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On Estimations of the Norms of the Lagrange
Interpolation Operators

K. Kitahara, F. Shimizu and Y. Udagawa

Let C[−1, 1] be the space of all real-valued continuous functions on
[−1, 1]. For given nodes, we consider the Langrange interpolation oper-
ator from C[−1, 1] with the supremum norm ‖ · ‖∞ to C[−1, 1] with the
I norm ‖ · ‖I , where ‖f‖I = supJ⊂[−1,1] |

∫
J
f(x) dx|, f ∈ C[−1, 1], and

J is a subinterval of [−1, 1]. In this note, some estimations of norms of
the Lagrange interpolation operators are shown.

1. Introduction

Polynomial approximation has a long history and lays the foundation of
approximation theory. And, it has been furnishing important problems. In
this note, a problem on interpolation by polynomials is discussed.

Let C[−1, 1] be the space of all real-valued continuous functions on [−1, 1]
and Πn the subspace of C[−1, 1] which consists of polynomials of degree at
most n. For given nodes−1 ≤ x0 < x1 < · · · < xn ≤ 1 and any f(x) ∈ C[−1, 1],
we define the polynomials

`i(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, i = 0, . . . , n,

and a linear operator from C[−1, 1] to C[−1, 1] by

Ln(f)(x) =

n∑
i=0

f(xi)`i(x).

`i(x) and Ln are called the fundamental polynomials for the nodes x0, . . . , xn
and the Lagrange Interpolation Operator, respectively. If C[−1, 1] is endowed
with the supremum norm and we consider Ln from (C[−1, 1], ‖·‖∞) to (C[−1, 1],
‖ · ‖∞), then the following propositions are well-known:

(i) The norm ‖Ln‖∞ equals ‖
∑n
i=0 |`i(x)| ‖∞.
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(ii) The estimates 2n

4n(n−1) ≤ ‖Ln‖∞ ≤ 2n hold for the nodes xi = −1 + 2
n i,

i = 0, 1, . . . , n,.

(iii) The conjectures of Bernstein and Erdös were proven by Kilgore [2] and
de Boor and Pinkus [1] in 1978.

The purpose of this note is to consider Ln from (C[−1, 1], ‖·‖∞) to (C[−1, 1],
‖ · ‖I), where ‖f‖I = supJ⊂[−1,1] |

∫
J
f(x) dx|, f ∈ C[−1, 1], and J is an subin-

terval of [−1, 1]. And we shall find nodes such that

‖Ln‖I = {‖Ln(f)(x)‖I : ‖f‖∞ ≤ 1, f ∈ C[−1, 1]}

is as small as possible and shall estimate ‖Ln‖I .

2. The Lagrange Interpolation Operators from
(C[−1, 1], ‖ · ‖∞) to (C[−1, 1], ‖ · ‖I)

First we present results corresponding to (i) and (ii) in Introduction.

Proposition 1 (Kitahara, Okada, and Sakamori [4, Theorem 7]). For any
given n+ 1 nodes,

‖Ln‖I = sup
J⊂[−1,1]

n∑
i=0

∣∣∣∣∫
J

`i(x) dx

∣∣∣∣ ,
where J denotes a subinterval of [−1, 1].

Proposition 2. For the nodes xi = −1 + 2
n i, i = 0, 1, . . . , n,

2n

16n3
< ‖Ln‖I ≤ 2n+1.

The proof is similar to that of (ii).
Since Ln(1) = 1, we clearly have ‖Ln‖I ≥ 2. In general,

‖Ln‖I = max
|σi|=1,i=0,1,... ,n

∥∥∥∥ n∑
i=0

σi`i(x)

∥∥∥∥
I

.

By this fact, we can show necessary and sufficient conditions that ‖Li‖I = 2,
i = 1, 2. The readers can verify the following proposition without difficulty.

Proposition 3. The following assertions are true:

(a) For nodes −1 ≤ x0 < x1 ≤ 1, ‖L1‖I = 2 if and ony if x1 − x0 ≥ 1
2 and

0 ≤
∣∣∣∣x0 + x1

2

∣∣∣∣ ≤ −1 +
√

2(x1 − x0).

