CONSTRUCTIVE THEORY OF FUNCTIONS, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2003, pp. 366-373.

Vector Variants of Some Approximation Theorems of Korovkin and of Sendov and Popov

RADU PĂLTĂNEA

Dedicated to Academician Bl. Sendov on his 70th anniversary

1. Introduction. Higher Order Convexity

Let $(E, \langle \cdot, \cdot \rangle)$ be an Euclidean space with the norm denoted by $\|\cdot\|$. Let I = [a, b], a < b, be a real interval. Let C(I, E) be the space of continuous functions, endowed with the sup-norm denoted by $\|\cdot\|_I$. If $\varphi: I \to \mathbb{R}$ and $w \in F$, we denote by φw the function $(\varphi w)(x) = \varphi(x)w$. Consider the monomial functions $e_j(x) := x^j, x \in I, j = 0, 1, \ldots$

If $L: C(I, E) \to C(I, E)$ is a linear operator, we denote

$$||L|| := \sup_{||f||_I \le 1} ||L(f)||_I.$$

For any $f \in C(I, E)$ and any distinct points y_1, \ldots, y_p of I, we denote by $[f; y_1, \ldots, y_p]$, the divided difference of f at these points.

Definition 1 ([2]). A function $f: I \to E$ is called convex of order $k, k \ge -1$, if for any strictly ordered (increasing or decreasing) points x_1, \ldots, x_{k+3} of I we have

$$\langle [f; x_1, \dots, x_{k+2}], [f; x_2, \dots, x_{k+3}] \rangle \ge 0,$$
 (1)

or in an equivalent mode,

$$\|[f; x_1, \dots, x_{k+2}] + t[f; x_2, \dots, x_{k+3}]\| \ge \|[f; x_1, \dots, x_{k+2}]\|,$$
(2)

for all t > 0. Denote by $K^k(I, E)$ the space of convex functions of order k.

Remark ([2]). In the case $E = \mathbb{R}$, $f \in K^k(I, \mathbb{R})$ if and only if f or -f is convex in the usual sense of order k.

This type of convexity is studied in [2]. In this paper we used only the cases k = -1 and k = 0, when the convexity generalizes the positivity and the monotonicity.

Definition 2. A linear operator $L : C(I, E) \to C^{k+1}(I, E), k \ge -1$, is called convex of order k, if for any $f \in C^{k+1}(I, E)$ such that $f^{(k+1)} \in K^{-1}(I, E)$, we have $(L(f))^{(k+1)} \in K^{-1}(I, E)$. In the case k = -1 the operator L is called positive.

2. A Korovkin Type Theorem

Lemma 1. Let $\{L_n\}_n$ be a sequence of positive linear operators, L_n : $C(I, E) \to C(I, E)$ with the property that

$$\lim_{n \to \infty} \|L_n(e_j w) - e_j w\|_I = 0, \quad \text{for all } w \in E, \text{ and } j = 0, 1.$$
(3)

Then, there is a positive integer n_0 such that $||L_n|| \leq 8$, for any $n \geq n_0$.

Proof. Let us denote $\rho := \min\left\{\frac{1}{240}, \frac{1}{120} \cdot \frac{b-a}{1+|a|}\right\}$. Since the space E is finite dimensional it follows that the limit in (3) is uniform with respect to w, ||w|| = 1, and j. In other words, there is a natural number n_0 such that

$$||L_n(e_jw) - e_jw||_I < \rho,$$
 for all $w \in E$, $||w|| = 1, j = 0, 1, n \ge n_0$

Let us fix a natural number $n \ge n_0$. Let $f \in C(I, E)$, $||f||_I \le 1$. Suppose that $||L_n(f)||_I \ge 8$. Let $z \in I$ be such that $||L_n(f, z)|| = ||L_n(f)||_I$. We distinguish between two cases.

