On Estimations of the Norms of the Lagrange Interpolation Operators

K. Kitahara, F. Shimizu and Y. Udagawa

Abstract

Let $C[-1,1]$ be the space of all real-valued continuous functions on $[-1,1]$. For given nodes, we consider the Langrange interpolation operator from $C[-1,1]$ with the supremum norm $\|\cdot\|_{\infty}$ to $C[-1,1]$ with the I norm $\|\cdot\|_{I}$, where $\|f\|_{I}=\sup _{J \subset[-1,1]}\left|\int_{J} f(x) d x\right|, f \in C[-1,1]$, and J is a subinterval of $[-1,1]$. In this note, some estimations of norms of the Lagrange interpolation operators are shown.

1. Introduction

Polynomial approximation has a long history and lays the foundation of approximation theory. And, it has been furnishing important problems. In this note, a problem on interpolation by polynomials is discussed.

Let $C[-1,1]$ be the space of all real-valued continuous functions on $[-1,1]$ and Π_{n} the subspace of $C[-1,1]$ which consists of polynomials of degree at most n. For given nodes $-1 \leq x_{0}<x_{1}<\cdots<x_{n} \leq 1$ and any $f(x) \in C[-1,1]$, we define the polynomials

$$
\ell_{i}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)}, \quad i=0, \ldots, n
$$

and a linear operator from $C[-1,1]$ to $C[-1,1]$ by

$$
L_{n}(f)(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x)
$$

$\ell_{i}(x)$ and L_{n} are called the fundamental polynomials for the nodes x_{0}, \ldots, x_{n} and the Lagrange Interpolation Operator, respectively. If $C[-1,1]$ is endowed with the supremum norm and we consider L_{n} from $\left(C[-1,1],\|\cdot\|_{\infty}\right)$ to $(C[-1,1]$, $\left.\|\cdot\|_{\infty}\right)$, then the following propositions are well-known:
(i) The norm $\left\|L_{n}\right\|_{\infty}$ equals $\left\|\sum_{i=0}^{n}\left|\ell_{i}(x)\right|\right\|_{\infty}$.
(ii) The estimates $\frac{2^{n}}{4 n(n-1)} \leq\left\|L_{n}\right\|_{\infty} \leq 2^{n}$ hold for the nodes $x_{i}=-1+\frac{2}{n} i$, $i=0,1, \ldots, n$, .
(iii) The conjectures of Bernstein and Erdös were proven by Kilgore [2] and de Boor and Pinkus [1] in 1978.

The purpose of this note is to consider L_{n} from $\left(C[-1,1],\|\cdot\|_{\infty}\right)$ to $(C[-1,1]$, $\|\cdot\|_{I}$), where $\|f\|_{I}=\sup _{J \subset[-1,1]}\left|\int_{J} f(x) d x\right|, f \in C[-1,1]$, and J is an subinterval of $[-1,1]$. And we shall find nodes such that

$$
\left\|L_{n}\right\|_{I}=\left\{\left\|L_{n}(f)(x)\right\|_{I}:\|f\|_{\infty} \leq 1, f \in C[-1,1]\right\}
$$

is as small as possible and shall estimate $\left\|L_{n}\right\|_{I}$.

2. The Lagrange Interpolation Operators from $\left(C[-1,1],\|\cdot\|_{\infty}\right)$ to $\left(C[-1,1],\|\cdot\|_{I}\right)$

First we present results corresponding to (i) and (ii) in Introduction.
Proposition 1 (Kitahara, Okada, and Sakamori [4, Theorem 7]). For any given $n+1$ nodes,

$$
\left\|L_{n}\right\|_{I}=\sup _{J \subset[-1,1]} \sum_{i=0}^{n}\left|\int_{J} \ell_{i}(x) d x\right|
$$

where J denotes a subinterval of $[-1,1]$.
Proposition 2. For the nodes $x_{i}=-1+\frac{2}{n} i, i=0,1, \ldots, n$,

$$
\frac{2^{n}}{16 n^{3}}<\left\|L_{n}\right\|_{I} \leq 2^{n+1}
$$

The proof is similar to that of (ii).
Since $L_{n}(1)=1$, we clearly have $\left\|L_{n}\right\|_{I} \geq 2$. In general,

$$
\left\|L_{n}\right\|_{I}=\max _{\left|\sigma_{i}\right|=1, i=0,1, \ldots, n}\left\|\sum_{i=0}^{n} \sigma_{i} \ell_{i}(x)\right\|_{I}
$$

By this fact, we can show necessary and sufficient conditions that $\left\|L_{i}\right\|_{I}=2$, $i=1,2$. The readers can verify the following proposition without difficulty.