(b) For nodes −1 ≤ x0 < x1 < x2 ≤ 1 with −x0 = x2 and x1 = 0, ‖L2‖I = 2
if and only if 1√

3
≤ x2 ≤ 1.
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By Proposition 3, we are led to the problem whether there exist nodes
x0, . . . , xn ∈ [−1, 1] satisfying ‖Ln‖I = 2 for each n ∈ N.

It is well-known that, for any function f ∈ C[−1, 1] and any given nodes
−1 ≤ x0 < · · · < xn ≤ 1,

f(x)− Ln(f)(x) = (x− x0) · · · (x− xn)f [x0, . . . , xn, x], x ∈ [−1, 1],

where f [x0, . . . , xn, x] denotes the divided difference of order (n+ 1) of f with
respect to the points x0, . . . , xn and x. If f(x) is sufficiently smooth and the
sign of f(x)− Ln(f)(x) is equal to the sign of (x− x0) · · · (x− xn) on [−1, 1],
then

‖f(x)− Ln(f)(x)‖I ≤ max
x∈[−1,1]

|f [x0, . . . , xn, x]| · ‖(x− x0) · · · (x− xn)‖I .

Hence, the nodes x0, . . . , xn which satisfy

‖(x− x0) · · · (x− xn)‖I = inf
−1≤y0<y1<···<yn≤1

‖(x− y0) · · · (x− yn)‖I (1)

seem to be nearly optimal. Since the zeros of the Chebyshev polynomial Un+1

of degree (n + 1) of the second kind satisfy (1) by Theorem B′ in Kitahara,
Kuri and Sakamori [3], there is possibility that the nodes uk = cos kπ

n+2 , k =
1, . . . , n+ 1 are optimal.

For the nodes uk, k = 1, . . . , n+ 1, we will give estimations of the I norms
of the Lagrange interpolation operators Ln in theoretical and numerical ap-
proaches.

2.1. Theoretical Approach

Since |
∫
J
`k(x) dx| ≤ ‖`k(x)‖I for all subintervals J ⊂ [−1, 1], the following

inequality holds in general:

‖Ln‖I = sup
J⊂[−1,1]

n+1∑
k=1

|
∫
J

`k(x) dx| ≤
n+1∑
k=1

‖`k(x)‖I .

Using this inequality, we get the estimation ‖Ln‖I < 8. Before showing
this, we need the following two results.

Lemma 1. For the nodes uk = cos k
n+2π, k = 1, . . . , n + 1, which lie at

the zeros of Un+1, we have

‖`k(x)‖I =

∫ uk−1

uk+1

`k(x) dx, k = 1, . . . , n+ 1,

where u0 = 1, un+2 = −1.
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Proof. For any fixed k = 1, . . . , n + 1, we set Sj = |
∫ uj−1

uj
`k(x) dx|, j =

1, . . . , n+ 2. If we prove that

Sk > Sk−1 > · · · > S1 (2)

and
Sk+1 > Sk+2 > · · · > Sn+2, (3)

since `k(x) changes signs only at u1, . . . , uk−1, uk+1, . . . , un+1 and `k(x) > 0,
x ∈ (uk+1, uk−1), we would obtain ‖`k(x)‖I =

∫ uk−1

uk+1
`k(x) dx. It is sufficient to

show that (2) holds. (3) is verified in an analogous way.

Noting that `k(x) = c Un+1

x−uk for some constant c, we have

Sj =

∣∣∣∣∣
∫ uj−1

uj

`k(x) dx

∣∣∣∣∣ =

∣∣∣∣∣c
∫ j−1

n+2π

jπ
n+2

sin(n+ 2)θ

sin θ
(

cos θ − cos kπ
n+2

) (− sin θ) dθ

∣∣∣∣∣
=

∣∣∣∣∣c
∫ jπ

(j−1)π

sinφ

cos φ
n+2 − cos kπ

n+2

· 1

n+ 2
dφ

∣∣∣∣∣ ((n+ 2)θ = φ)

=

∣∣∣∣∣ c

n+ 2

∫ π

0

sin ξ

cos ξ+(j−1)π
n+2 − cos kπ

n+2

dξ

∣∣∣∣∣ (φ = ξ + (j − 1)π).