Case 1. For all $x \in I$ we have $||L_n(f,x) - L_n(f,z)|| < \frac{1}{32} ||L_n(f)||_I$. It follows that $||L_n(f,x) - L_n(f,y)|| \le \frac{1}{16} ||L_n(f)||_I$, for all $x, y \in I$ and also $||L_n(f,x)|| \ge \frac{31}{32} ||L_n(f)||_I$, for all $x \in I$. Define

$$w := \frac{L_n(f,a)}{\|L_n(f,a)\|}, \quad \mu := \frac{4}{5} \|L_n(f,a)\|, \quad g := \frac{\mu}{2(b-a)} ((2b-3a)e_0 + e_1)w - f.$$

We show that $g \in K^{-1}(I, E)$. Let $x, y \in I$ and t > 0. Note that $\mu > 6$. We have successively:

$$\begin{split} \|g(x) + tg(y)\| - \|g(x)\| &\ge t \left(\|g(x)\| - \|g(x) - g(y)\| \right) \\ &\ge t \Big[\mu \Big(1 + \frac{x - a}{2(b - a)} \Big) \|w\| - 2\|f(x)\| - \|f(y)\| - \mu \frac{|y - x|}{2(b - a)} \|w\| \Big] \\ &\ge t \Big(\frac{1}{2}\mu - 3 \Big) \ge 0. \end{split}$$

Since L_n is positive it follows that $L_n(g) \in K^{-1}(I, E)$. But, on the other hand,

$$\begin{split} \|L_n(g,a) + L_n(g,b)\| - \|L_n(g,a)\| \\ &\leq \left\|\frac{5}{2}\mu w - L_n(f,a) - L_n(f,b)\right\| - \|\mu w - L_n(f,a)\| \\ &+ \mu \Big[\Big(3 + \frac{3|a|}{2(b-a)}\Big) \|L_n(e_0w) - e_0w\|_I + \frac{3}{2(b-a)} \|L_n(e_1w) - e_1w\|_I \Big] \\ &\leq \|L_n(f,a) - L_n(f,b)\| - \frac{1}{4}\mu + \frac{\mu}{40} \\ &\leq \frac{1}{16} \|L_n(f)\|_I - \frac{9}{50} \|L_n(f,a)\| < 0, \end{split}$$

a contradiction.

Case 2. There exists $x \in I$ such that $||L_n(f,x) - L_n(f,z)|| \ge \frac{1}{32} ||L_n(f)||_I$. Define

$$\mu := \frac{1}{5} \|L_n(f, x) + 4L_n(f, z)\|, \quad w := \frac{1}{5\mu} (L_n(f, x) + 4L_n(f, z)), \quad g := \mu e_0 w - f.$$

We have

$$\mu > \frac{4}{5} \|L_n(f,z)\| - \frac{1}{5} \|L_n(f,x)\| \ge \frac{3}{5} \|L_n(f)\|_I \ge \frac{24}{5}.$$

For any $x_1, x_2 \in I$ and t > 0 we have:

$$\begin{aligned} \|g(x_1) + t g(x_2)\| - \|g(x_1)\| &\ge t \left(\|g(x_1)\| - \|g(x_1) - g(x_2)\| \right) \\ &\ge t \left(\mu \|w\| - 2\|f(x_1)\| - \|f(x_2)\| \right) \\ &\ge t(\mu - 3) \ge 0. \end{aligned}$$

Hence $g \in K^{-1}(I, E)$. Then $L_n(g) \in K^{-1}(I, E)$. But

$$\begin{aligned} \|L_n(g,x) + 4L_n(g,x)\| &- \|L_n(g,x)\| \\ &\leq 6\mu \|L_n(e_0w) - e_0w\|_I - \|\mu w - L_n(f,x)\| \\ &< 6\mu\rho - \frac{4}{5} \|L_n(f,z) - L_n(f,x)\| \leq \|L_n(f)\|_I \left(6\rho - \frac{1}{40}\right) \leq 0, \end{aligned}$$

and we arrived again at a contradiction. Therefore $||L_n(f)||_I < 8$. The lemma is proved. \Box

Theorem 1. Let $\{L_n\}_n$ be a sequence of positive linear operators $L_n : C(I, E) \to C(I, E)$ with the property

$$\lim_{n \to \infty} \|L_n(e_j w) - e_j w\|_I = 0, \quad \text{for all } w \in E \text{ and } j = 0, 1, 2.$$

Then, for any $f \in C(I, E)$ we have

$$\lim_{n \to \infty} \|L_n(f) - f\|_I = 0.$$
 (4)

