Constructing Polynomial Surfaces from Vector Subdivision Schemes

Kurt Jetter and Georg Zimmermann
Dedicated to Professor Blagovest Sendov on his seventieth birthday.

For a given matrix mask and the corresponding vector subdivision scheme, we give a recursive algorithm to determine the input polynomial vector sequence generating a polynomial surface.

1. Introduction

We deal with a two-scale equation

$$
\begin{equation*}
\Phi(x)=\sum_{\alpha} A_{\alpha} \Phi(2 \boldsymbol{x}-\boldsymbol{\alpha}) \tag{1}
\end{equation*}
$$

with $\boldsymbol{\Phi}=\left(\phi_{1}, \ldots, \phi_{n}\right)^{\prime}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ a column vector of continuous, compactly supported functions, and $\boldsymbol{A}=\left(\boldsymbol{A}_{\boldsymbol{\alpha}}\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}$ a matrix mask, i.e., a matrix sequence of $(n \times n)$-matrices. Throughout the paper, $\sum_{\boldsymbol{\alpha}}$ is short for summation over the entire lattice \mathbb{Z}^{d}, but we assume that the mask is finitely supported, i.e., $\boldsymbol{A}_{\boldsymbol{\alpha}} \neq \mathbf{0}$ only for finitely many $\boldsymbol{\alpha} \in \mathbb{Z}^{d}$.

In order to construct, or approximately evaluate, surfaces of type

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{\boldsymbol{\alpha}} \boldsymbol{\Lambda}_{\boldsymbol{\alpha}} \boldsymbol{\Phi}(\boldsymbol{x}-\boldsymbol{\alpha})=\sum_{\boldsymbol{\alpha}} \sum_{i=1}^{n} \lambda_{\boldsymbol{\alpha}, i} \phi_{i}(\boldsymbol{x}-\boldsymbol{\alpha}) \tag{2}
\end{equation*}
$$

with

$$
\boldsymbol{\Lambda}=\left(\boldsymbol{\Lambda}_{\boldsymbol{\alpha}}\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}=\left(\lambda_{\boldsymbol{\alpha}, 1}, \cdots, \lambda_{\boldsymbol{\alpha}, n}\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}
$$

a sequence of row vectors, one can use stationary subdivision as follows:

$$
\begin{aligned}
& \boldsymbol{\Lambda}^{(0)}:=\boldsymbol{\Lambda}, \quad \text { and } \\
& \boldsymbol{\Lambda}^{(k)}:=\mathcal{S} \boldsymbol{\Lambda}^{(k-1)}, \quad k=1,2, \ldots
\end{aligned}
$$

Here, $\mathcal{S}=\mathcal{S}_{\boldsymbol{A}}$ is the subdivision operator mapping an input (row) vector sequence $\boldsymbol{d}=\left(\boldsymbol{d}_{\boldsymbol{\alpha}}\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}$ onto the vector sequence $\mathcal{S} \boldsymbol{d}$ according to the rule

$$
(\mathcal{S} d)_{\boldsymbol{\alpha}}=\sum_{\boldsymbol{\beta}} d_{\boldsymbol{\beta}} A_{\boldsymbol{\alpha}-2 \boldsymbol{\beta}}, \quad \alpha \in \mathbb{Z}^{d}
$$

Whence,

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{\boldsymbol{\alpha}} \boldsymbol{\Lambda}_{\boldsymbol{\alpha}}^{(k)} \boldsymbol{\Phi}\left(2^{k} \boldsymbol{x}-\boldsymbol{\alpha}\right), \quad k=0,1, \ldots \tag{3}
\end{equation*}
$$

and the vectors $\boldsymbol{\Lambda}^{(k)}=\left(\boldsymbol{\Lambda}_{\boldsymbol{\alpha}}^{(k)}\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}$ carry information about the function values of f at dyadic scaled lattice points.

