A Weighted Markov's Inequality on the Real Line

Lozko Milev *

We present an exact Markov's inequality for the k-th derivative of a weighted polynomial of the form $u(x)=e^{-x^{2}} p(x)$, where $p(x)$ is an algebraic polynomial having only real zeros.

1. Introduction

We consider Markov type inequalities for weighted polynomials on the real line of the form

$$
\left\|(w p)^{\prime}\right\| \leq c\|w p\|
$$

where w is a weight on \mathbb{R}, p is a polynomial of degree not exceeding n, c is a constant and $\|\cdot\|$ is the sup-norm on \mathbb{R}.

An exact Markov's inequality for the weight $\mu(x)=e^{-x^{2}}$ was proved by Li , Mohapatra, and Rodrigues [2]. Their result is as follows:

If p is an algebraic polynomial of degree not exceeding n, then

$$
\left\|(\mu p)^{\prime}\right\| \leq\left\|\left(\mu \hat{T}_{n}\right)^{\prime}\right\| \cdot\|\mu p\|,
$$

where \hat{T}_{n} is the weighted Chebyshev polynomial, normalized by the condition $\left\|\mu \hat{T}_{n}\right\|=1$.

In [3] we proved that the same inequality holds for any k-th derivative, provided that the polynomial has only real zeros.

Our approach is based on a method for derivation of estimates for functionals in the set of algebraic polynomials, having only real zeros, proposed by Bojanov and Rahman [1].

In this note we summarize the main results of [3].

[^0]
2. Main Results

Let \mathcal{U}_{n} be the set of all generalized polynomials of the form

$$
u(x)=\mu(x) p_{n}(x)
$$

where $p_{n}(x)$ is an algebraic polynomial of degree n, which has n simple zeros in $(-\infty, \infty)$.

First, we consider a problem about interpolation at extremal points for polynomials from \mathcal{U}_{n}. We prove the following.

Theorem 1. Given positive numbers h_{0}, \ldots, h_{n}, there exist a unique polynomial $u \in \mathcal{U}_{n}$ and a unique set of points $t_{0}<\cdots<t_{n}$ such that

$$
\begin{array}{ll}
u\left(t_{k}\right)=(-1)^{n-k} h_{k}, & \text { for } k=0, \ldots, n \tag{1}\\
u^{\prime}\left(t_{k}\right)=0, & \text { for } k=0, \ldots, n
\end{array}
$$

Since every $u \in \mathcal{U}_{n}$ has exactly $n+1$ extremal points $t_{0}<\cdots<t_{n}$, Theorem 1 shows that the parameters $h_{i}(u):=\left|u\left(t_{i}\right)\right|, i=0, \ldots, n$, determine u uniquely (up to multiplication by -1).

Next we investigate the polynomials from \mathcal{U}_{n} depending on their local extrema h_{0}, \ldots, h_{n}.

Let

$$
H=\left\{\mathbf{h}=\left(h_{0}, \ldots, h_{n}\right): h_{i}>0, i=0, \ldots, n\right\}
$$

Given $\mathbf{h} \in H$, we shall denote by

$$
u(\mathbf{h} ; x)=c(\mathbf{h}) \mu(x) \prod_{j=1}^{n}\left(x-x_{j}(\mathbf{h})\right) \in \mathcal{U}_{n}
$$

the unique solution of the problem (1).
We consider (1) as a system of $2 n+2$ equations

$$
\begin{equation*}
F_{i}(\mathbf{h} ; X)=0, \quad i=1, \ldots, 2 n+2 \tag{2}
\end{equation*}
$$

in $2 n+2$ unknowns

$$
X=\left(c, x_{1}, \ldots, x_{n}, t_{0}, t_{1}, \ldots, t_{n}\right)
$$

We order the equations in the following way:

$$
\begin{array}{ll}
F_{i}(\mathbf{h} ; X):=u\left(t_{i-1}\right)-(-1)^{n-i+1} h_{i-1}, & i=1, \ldots, n+1 \\
F_{i}(\mathbf{h} ; X):=u^{\prime}\left(t_{i-n-2}\right), & i=n+2, \ldots, 2 n+2
\end{array}
$$

Let $J(\mathbf{h} ; X)$ be the Jacobian matrix of the system (2).
Lemma 1. For every $\mathbf{h} \in H$, $\operatorname{det} J(\mathbf{h} ; X) \neq 0$ at any solution of (2).

