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Fast Evaluation of Discrete Integral Transforms
by Chebyshev and Leja Polynomial

Approximation

Stefano De Marchi and Marco Vianello

We present and compare two fast methods for the evaluation of a discrete
integral transform (Tnu)i =

∑n
j=1 wjK(xi, tj , uj), i = 1, ..., q , where n

and q are large, based on polynomial approximation of the action of
the transform. The first resorts to truncated Chebyshev series expansion
while the second reduces to interpolation at Leja sequences. Our ap-
proach has a different conception compared with other well-known fast
methods, which usually work on the kernel and are restricted to linear
transforms. Working instead on the action of Tn, we are able to ex-
ploit the “smoothing effect” of integration and to treat also nonlinear
instances. Both Chebyshev and Leja polynomial approximation reduce
the complexity from O(nq) to O(n + q) in several applications, but the
Leja approach turns out to be more efficient and shows speed-up ratios,
w.r.t. direct evaluation, up to two orders of magnitude.

1. Introduction

This work concerns with the efficient evaluation of discrete integral trans-
forms like

(Tnu)i =

n∑
j=1

wj K(xi, tj , uj) , 1 ≤ i ≤ q , (1)

which approximate continuous transforms like Tu(xi) =
∫ b

a
K(xi, t, u(t)) dt ,

where {wj} and {tj} ∈ Rn are the quadrature weights and nodes, u ∈ Rn the
(approximated) values of u(t) at the quadrature nodes, uj ≈ u(tj), and {xi} ∈
Rq a set of “target” points in [a, b]. Since (1) has dense structure, its evaluation
costs O(nq) flops, which becomes quite expensive when n and q are “large”.
For example, in the case of second-kind integral equations discretized by the
Nyström method [2], typically q = n, so that a quadratic complexity arises.
In the framework of linear transforms, that is, when K(x, t, u) = H(x, t)u,
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several fast methods have been proposed, which working on the kernel are able
to reduce the computational cost to O(n log p n), p = 1, 2, or even O(n) flops.
We quote, without any pretence of exhaustivity, the fast multipole method
by Greengard and Rokhlin [7], wavelet based methods [1], and more recently
H-matrix and mosaic-skeleton methods [6, 10].

The main idea behind our approach is instead to approximate directly the
action of the transform: computing the discrete transform Tnu in (1) can be
seen in fact as evaluating the scalar function Φn,

Φn(x) :=
n∑

j=1

wj K(x, tj , uj) ≈ Φ(x) :=

∫ b

a

K(x, t, u(t)) dt , x ∈ [a, b] , (2)

at the target points {xi}, 1 ≤ i ≤ q. By approximating globally Φn in [a, b]
by a polynomial, say Pm,n(x), whose construction and evaluation at the target
points costs O(m(n+q)) flops, with m� n, q, we obtain a general purpose fast
method based on univariate techniques, which is able to exploit the smoothing
effect of integration, and works also in nonlinear instances.

2. The Proposed Methods

We consider two different methods of global polynomial approximation: trun-
cated Chebyshev series expansion (C), and polynomial interpolation at Leja
sequences (L).

• Truncated Chebyshev series expansion (C)

This method has been already presented and discussed in [4], where we
approximated Φn(x) in [a, b] through its m-degree truncated Chebyshev series
expansion,

Pm,n(x) =
c0
2

+

m∑
s=1

cs Ts

(
2x− a− b
b− a

)
, (3)

where Ts are the first-kind Chebyshev polynomials, and the coefficients cs are
obtained by Gauss-Lobatto quadrature, i.e.,

cs =
2

mωs

m∑
k=0

1

ωk
Φn(ξmk ) cos

πks

m
, s = 0, ...,m ,

with {ξmk } the Chebyshev-Lobatto nodes in [a, b]. We studied there the conver-
gence of Pm,n to Φn(x) in (3) as m increases and we observed that:

(i) if K(x, t, u) is smooth in x ∈ [a, b] for fixed t ∈ [a, b] and u ∈ D ⊆ R, then
convergence occurs. In fact, in this case the function Φn is smooth itself,
with (at least) the same degree of regularity as that of Φ;
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(ii) if K(x, t, u) is nonsmooth in x (e.g. K is linear weakly-singular, H(x, t) =
log(|x− t|)), then Φn is less smooth than Φ in (2), and the error ‖Pm,n−
Φn‖∞ exhibits a stalling at increasing m, correspondingly to the size of
the underlying discretization error ‖Φn−Φ‖∞ which begins to dominate.