Proof. First, we consider the particular case where $f \in C^2(I, E)$. Let n_0 be the integer assured by Lemma 1. Let us fix a point $x \in I$ and set v := f'(x). By Taylor's formula,

$$f(y) = f(x) + (y - x)v + \int_{x}^{y} (y - u)f''(u) \, du, \qquad y \in I.$$

Now we choose a number μ such that

$$\mu > \max\left\{ \|f''\|_{I}, \frac{16}{(b-a)^{2}} \left(11\|f\|_{I} + (b-a)\|v\| + 1\right) \right\}.$$

For any $w \in E$ with ||w|| = 1 consider the functions

$$h_w := e_0 f(x) + (e_1 - xe_0)v + \mu(e_1 - xe_0)^2 w$$
 and $g_w := h_w - f.$

We claim that $g_w \in K^{-1}(I, E)$. Indeed, let $y_1, y_2 \in I$. Consider first the case when $y_1 \neq x, y_2 \neq x$. For i = 1, 2, put

$$T_i := (y_i - x)^{-2} \int_x^{y_i} (y_i - u) f''(u) \, du.$$

Clearly $||T_i|| \leq \frac{1}{2} ||f''||_I$. One obtains

$$\langle g(y_1), g(y_2) \rangle = (y_1 - x)^2 (y_2 - x)^2 \left[\mu^2 - \mu \left(\langle w, T_1 \rangle + \langle w, T_2 \rangle \right) + \langle T_1, T_2 \rangle \right]$$

= $(y_1 - x)^2 (y_2 - x)^2 \left[\mu^2 - \frac{1}{2} \mu \| f'' \|_I - \frac{1}{4} \| f'' \|_I^2 \right] \ge 0.$

For $y_1 = x$ or $y_2 = x$ the inequality above is immediate. Consequently, $L_n(g_w)$ is positive.

Let $\varepsilon > 0$. From the hypothesis there exists $n_x \in \mathbb{N}$, $n_x \ge n_0$, such that

$$||L_n(h_w) - h_w|| < \frac{\varepsilon}{4}$$
, for all $w \in E$, $||w|| = 1$, $n \ge n_x$.

Suppose that there is $n \ge n_x$ such that $||L_n(f, x) - f(x)|| \ge \frac{\varepsilon}{2}$. Consider, for a choice that $x \le \frac{1}{2}(a+b)$. Choose

$$w := \frac{L_n(f, x) - f(x)}{\|L_n(f, x) - f(x)\|}, \quad \text{and put} \quad \lambda := \frac{\|L_n(f, x) - f(x)\|}{\mu(b - x)^2}.$$

Note that $h_w(x) = f(x)$ and

$$\lambda \leq \ \frac{\|f\|_I + \|L_n(f)\|_I}{\mu(b-x)^2} \leq \frac{9 \, \|f\|_I}{\mu(b-x)^2} < 1.$$

It follows:

$$\begin{split} \|L_{n}(g_{w},b) + L_{n}(g_{w},x)\| - \|L_{n}(g_{w},b)\| \\ &\leq \|\lambda L_{n}(g_{w},b) + L_{n}(g_{w},x)\| - \lambda \|L_{n}(g_{w},b)\| \\ &\leq 2\lambda \|L_{n}(g_{w},b) - g_{w}(b)\| + \|L_{n}(h_{w},x) - h_{w}(x)\| \\ &+ \|\lambda g_{w}(b) - L_{n}(f,x) + f(x)\| - \lambda \|g_{w}(b)\| \\ &\leq 2\lambda ((b-x)\|v\| + \|f(x)\| + \|f(b)\|) \\ &+ 2\lambda (\|L_{n}(h_{w},b) - h_{w}(b)\| + \|L_{n}(f,b)\| + \|f(b)\|) + \frac{\varepsilon}{4} - \lambda (b-x)^{2}\mu \\ &\leq 2\lambda \Big(\frac{\varepsilon}{4} + 11\|f\|_{I} + (b-a)\|v\|\Big) + \frac{\varepsilon}{4} - \lambda (b-x)^{2}\mu \\ &< \frac{\varepsilon}{4} - \frac{1}{2}\lambda (b-x)^{2}\mu \leq 0. \end{split}$$

The contradiction that we obtained prove that $||L_n(f,x) - f(x)|| < \frac{\varepsilon}{2}$. From the continuity of the function $L_n(f) - f$ it follows that there is a neighbourhood V_x of x such that

$$||L_n(f, y) - f(y)|| < \varepsilon, \quad \text{for all } y \in I \cap V_x, \ n \ge n_x.$$

Since I is compact, there are the points $x_1, \ldots, x_m \in I$ such that $I \subset V_{x_1} \cup \ldots \cup V_{x_m}$. Set $n_{\varepsilon} := \max\{n_{x_1}, \ldots, n_{x_m}\}$. Then we have $\|L_n(f) - f\|_I < \varepsilon$, for $n \ge n_{\varepsilon}$.