In this short note we deal with the generation of polynomial surfaces $f(\boldsymbol{x})=$ $\boldsymbol{x}^{\boldsymbol{k}}$ in terms of finding the associated input vector sequence $\boldsymbol{\Lambda}=: \boldsymbol{d}^{(\boldsymbol{k})}$ in (2). The problem reduces to the question of finding polynomial eigenvector sequences of the subdivision operator,

$$
\begin{equation*}
\mathcal{S} \boldsymbol{d}^{(\boldsymbol{k})}=\frac{1}{2^{|\boldsymbol{k}|}} \boldsymbol{d}^{(\boldsymbol{k})} \tag{4}
\end{equation*}
$$

where $\boldsymbol{d}^{(\boldsymbol{k})}$ has coordinate degree \boldsymbol{k}. It is obvious that the set $L \subset \mathbb{N}^{d}$ of all such \boldsymbol{k} is of 'lower' type, i.e., $\boldsymbol{k} \in L$ implies $\boldsymbol{k}^{\prime} \in L$ for all $\mathbf{0} \leq \boldsymbol{k}^{\prime} \leq \boldsymbol{k}$. Here, and in what follows, we use usual multiindex notation. The motivation for all this comes from the following simple observation: From (3) we see that

$$
f\left(\frac{\boldsymbol{x}}{2}\right)=\sum_{\boldsymbol{\alpha}}(\mathcal{S} \boldsymbol{\Lambda})_{\boldsymbol{\alpha}} \boldsymbol{\Phi}(\boldsymbol{x}-\boldsymbol{\alpha}),
$$

while (2) and the homogeneity condition for the monomial $f(\boldsymbol{x})=\boldsymbol{x}^{\boldsymbol{k}}$ yield

$$
f\left(\frac{x}{2}\right)=\frac{1}{2^{|\boldsymbol{k}|}} \sum_{\alpha} \boldsymbol{\Lambda}_{\boldsymbol{\alpha}} \boldsymbol{\Phi}(\boldsymbol{x}-\alpha) .
$$

Thus, at least in case of a 'stable' vector $\boldsymbol{\Phi}$, the homogeneity condition for \boldsymbol{x}^{k} is equivalent to (4). Further motivation may be taken from the analysis of polynomial reproduction as given, e.g., in [4] or [5].

The construction of these polynomial sequences is based on properties of the scaled matrix symbol

$$
\begin{equation*}
\boldsymbol{H}(\boldsymbol{\xi}):=\frac{1}{2^{d}} \widehat{\boldsymbol{A}}(\boldsymbol{\xi})=\frac{1}{2^{d}} \sum_{\boldsymbol{\alpha}} \boldsymbol{A}_{\boldsymbol{\alpha}} e^{-i \boldsymbol{\alpha} \cdot \boldsymbol{\xi}} \tag{5}
\end{equation*}
$$

which is a multiple of the Fourier transform of the matrix mask. We will also refer to the submasks

$$
\begin{equation*}
\boldsymbol{B}_{\boldsymbol{e}}:=\sum_{\boldsymbol{\beta}} \boldsymbol{A}_{\boldsymbol{e}-2 \boldsymbol{\beta}}, \quad e \in E \tag{6}
\end{equation*}
$$

where E denotes the set of the 2^{d} corners of the unit cube $[0,1]^{d}$ (which are the canonical representers of the cosets of $\left.\mathbb{Z}^{d} / 2 \mathbb{Z}^{d}\right)$. Throughout the paper, we make the

Standard Assumption: The common left eigenspace of the submasks $\boldsymbol{B}_{\boldsymbol{e}}$, $\boldsymbol{e} \in E$, for the common eigenvalue 1 , has dimension one.

Equivalently, the system of equations

$$
\begin{equation*}
\boldsymbol{v}\left(\boldsymbol{H}(\pi \boldsymbol{e})-\delta_{\boldsymbol{e}, \mathbf{0}} \boldsymbol{I}\right)=\mathbf{0}, \quad \boldsymbol{e} \in E \tag{7}
\end{equation*}
$$

has a unique solution $\boldsymbol{v}_{\mathbf{0}} \neq \mathbf{0}$, up to a scalar factor. This in turn is equivalent to the fact that the constant sequence $\boldsymbol{d}^{(\mathbf{0})}=\left(\boldsymbol{v}_{\mathbf{0}}\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}$ satisfies the eigenvector equation (4) for $\boldsymbol{k}=\mathbf{0}$, and we shall see that $\boldsymbol{v}_{\mathbf{0}}$ is the starting vector for a recursive computation of the polynomial solutions for (4).