Proposition 3. The following assertions are true:
(a) For nodes $-1 \leq x_{0}<x_{1} \leq 1,\left\|L_{1}\right\|_{I}=2$ if and ony if $x_{1}-x_{0} \geq \frac{1}{2}$ and $0 \leq\left|\frac{x_{0}+x_{1}}{2}\right| \leq-1+\sqrt{2\left(x_{1}-x_{0}\right)}$.
(b) For nodes $-1 \leq x_{0}<x_{1}<x_{2} \leq 1$ with $-x_{0}=x_{2}$ and $x_{1}=0,\left\|L_{2}\right\|_{I}=2$ if and only if $\frac{1}{\sqrt{3}} \leq x_{2} \leq 1$.

By Proposition 3, we are led to the problem whether there exist nodes $x_{0}, \ldots, x_{n} \in[-1,1]$ satisfying $\left\|L_{n}\right\|_{I}=2$ for each $n \in \mathbb{N}$.

It is well-known that, for any function $f \in C[-1,1]$ and any given nodes $-1 \leq x_{0}<\cdots<x_{n} \leq 1$,

$$
f(x)-L_{n}(f)(x)=\left(x-x_{0}\right) \cdots\left(x-x_{n}\right) f\left[x_{0}, \ldots, x_{n}, x\right], \quad x \in[-1,1]
$$

where $f\left[x_{0}, \ldots, x_{n}, x\right]$ denotes the divided difference of order $(n+1)$ of f with respect to the points x_{0}, \ldots, x_{n} and x. If $f(x)$ is sufficiently smooth and the sign of $f(x)-L_{n}(f)(x)$ is equal to the sign of $\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)$ on $[-1,1]$, then

$$
\left\|f(x)-L_{n}(f)(x)\right\|_{I} \leq \max _{x \in[-1,1]}\left|f\left[x_{0}, \ldots, x_{n}, x\right]\right| \cdot\left\|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right\|_{I}
$$

Hence, the nodes x_{0}, \ldots, x_{n} which satisfy

$$
\begin{equation*}
\left\|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right\|_{I}=\inf _{-1 \leq y_{0}<y_{1}<\cdots<y_{n} \leq 1}\left\|\left(x-y_{0}\right) \cdots\left(x-y_{n}\right)\right\|_{I} \tag{1}
\end{equation*}
$$

seem to be nearly optimal. Since the zeros of the Chebyshev polynomial U_{n+1} of degree $(n+1)$ of the second kind satisfy (1) by Theorem B^{\prime} in Kitahara, Kuri and Sakamori [3], there is possibility that the nodes $u_{k}=\cos \frac{k \pi}{n+2}, k=$ $1, \ldots, n+1$ are optimal.

For the nodes $u_{k}, k=1, \ldots, n+1$, we will give estimations of the I norms of the Lagrange interpolation operators L_{n} in theoretical and numerical approaches.

2.1. Theoretical Approach

Since $\left|\int_{J} \ell_{k}(x) d x\right| \leq\left\|\ell_{k}(x)\right\|_{I}$ for all subintervals $J \subset[-1,1]$, the following inequality holds in general:

$$
\left\|L_{n}\right\|_{I}=\sup _{J \subset[-1,1]} \sum_{k=1}^{n+1}\left|\int_{J} \ell_{k}(x) d x\right| \leq \sum_{k=1}^{n+1}\left\|\ell_{k}(x)\right\|_{I} .
$$

Using this inequality, we get the estimation $\left\|L_{n}\right\|_{I}<8$. Before showing this, we need the following two results.

Lemma 1. For the nodes $u_{k}=\cos \frac{k}{n+2} \pi, k=1, \ldots, n+1$, which lie at the zeros of U_{n+1}, we have

$$
\left\|\ell_{k}(x)\right\|_{I}=\int_{u_{k+1}}^{u_{k-1}} \ell_{k}(x) d x, \quad k=1, \ldots, n+1
$$

where $u_{0}=1, u_{n+2}=-1$.

Proof. For any fixed $k=1, \ldots, n+1$, we set $S_{j}=\left|\int_{u_{j}}^{u_{j-1}} \ell_{k}(x) d x\right|, j=$ $1, \ldots, n+2$. If we prove that

$$
\begin{equation*}
S_{k}>S_{k-1}>\cdots>S_{1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{k+1}>S_{k+2}>\cdots>S_{n+2} \tag{3}
\end{equation*}
$$

since $\ell_{k}(x)$ changes signs only at $u_{1}, \ldots, u_{k-1}, u_{k+1}, \ldots, u_{n+1}$ and $\ell_{k}(x)>0$, $x \in\left(u_{k+1}, u_{k-1}\right)$, we would obtain $\left\|\ell_{k}(x)\right\|_{I}=\int_{u_{k+1}}^{u_{k-1}} \ell_{k}(x) d x$. It is sufficient to show that (2) holds. (3) is verified in an analogous way.

