) = Z <,)wkjak_37 acZ?,
0<j<k
which in the Fourier transform domain may be expressed as
TR k . .
d®(¢) = Z ( ) wy, ; i%! (Dk_J(S)(E).
0<j<k

Here, we have used the fact that the Fourier transform of the monomial se-
quence (a®79),cza is given by i*=3l D¥=3 5. Making use of the identities

(Sad)(€) = d(2¢) A(€),
(D"5)(2¢) = 27! 217 > (D™6re)(€),

ecE
(0736)© 1O = 5 (1) 0 (0" )6 (070, (@)
0<v<n
we obtain
(S5ad)© =2 T 3 (5) g i (04 I5.0) 0
ecro<j<k
with

’l’IJk’jﬁ = Z ('2) 2|j—£| Wi j—s Z'_IZI (DiH) (7’('6) )

0<<j
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Thus, (4) is equivalent to the recursive family of linear equation systems

Wy j (H(We) —de,0 ﬁ I)
= - Z (‘;) Wi ;e (20) 71 (DZH) (re), e€F,

0<e<j
)

(8)

for 0 < j < k. A more detailed derivation (with a slightly modified ‘Ansatz’)
can be found in [6]. Similar ideas can also be found in [7].

Note that these recursions do not depend on k, except as termination index!
In particular, for j = 0, this is just (7), so by the Standard Assumption, we
have (w.l.o.g.) wg,0 = vo. So it makes sense to denote the solutions of (8) by

Vj = Wk j for all k,

and we obtain

k .
i = Y <,>vjaka, aczl.
o<j<k M

Maximal values for k can thus be determined by running the recursion (8) until
it stops.

Naturally, the next question is about uniqueness of the v;. The Standard
Assumption ensures (essential) uniqueness of vg, but it might happen that the
system (8) has nonunique solutions from some j # 0 on.

One possibility is to replace the Standard Assumption by the somewhat
stronger condition that the system of linear equations

vH(re)=0, ec E\{0},

has a unique solution vg # 0, up to a scalar factor, and that this solution also
satisfies

vo (H(0)—1I)=0.
This ensures that a vector in the joint kernel of the matrices appearing on the
left hand side of (8) must be of the form Awvg, with A = 0 for j # 0. Therefore,
the solution of (8) is unique, if it exists.

Once we have determined the polynomial eigensequence d(k), assuming con-
vergence of the subdivision scheme and due to the Standard Assumption, we
know that there is a scalar valued function fi such that

Jim [|f], vo — 5"d®] = 0. (9)

Here, fk|n denotes the sequence (frx(2)) and the convergence in (9) is

uniform on compact sets. Since

Snd®) = 9—lkln q(k) ’

aeZd’
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given a dyadic point

o ﬂ _ 2"L—Tn,ﬂ
2m on
say, we find
fre(@)vo = lim (s"d™),,
k .
= Jm 2 S (F) e @ g = () e,
0<j<k

whence fi(z) = z*.

3. An Example

As an example, we start with the refinement mask for the piecewise linear
splines on the four-directional mesh as studied, e.g., in [1]. Obviously, this
scheme reproduces linear functions, but no polynomials of higher degree. In an
attempt to increase the degree of reproduced polynomials, we introduce two
parameters ¥ and w in such a way as to preserve the inherent symmetry of the
mask and then run our algorithm in order to determine optimal values for the
parameters. The mask with parameters is

O N O I
G0 v 6D 63 6

-w - (0 9 [Hwitw) (1 i+w) (3+w ¥ 0 -\ [~w O B
00/ W=9w)\o v)\0irw)\ 0 24w)\0 9) 0 0| >
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Our algorithm shows that for arbitrary ¢ and w, this scheme still reproduces
linear polynomials; each of the three polynomials of total degree 2 requires
w = % — 279, and under this condition, the algorithm shows that the scheme
reproduces polynomials up to total degree 3, but no monomials of higher order.

The vectors v; are
vo=(1,1) and w;= (0,271, 1<[j <3,
independent of the choice for 9. We obtain
d¥ = (o*, (a+(3,3)F) for0< |kl <3,

since the scheme is interpolating on the set Z¢ U (Z9+(3, 1)).

It is worth noting that for ¥ = 0, i.e., w = ﬁ, the mask shows a remarkable

connection with the “four point scheme” described, e.g., in [2] and [3].
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