2. The Algorithm

For the solution of (4), we make the Ansatz

$$
d_{\alpha}^{(k)}=\sum_{0 \leq j \leq k}\binom{k}{j} w_{k, j} \alpha^{k-j}, \quad \alpha \in \mathbb{Z}^{d}
$$

which in the Fourier transform domain may be expressed as

$$
\widehat{\boldsymbol{d}^{(\boldsymbol{k})}}(\boldsymbol{\xi})=\sum_{0 \leq j \leq \boldsymbol{k}}\binom{\boldsymbol{k}}{\boldsymbol{j}} \boldsymbol{w}_{k, \boldsymbol{j}} i^{|\boldsymbol{k}-\boldsymbol{j}|}\left(D^{\boldsymbol{k}-\boldsymbol{j}} \delta\right)(\boldsymbol{\xi})
$$

Here, we have used the fact that the Fourier transform of the monomial sequence $\left(\boldsymbol{\alpha}^{\boldsymbol{k}-\boldsymbol{j}}\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}$ is given by $i^{|\boldsymbol{k}-\boldsymbol{j}|} D^{\boldsymbol{k}-\boldsymbol{j}} \delta$. Making use of the identities

$$
\begin{aligned}
\left(\widehat{\mathcal{S}_{\boldsymbol{A}} \boldsymbol{d}}\right)(\boldsymbol{\xi}) & =\widehat{\boldsymbol{d}}(2 \boldsymbol{\xi}) \widehat{\boldsymbol{A}}(\boldsymbol{\xi}), \\
\left(D^{n} \delta\right)(2 \boldsymbol{\xi}) & =2^{-|\boldsymbol{n}|} \frac{1}{2^{d}} \sum_{\boldsymbol{e} \in E}\left(D^{n} \delta_{\pi \boldsymbol{e}}\right)(\boldsymbol{\xi}), \\
\left(D^{n} \delta_{\boldsymbol{\xi}_{0}}\right)(\boldsymbol{\xi}) f(\boldsymbol{\xi}) & =\sum_{\mathbf{0} \leq \boldsymbol{\nu} \leq \boldsymbol{n}}\binom{\boldsymbol{n}}{\boldsymbol{\nu}}(-1)^{|\boldsymbol{n}-\boldsymbol{\nu}|}\left(D^{\boldsymbol{n}-\boldsymbol{\nu}} f\right)\left(\boldsymbol{\xi}_{0}\right)\left(D^{\boldsymbol{\nu}} \delta_{\boldsymbol{\xi}_{0}}\right)(\boldsymbol{\xi}),
\end{aligned}
$$

we obtain

$$
\left.\widehat{\left(\mathcal{S}_{A} \boldsymbol{d}^{(\boldsymbol{k}}\right)}\right)(\boldsymbol{\xi})=2^{-|\boldsymbol{k}|} \sum_{\boldsymbol{e} \in E} \sum_{\mathbf{0} \leq \boldsymbol{j} \leq \boldsymbol{k}}\binom{\boldsymbol{k}}{\boldsymbol{j}} \widetilde{\boldsymbol{w}}_{\boldsymbol{k}, \boldsymbol{j}, \boldsymbol{e}} i^{|\boldsymbol{k}-\boldsymbol{j}|}\left(D^{\boldsymbol{k}-\boldsymbol{j}} \delta_{\pi e}\right)(\boldsymbol{\xi})
$$

with

$$
\widetilde{\boldsymbol{w}}_{\boldsymbol{k}, \boldsymbol{j}, \boldsymbol{e}}=\sum_{0 \leq \ell \leq j}\binom{j}{\ell} 2^{|j-\ell|} \boldsymbol{w}_{\boldsymbol{k}, \boldsymbol{j}-\ell} i^{-|\ell|}\left(D^{\ell} \boldsymbol{H}\right)(\pi e) .
$$