The algorithm and more details about compression rates and speed-ups, a
posteriori error estimation and the stalling phenomenon that occurs in nons-
mooth instances, can be found in [4].

• Polynomial interpolation at Leja sequences (L)

Leja [8], defined a sequence of “extremal” points in the following way. Let
λ0 be a point arbitrarily chosen in [a, b]; then λs ∈ [a, b], s = 1, 2, ... , are such
that

s−1∏
k=0

|λs − λk| = max
x∈[a,b]

s−1∏
k=0

|x− λk| .

For a Leja sequence Λ = {λs} the following important properties hold, cf.
[3, 9]: Λ has the same limit distribution as that of the Chebyshev points, and
turns out to be “nearly optimal” for polynomial interpolation (slow increase
of the Lebesgue constant); Λ is a stable sequence for the Newton form of the
interpolant; Λ can be extracted from a (sufficiently dense) discretization of [a, b],
even in a “fast” way.

In what follows, with Pm,n we denote the polynomial of degree m which
interpolates Φn(x) at the fast Leja points λs, s = 0, . . . ,m, (see [3]) extracted
from the target interval, cf. (1). As known, the key feature of Leja-like inter-
polation is that the polynomial degree m can be incremented by computing
the underlying function values only at the additional nodes [3]. Indeed, with
Chebyshev-like methods this saving in terms of functional evaluations can not
be achieved, unless a special degree increment (e.g. doubling) is chosen, which
anyway leads to oversampling.

As in the case of truncated Chebyshev series, we studied a posteriori er-
ror estimation and we detected the stalling phenomenon. It is worth not-
ing that the problem of reliably estimating the error of Leja-like interpola-
tion does not seem to have been faced thoroughly in the numerical litera-
ture. Let Λm = {λ0, ..., λm} be the set of the first m + 1 fast Leja points
among the target points X = {xi}, for a given λ0 (usually one of the ex-
tremal target points). The natural estimate of the approximation error given
by ‖Pm+1,n(X)− Pm,n(X)‖∞/‖Pm+1,n(X)‖∞ has proved to be misleading in
several (even regular) examples. Neither the use of a degree incremental step
greater than 1 solves clearly this problem, in our experience.

We tested two alternative strategies for estimating the approximation error.
The first has been that of comparing the values of the last interpolant with those
of the interpolated function Φn at the new cs Leja nodes (where Φn will be
in any case evaluated to update the approximation), cs being a (small) control
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step. The relative error is then estimated by

Em =
‖Pm,n(Λm+cs \ Λm)− Φn(Λm+cs \ Λm)‖∞

‖Φn(Λm+cs \ Λm)‖∞
(4)

where Λm+cs \ Λm is the difference of the two sets. The iteration is stopped
either when Em goes below a given tolerance, or when the quantity |Em+1/Em−
1| is below a suitable θ ∈ (0, 1) on two consecutive values of m, i.e., a stalling
of convergence occurs. The above a posteriori error estimate Em works quite
well for smooth kernels (even with cs = 1, see Figure 1 up and Table 1), but
turned out to be often unreliable in nonsmooth instances. In these latter cases,
we used the following alternative estimate

Em = ‖Pm,n(∆)− Φn(∆)‖∞/‖Φn(∆)‖∞ , (5)

where ∆ is a fixed (small) set of control points in [a, b].

3. Numerical Examples

In this section we present two illustrative examples, where [a, b] = [0, 1] and
{tj} = {xi} (that is, q = n), which correspond to quite different kernels ap-
pearing in the numerical literature on second-kind Fredholm equations [2]. The
computational results concerning the truncated Chebyshev series expansion are
taken from [4].