Noting that $\ell_{k}(x)=c \frac{U_{n+1}}{x-u_{k}}$ for some constant c, we have

$$
\begin{aligned}
S_{j} & =\left|\int_{u_{j}}^{u_{j-1}} \ell_{k}(x) d x\right|=\left|c \int_{\frac{j \pi}{n+2}}^{\frac{j-1}{n+2} \pi} \frac{\sin (n+2) \theta}{\sin \theta\left(\cos \theta-\cos \frac{k \pi}{n+2}\right)}(-\sin \theta) d \theta\right| \\
& =\left|c \int_{(j-1) \pi}^{j \pi} \frac{\sin \phi}{\cos \frac{\phi}{n+2}-\cos \frac{k \pi}{n+2}} \cdot \frac{1}{n+2} d \phi\right| \\
& =\left|\frac{c}{n+2} \int_{0}^{\pi} \frac{\sin \xi}{\cos \frac{\xi+(j-1) \pi}{n+2}-\cos \frac{k \pi}{n+2}} d \xi\right| \quad((n+2) \theta=\phi)
\end{aligned}
$$

For $1 \leq j \leq k-1$, taking into account the estimates $0<\frac{\xi+(j-1) \pi}{n+2}<\frac{\xi+j \pi}{n+2}<$ $\frac{k \pi}{n+2}$ for all $\xi \in(0, \pi)$, we obtain
$\left|\frac{c}{n+2} \int_{0}^{\pi} \frac{\sin \xi}{\cos \frac{\xi+(j-1) \pi}{n+2}-\cos \frac{k \pi}{n+2}} d \xi\right|<\left|\frac{c}{n+2} \int_{0}^{\pi} \frac{\sin \xi}{\cos \frac{\xi+j \pi}{n+2}-\cos \frac{k \pi}{n+2}} d \xi\right|$.
Let $p_{0}(x), \ldots, p_{n+1}(x)$ be a system of orthogonal polynomials on $[a, b]$ with respect to a weight function $w(x)$ and let the interpolation nodes be at the zeros x_{1}, \ldots, x_{n+1} of $p_{n+1}(x)$. Then, it is well-known that each $\ell_{k}(x), k=$ $1, \ldots, n+1$, is expressed as

$$
\ell_{k}(x)=w_{k} \sum_{j=0}^{n} \frac{p_{j}\left(x_{k}\right) p_{j}(x)}{\lambda_{j}}
$$

where $\lambda_{j}=\int_{a}^{b} p_{j}^{2}(x) w(x) d x, \frac{1}{w_{k}}=\frac{\mu_{n}}{\mu_{n+1} \lambda_{n}} p_{n}\left(x_{k}\right) p_{n+1}^{\prime}\left(x_{k}\right)$ and μ_{n} denotes the coefficient of x^{n} in $p_{n}(x)$ (see Mori [5, p. 147]).

Applying this result to $U_{0}(x), \ldots, U_{n+1}(x)$, we verify the following without difficulty.

Lemma 2. If the interpolation nodes coincide with the zeros $u_{k}=\cos \frac{k \pi}{n+2}$, $k=1, \ldots, n+1$, of U_{n+1}, then each $\ell_{k}(x), k=1, \ldots, n+1$, is expressed as

$$
\ell_{k}(x)=\frac{2}{n+2} \sin \frac{k \pi}{n+2} \sum_{j=0}^{n} \sin \frac{(j+1) k \pi}{n+2} U_{j}(x)
$$

Now we are in position to give an estimation of $\left\|L_{n}\right\|_{I}$.
Proposition 4. If the nodes are at the zeros of U_{n+1}, then $\left\|L_{n}\right\|<8$.
Proof. Noting that

$$
\int_{u_{k+1}}^{u_{k-1}} U_{j}(x) d x=\int_{\frac{k-1}{n+2} \pi}^{\frac{k+1}{n+2} \pi} \sin (j+1) \theta d \theta=\frac{2}{j+1} \sin \frac{(j+1) k \pi}{n+2} \sin \frac{(j+1) \pi}{n+2}
$$