For 1 ≤ j ≤ k−1, taking into account the estimates 0 < ξ+(j−1)π
n+2 < ξ+jπ

n+2 <
kπ
n+2 for all ξ ∈ (0, π), we obtain∣∣∣∣∣ c

n+ 2

∫ π

0

sin ξ

cos ξ+(j−1)π
n+2 − cos kπ

n+2

dξ

∣∣∣∣∣ <
∣∣∣∣∣ c

n+ 2

∫ π

0

sin ξ

cos ξ+jπn+2 − cos kπ
n+2

dξ

∣∣∣∣∣ . �

Let p0(x), . . . , pn+1(x) be a system of orthogonal polynomials on [a, b] with
respect to a weight function w(x) and let the interpolation nodes be at the
zeros x1, . . . , xn+1 of pn+1(x). Then, it is well-known that each `k(x), k =
1, . . . , n+ 1, is expressed as

`k(x) = wk

n∑
j=0

pj(xk)pj(x)

λj
,

where λj =
∫ b
a
p2j (x)w(x) dx, 1

wk
= µn

µn+1λn
pn(xk)p′n+1(xk) and µn denotes the

coefficient of xn in pn(x) (see Mori [5, p. 147]).
Applying this result to U0(x), . . . , Un+1(x), we verify the following without

difficulty.

Lemma 2. If the interpolation nodes coincide with the zeros uk = cos kπ
n+2 ,

k = 1, . . . , n+ 1, of Un+1, then each `k(x), k = 1, . . . , n+ 1, is expressed as

`k(x) =
2

n+ 2
sin

kπ

n+ 2

n∑
j=0

sin
(j + 1)kπ

n+ 2
Uj(x).
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Now we are in position to give an estimation of ‖Ln‖I .

Proposition 4. If the nodes are at the zeros of Un+1, then ‖Ln‖ < 8.

Proof. Noting that∫ uk−1

uk+1

Uj(x) dx =

∫ k+1
n+2π

k−1
n+2π

sin(j + 1)θ dθ =
2

j + 1
sin

(j + 1)kπ

n+ 2
sin

(j + 1)π

n+ 2
,

from Lemma 1 and Lemma 2, we obtain, for each k = 1, . . . , n+ 1,

‖`k‖I =

∫ uk−1

uk+1

`k(x) dx =
4

n+ 2
sin

kπ

n+ 2

n∑
j=0

1

j + 1
sin2 (j + 1)kπ

n+ 2
sin

(j + 1)π

n+ 2
.

Hence, we have

‖Ln‖I ≤
n+1∑
k=1

‖`k‖I =
4

n+ 2

n+1∑
k=1

sin
kπ

n+ 2

n∑
j=0

1

j + 1
sin2 (j + 1)kπ

n+ 2
sin

(j + 1)π

n+ 2
.

Furthermore, using

4

n+ 2

n+1∑
k=1

sin
kπ

n+ 2
=

4

n+ 2
·

sin π
n+2

1− cos π
n+2

=
4

n+ 2
·

1 + cos π
n+2

sin π
n+2

and

n∑
j=0

1

j + 1
sin2 (j + 1)kπ

n+ 2
sin

(j + 1)π

n+ 2
<

n∑
j=0

1

j + 1
sin

(j + 1)π

n+ 2

<

n∑
j=0

1

j + 1
· (j + 1)π

n+ 2
< π,

we obtain

‖Ln‖I <
4π

n+ 2
·

1 + cos π
n+2

sin π
n+2

< 8,

because the function g(θ) = θ 1+cos θ
sin θ is monotone decreasing on (0, π2 ] and

limθ→+0 g(θ) = 2. �

Remark. Using Maple V, we get numerically

4

n+ 2

n+1∑
k=1

sin
kπ

n+ 2

n∑
j=0

1

j + 1
sin

(j + 1)kπ

n+ 2
sin

(j + 1)π

n+ 2
< 2.4,

for n = 5, 10, 20, 30, 40, 50. This makes us think that there must be much better
estimations of

∑n+1
k=1 ‖`k(x)‖I than that of Proposition 4.
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2.2. Numerical Approach

By using Maple V, we obtain approximate values of ‖Ln‖I with respect
to two types of nodes: the equidistant points and the zeros of the Chebyshev
polynomials of the second kind. The numerical results are given in the table
below.

number of nodes equidistance Chebyshev 2nd
5 7.6 2
10 55.3381 2
15 2135.16 2
20 24648.7 2

Finally, we state the following problem.

Problem 1. Let n be any nonnegative integer and let the zeros of Un+1(x)
be the nodes. Is it true that ‖Ln‖I = 2 ?
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