Thus, (4) is equivalent to the recursive family of linear equation systems

$$
\begin{align*}
\boldsymbol{w}_{\boldsymbol{k}, \boldsymbol{j}}(\boldsymbol{H}(\pi \boldsymbol{e}) & \left.-\delta_{\boldsymbol{e}, \mathbf{0}} \frac{1}{2^{|\boldsymbol{j}|}} \boldsymbol{I}\right) \\
& =-\sum_{\substack{\mathbf{0} \leq \ell \leq \boldsymbol{j} \\
\mathbf{0} \neq \boldsymbol{\ell}}}\binom{\boldsymbol{j}}{\boldsymbol{\ell}} \boldsymbol{w}_{\boldsymbol{k}, \boldsymbol{j}-\boldsymbol{\ell}}(2 i)^{-|\ell|}\left(D^{\ell} \boldsymbol{H}\right)(\pi \boldsymbol{e}), \quad \boldsymbol{e} \in E, \tag{8}
\end{align*}
$$

for $\mathbf{0} \leq \boldsymbol{j} \leq \boldsymbol{k}$. A more detailed derivation (with a slightly modified 'Ansatz') can be found in [6]. Similar ideas can also be found in [7].

Note that these recursions do not depend on \boldsymbol{k}, except as termination index! In particular, for $\boldsymbol{j}=\mathbf{0}$, this is just (7), so by the Standard Assumption, we have (w.l.o.g.) $\boldsymbol{w}_{\boldsymbol{k}, \mathbf{0}}=\boldsymbol{v}_{\mathbf{0}}$. So it makes sense to denote the solutions of (8) by

$$
\boldsymbol{v}_{\boldsymbol{j}}=\boldsymbol{w}_{\boldsymbol{k}, \boldsymbol{j}} \quad \text { for all } \boldsymbol{k}
$$

and we obtain

$$
d_{\alpha}^{(k)}=\sum_{0 \leq j \leq k}\binom{k}{j} v_{j} \alpha^{k-j}, \quad \alpha \in \mathbb{Z}^{d}
$$

Maximal values for \boldsymbol{k} can thus be determined by running the recursion (8) until it stops.

Naturally, the next question is about uniqueness of the $\boldsymbol{v}_{\boldsymbol{j}}$. The Standard Assumption ensures (essential) uniqueness of $\boldsymbol{v}_{\mathbf{0}}$, but it might happen that the system (8) has nonunique solutions from some $\boldsymbol{j} \neq \mathbf{0}$ on.

One possibility is to replace the Standard Assumption by the somewhat stronger condition that the system of linear equations

$$
\boldsymbol{v} \boldsymbol{H}(\pi \boldsymbol{e})=\mathbf{0}, \quad \boldsymbol{e} \in E \backslash\{\mathbf{0}\}
$$

has a unique solution $\boldsymbol{v}_{\mathbf{0}} \neq \mathbf{0}$, up to a scalar factor, and that this solution also satisfies

$$
\boldsymbol{v}_{\mathbf{0}}(\boldsymbol{H}(\mathbf{0})-\boldsymbol{I})=\mathbf{0}
$$

This ensures that a vector in the joint kernel of the matrices appearing on the left hand side of (8) must be of the form $\lambda \boldsymbol{v}_{\mathbf{0}}$, with $\lambda=0$ for $\boldsymbol{j} \neq \mathbf{0}$. Therefore, the solution of (8) is unique, if it exists.

Once we have determined the polynomial eigensequence $\boldsymbol{d}^{(\boldsymbol{k})}$, assuming convergence of the subdivision scheme and due to the Standard Assumption, we know that there is a scalar valued function f_{k} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left.f_{\boldsymbol{k}}\right|_{n} \boldsymbol{v}_{\mathbf{0}}-\mathcal{S}^{n} \boldsymbol{d}^{(\boldsymbol{k})}\right\|_{\infty}=0 \tag{9}
\end{equation*}
$$

Here, $\left.f_{\boldsymbol{k}}\right|_{n}$ denotes the sequence $\left(f_{\boldsymbol{k}}\left(\frac{\boldsymbol{\alpha}}{2^{n}}\right)\right)_{\boldsymbol{\alpha} \in \mathbb{Z}^{d}}$, and the convergence in (9) is uniform on compact sets. Since

$$
\mathcal{S}^{n} \boldsymbol{d}^{(\boldsymbol{k})}=2^{-|\boldsymbol{k}| n} \boldsymbol{d}^{(\boldsymbol{k})}
$$

given a dyadic point

$$
\boldsymbol{x}=\frac{\boldsymbol{\beta}}{2^{m}}=\frac{2^{n-m} \boldsymbol{\beta}}{2^{n}},
$$