from Lemma 1 and Lemma 2, we obtain, for each $k=1, \ldots, n+1$,
$\left\|\ell_{k}\right\|_{I}=\int_{u_{k+1}}^{u_{k-1}} \ell_{k}(x) d x=\frac{4}{n+2} \sin \frac{k \pi}{n+2} \sum_{j=0}^{n} \frac{1}{j+1} \sin ^{2} \frac{(j+1) k \pi}{n+2} \sin \frac{(j+1) \pi}{n+2}$.
Hence, we have

$$
\left\|L_{n}\right\|_{I} \leq \sum_{k=1}^{n+1}\left\|\ell_{k}\right\|_{I}=\frac{4}{n+2} \sum_{k=1}^{n+1} \sin \frac{k \pi}{n+2} \sum_{j=0}^{n} \frac{1}{j+1} \sin ^{2} \frac{(j+1) k \pi}{n+2} \sin \frac{(j+1) \pi}{n+2} .
$$

Furthermore, using

$$
\frac{4}{n+2} \sum_{k=1}^{n+1} \sin \frac{k \pi}{n+2}=\frac{4}{n+2} \cdot \frac{\sin \frac{\pi}{n+2}}{1-\cos \frac{\pi}{n+2}}=\frac{4}{n+2} \cdot \frac{1+\cos \frac{\pi}{n+2}}{\sin \frac{\pi}{n+2}}
$$

and

$$
\begin{aligned}
\sum_{j=0}^{n} \frac{1}{j+1} \sin ^{2} \frac{(j+1) k \pi}{n+2} \sin \frac{(j+1) \pi}{n+2} & <\sum_{j=0}^{n} \frac{1}{j+1} \sin \frac{(j+1) \pi}{n+2} \\
& <\sum_{j=0}^{n} \frac{1}{j+1} \cdot \frac{(j+1) \pi}{n+2}<\pi
\end{aligned}
$$

we obtain

$$
\left\|L_{n}\right\|_{I}<\frac{4 \pi}{n+2} \cdot \frac{1+\cos \frac{\pi}{n+2}}{\sin \frac{\pi}{n+2}}<8
$$

because the function $g(\theta)=\theta \frac{1+\cos \theta}{\sin \theta}$ is monotone decreasing on $\left(0, \frac{\pi}{2}\right]$ and $\lim _{\theta \rightarrow+0} g(\theta)=2$.

Remark. Using Maple V, we get numerically

$$
\frac{4}{n+2} \sum_{k=1}^{n+1} \sin \frac{k \pi}{n+2} \sum_{j=0}^{n} \frac{1}{j+1} \sin \frac{(j+1) k \pi}{n+2} \sin \frac{(j+1) \pi}{n+2}<2.4
$$

for $n=5,10,20,30,40,50$. This makes us think that there must be much better estimations of $\sum_{k=1}^{n+1}\left\|\ell_{k}(x)\right\|_{I}$ than that of Proposition 4.

2.2. Numerical Approach

By using Maple V, we obtain approximate values of $\left\|L_{n}\right\|_{I}$ with respect to two types of nodes: the equidistant points and the zeros of the Chebyshev polynomials of the second kind. The numerical results are given in the table below.

number of nodes	equidistance	Chebyshev 2nd
5	7.6	2
10	55.3381	2
15	2135.16	2
20	24648.7	2

Finally, we state the following problem.
Problem 1. Let n be any nonnegative integer and let the zeros of $U_{n+1}(x)$ be the nodes. Is it true that $\left\|L_{n}\right\|_{I}=2$?

Acknowledgements. The first author would like to express his gratitude to Prof. K. Kai at Saga University who has given him a constant encouragement during the preparation of this note.

References

[1] C. de Boor and A. Pinkus, Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation, J. Approx. Theory 24 (1978), 289-303.
[2] T. A. Kilgore, A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm, J. Approx. Theory 24 (1978), 273-288.
[3] K. Kitahara, K. Kuri, and Y. Sakamori, On a characterization of Chebyshev polynomial, East J. Approx. 4 (1998), 565-568.
[4] K. Kitahara, T. Okada, and Y. Sakamori, Some problems on polynomial approximation, in "Unsolved Problems on Mathematics for the 21st Century" (J. M. Abe and S. Tanaka, Eds.), pp. 211-221, IOS Press, Amsterdam, 2001.
[5] M. Mori, "Suchi Kaiseki" 2nd Ed. ("Numerical Analysis" 2nd Ed.), Kyouritu Publ. Co., Tokyo, 2002. [In Japanese]

Kazuaki Kitahara, Fumihiro Shimizu and Yoshihiro Udagawa
School of Science and Technology
Kwansei Gakuin University
Sanda 669-1337
JAPAN
E-mail: GBD01266@nifty.com