1. Uryshon-type kernel (nonlinear and smooth): K(x, t, u) = 1
x+t+0.3u , u >

0; the vectors {tj} and {wj} correspond to the Simpson quadrature rule
at n (odd) equispaced nodes, and we chose u(t) = 1/(1 + t).

2. Weakly-singular log kernel (linear and nonsmooth): here, K(x, t, u) =
log(|x− t|)u(t), {tj} and {wj} correspond to the trapezoidal quadrature
rule at n (even) equispaced nodes, and we chose u(t) ≡ 1; the stalling
control parameter is set to θ = 0.25.

In both cases we know the exact continuous transform Φ(x), cf. (2), and
thus the underlying discretization error. In the Tables below we use the fol-
lowing notations (X = {xi} being the target points):

• discretization error : DE = ‖Φ(X)− Φn(X)‖∞/‖Φ(X)‖∞;

• actual error : AE = ‖Φn(X)− Pm,n(X)‖∞/‖Φn(X)‖∞;

• estimated error at degree m: EE = Em, cf. (4) for Table 1 and (5)
for Table 2 as for Leja-like interpolation, while for the Chebyshev series
approach we resorted to the remainder estimate in [4, formula (10)];
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• estimated speed-up (w.r.t. direct evaluation): SU = n/m, m being the
displayed exit degree, such that Em ≤ tol or a stalling has been detected.

When the error estimate (5) is used, then SU = SU∆ = n2

nm+C∆n+C∆m ≈
n

m+C∆
, C∆ being the cardinality of the “control” set ∆ (see Table 2 where

∆ is chosen as the set of the first ten Chebyshev points in [0, 1]).

n 129 513 2049
DE 1.8 10−9 6.9 10−12 3.0 10−14

(C) (L) (C) (L) (C) (L)
m 17 13 17 13 17 13
EE 7.2 10−7 5.7 10−7 7.2 10−7 5.7 10−7 7.2 10−7 5.7 10−7

AE 1.1 10−6 5.1 10−7 1.1 10−6 5.1 10−7 1.1 10−6 5.1 10−7

SU 3.3 9.9 13.2 39.5 52.5 157.6

Table 1: Compression of the discrete nonlinear Uryshon-type transform in Exam-

ple 1, tol = 10−6, with Chebyshev (C) and Leja (L).

n 128 512 2048
DE 3.2 10−2 9.5 10−3 2.8 10−3

(C) (L) (C) (L) (C) (L)
m 11 9 26 9 61 9
EE 8.2 10−3 1.5 10−2 2.9 10−3 8.8 10−3 7.1 10−4 5.9 10−3

AE 4.0 10−2 3.7 10−2 1.0 10−2 1.1 10−2 3.1 10−3 4.4 10−3

SU 5.8 6.7 7.9 26.9 12.3 107.8

Table 2: Compression of the discrete “weakly-singular log” linear transform in Ex-

ample 2; here, the exit is forced by a stalling of the estimated error.

Some comments are now in order. First, we stress the effectiveness of
polynomial compression for discrete integral transforms, especially Leja-like
interpolation, which is more efficient than Chebyshev-like methods, and shows
speed-ups up to two orders of magnitude. Even when we reach a degree which
guarantees an error of the order of the underlying discretization error (see Fig-
ure 1), we get for the medium-size problem with n ≈ 512 speed-ups ≥ 20.
Notice also the reliability of the error estimates, and of the stalling detection in
the weakly-singular instance. More details on the Leja-like method as well as
a wider set of numerical examples can be found in the forthcoming paper [5].
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Figure 1: (Log-scale approx. errors vs. polynomial degree.) Up: Leja-like compres-

sion of the Uryshon-type transform, n = 513, error estimate (4); SU = 21.4. Down:

Leja-like compression of the discrete “weakly-singular log” linear transform, n = 512,

error estimate (5); SU = 26.9.
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