say, we find

$$
\begin{aligned}
f_{\boldsymbol{k}}(\boldsymbol{x}) \boldsymbol{v}_{\mathbf{0}} & =\lim _{n \rightarrow \infty}\left(\mathcal{S}^{n} \boldsymbol{d}^{(\boldsymbol{k})}\right)_{2^{n-m} \boldsymbol{\beta}} \\
& =\lim _{n \rightarrow \infty} 2^{-|\boldsymbol{k}| n} \sum_{\mathbf{0} \leq \boldsymbol{j} \leq \boldsymbol{k}}\binom{\boldsymbol{k}}{\boldsymbol{j}} \boldsymbol{v}_{\boldsymbol{j}}\left(2^{n} \frac{\boldsymbol{\beta}}{2^{m}}\right)^{\boldsymbol{k}-\boldsymbol{j}}=\left(\frac{\boldsymbol{\beta}}{2^{m}}\right)^{\boldsymbol{k}} \boldsymbol{v}_{\mathbf{0}}
\end{aligned}
$$

whence $f_{\boldsymbol{k}}(\boldsymbol{x})=\boldsymbol{x}^{\boldsymbol{k}}$.

3. An Example

As an example, we start with the refinement mask for the piecewise linear splines on the four-directional mesh as studied, e.g., in [1]. Obviously, this scheme reproduces linear functions, but no polynomials of higher degree. In an attempt to increase the degree of reproduced polynomials, we introduce two parameters ϑ and ω in such a way as to preserve the inherent symmetry of the mask and then run our algorithm in order to determine optimal values for the parameters. The mask with parameters is

$$
\begin{aligned}
& \stackrel{\uparrow}{\alpha_{1}=0}
\end{aligned}
$$

Our algorithm shows that for arbitrary ϑ and ω, this scheme still reproduces linear polynomials; each of the three polynomials of total degree 2 requires $\omega=\frac{1}{16}-2 \vartheta$, and under this condition, the algorithm shows that the scheme reproduces polynomials up to total degree 3 , but no monomials of higher order. The vectors $\boldsymbol{v}_{\boldsymbol{j}}$ are

$$
\boldsymbol{v}_{\mathbf{0}}=(1,1) \quad \text { and } \quad \boldsymbol{v}_{\boldsymbol{j}}=\left(0,2^{-|\boldsymbol{j}|}\right), 1 \leq|\boldsymbol{j}| \leq 3
$$

independent of the choice for ϑ. We obtain

$$
\boldsymbol{d}_{\boldsymbol{\alpha}}^{(\boldsymbol{k})}=\left(\boldsymbol{\alpha}^{\boldsymbol{k}},\left(\boldsymbol{\alpha}+\left(\frac{1}{2}, \frac{1}{2}\right)\right)^{\boldsymbol{k}}\right) \quad \text { for } 0 \leq|\boldsymbol{k}| \leq 3
$$

since the scheme is interpolating on the set $\mathbb{Z}^{d} \cup\left(\mathbb{Z}^{d}+\left(\frac{1}{2}, \frac{1}{2}\right)\right)$.
It is worth noting that for $\vartheta=0$, i.e., $\omega=\frac{1}{16}$, the mask shows a remarkable connection with the "four point scheme" described, e.g., in [2] and [3].

References

[1] C. Conti and K. Jetter, A new subdivision method for bivariate splines on the four-direction mesh, J. Comput. Appl. Math. 119 (2000), 81-96.
[2] S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986), 185-204.
[3] N. Dyn, J. A. Gregory, and D. Levin, A four-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Design 4 (1987), 257-268.
[4] N. DYn and D. Levin, Matrix subdivision-analysis by factorization, in "Approximation Theory" (B. D. Bojanov, Ed.), pp. 187-211, DARBA, Sofia, 2002.
[5] B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory 110 (2001), 18-53.
[6] K. Jetter and G. Zimmermann, Polynomial reproduction in subdivision, $A d v$. Comput. Math., to appear.
[7] Q.-T. Jiang, Multivariate matrix refinable functions with arbitrary matrix dilation, Trans. Amer. Math. Soc. 351 (1999), 2407-2438.

Kurt Jetter, Georg Zimmermann

Institut für Angewandte Mathematik und Statistik
Universität Hohenheim
D-70593 Stuttgart
GERMANY
E-mail: kjetter@uni-hohenheim.de, gzim@uni-hohenheim.de