The next lemma contains an explicit expression for the derivative of $u^{\prime}(\mathbf{h} ; x)$ with respect to h_{k}.

Let

$$
g_{k}(x)=g_{k}(\mathbf{h} ; x):=-\frac{u^{\prime}(\mathbf{h} ; x)}{x-t_{k}}, \quad k=0, \ldots, n
$$

Lemma 2. For every $\mathbf{h} \in H$ and $x \in \mathbb{R}$,

$$
\frac{\partial}{\partial h_{k}} u^{\prime}(\mathbf{h} ; x)=\frac{g_{k}^{\prime}(x)}{\left|g_{k}\left(t_{k}\right)\right|}, \quad k=0, \ldots, n
$$

In what follows, we shall denote by

$$
\xi_{0}(\mathbf{h})<\xi_{1}(\mathbf{h})<\cdots<\xi_{n+1}(\mathbf{h})
$$

the extremal points of $u^{\prime}(\mathbf{h} ; x)$.
Lemma 3. For each $i=0, \ldots, n+1$ the quantity $\left|u^{\prime}\left(\mathbf{h} ; \xi_{i}(\mathbf{h})\right)\right|$ is a strictly increasing function of h_{0}, \ldots, h_{n} in H.

Theorem 2. Let u_{1} and u_{2} be polynomials from \mathcal{U}_{n}. Suppose that

$$
0<h_{i}\left(u_{1}\right) \leq h_{i}\left(u_{2}\right), \quad \text { for } i=0, \ldots, n
$$

Then for every natural number k, the inequalities

$$
\begin{equation*}
0<h_{j}\left(u_{1}^{(k)}\right) \leq h_{j}\left(u_{2}^{(k)}\right), \quad j=0, \ldots, n+k \tag{3}
\end{equation*}
$$

hold. In particular

$$
\begin{equation*}
\left\|u_{1}^{(k)}\right\| \leq\left\|u_{2}^{(k)}\right\| \tag{4}
\end{equation*}
$$

Moreover, the equality in (3) (for some j) and (4) is attained if and only if $h_{i}\left(u_{1}\right)=h_{i}\left(u_{2}\right)$ for all $i=0, \ldots, n$.

Consequently, the norm of the k-th derivative of a polynomial from \mathcal{U}_{n} is a strictly increasing function of h_{0}, \ldots, h_{n}.

Let $\overline{\mathcal{U}}_{n}$ be the set of all generalized polynomials of the form

$$
u(x)=\mu(x) p_{n}(x)
$$

where $p_{n}(x)$ is an algebraic polynomial of n-th degree which has n real (possibly multiple) zeros.

Denote by $u_{*}(x)$ the polynomial from Theorem 1 , corresponding to $\mathbf{h}=$ $(1,1, \ldots, 1)$. Using Theorem 2 and some variational arguments, we prove the following exact Markov inequality in the set $\overline{\mathcal{U}}_{n}$.

Theorem 3. Let u belongs to $\overline{\mathcal{U}}_{n}$. Then for every natural number k the inequality

$$
\left\|u^{(k)}\right\| \leq\left\|u_{*}{ }^{(k)}\right\| \cdot\|u\|
$$

holds. The equality is attained if and only if $u=c u_{*}, c \in \mathbb{R}$.

References

[1] B. Bojanov and Q. Rahman, On certain extremal problems for polynomials, J. Math. Anal. Appl. 189 (1995), 781-800.
[2] X. Li, R. N. Mohapatra, and R. S. Rodrigues, On Markov's inequality on \mathbb{R} for the Hermite weight, J. Approx. Theory 75 (1993), 115-129.
[3] L. Milev, Weighted polynomial inequalities on infinite intervals, East. J. Approx. 5 (1999), 449-465.

Lozko Milev

Department of Mathematics
University of Sofia
Blvd. James Bourchier 5
1164 Sofia
BULGARIA
E-mail: milev@fmi.uni-sofia.bg

[^0]: *Supported by the Sofia University Science Foundation under Contract No. 399/2001.