Consider now the general case, when $f \in C(I, E)$. Let $0 < \varepsilon < 1$. Choose $\tilde{f} \in C^2(I, E)$, such that $||f - \tilde{f}||_I < \frac{\varepsilon}{18}$. There is $n_{\varepsilon} \in \mathbb{N}$, $n_{\varepsilon} > n_0$, such that $||L_n(\tilde{f}) - \tilde{f}|| < \frac{\varepsilon}{2}$, for $n \ge n_{\varepsilon}$. Then, for such integers n we have

$$||L_n(f) - f||_I \le ||L_n(f - \tilde{f})||_I + ||L_n(\tilde{f}) - \tilde{f}||_I + ||\tilde{f} - f||_I$$

$$\le 9 ||f - \tilde{f}||_I + ||L_n(\tilde{f}) - \tilde{f}||_I < \varepsilon. \quad \Box$$

3. Simultaneous Approximation

In this section we give a generalization of the theorem of Sendov and Popov on simultaneous approximation. The idea of the proof is the same as in [1].

Lemma 2. If $a, b, v \in E$ are such that ||a|| = ||b|| = ||v|| = 1 and $\langle a, b \rangle \leq 0$ then $\max\{\langle a, v \rangle, \langle b, v \rangle\} \geq -\frac{1}{\sqrt{2}}$.

Proof. Let $m := \dim E$. Suppose that $m \ge 2$ and $a \ne -b$, since otherwise, lemma is obvious. Let $\{u_1, \ldots, u_m\}$ be an orthonormal base such that $u_1 = \frac{a+b}{\|a+b\|}$, $u_2 = \frac{a-b}{\|a-b\|}$. We have the representation $v = \sum_{i=1}^m \lambda_i u_i$, where $\sum_{i=1}^m \lambda_i^2 = 1$.

370

We get

$$\begin{split} \max\{\langle a\,,v\,\rangle,\langle b\,,v\,\rangle\}\\ &= \max\left\{\frac{\lambda_1(1+\langle a\,,b\,\rangle)}{\|a+b\|} + \frac{\lambda_2(1-\langle a\,,b\,\rangle)}{\|a-b\|}\,,\frac{\lambda_1(\langle a\,,b\,\rangle+1)}{\|a+b\|} + \frac{\lambda_2(\langle a\,,b\,\rangle-1)}{\|a-b\|}\right\}\\ &= \frac{\lambda_1(1+\langle a\,,b\,\rangle)}{\|a+b\|} + \frac{|\lambda_2|(1-\langle a\,,b\,\rangle)}{\|a-b\|}. \end{split}$$

In this expression, let consider a, b be fixed and v variable. The minimum value is obtained for $\lambda_1 = -1$ and $\lambda_i = 0$, for $2 \le i \le m$ and it is equal to

$$-\frac{1+\langle\,a\,,b\,\rangle}{\|a+b\|}=-\frac{1}{\sqrt{2}}\cdot\sqrt{1+\langle\,a\,,b\,\rangle}\geq e-\frac{1}{\sqrt{2}}.\quad \Box$$

Lemma 3. If the sequence of functions $\{f_n\}_n$, $f_n \in C^1(I, E)$ is uniformly convergent on I to the function $f \in C^1(I, E)$, and if $f'_n \in K^0(I, E)$, $n \in \mathbb{N}$, then for any subinterval $[c, d] \subset (a, b)$, the sequence $\{f'_n\}_n$ is uniformly convergent on [c, d] to f'.

Proof. Suppose the contrary. Then there are a number $\lambda > 0$, a sequence $(x_k)_k, x_k \in [c, d]$ and a subsequence of natural numbers $(n_k)_k$ such that

$$\|f'(x_k) - (f_{n_k})'(x_k)\| > \lambda, \qquad k \in \mathbb{N}.$$

There is $\delta_1 > 0$ such that $||f'(x) - f'(y)|| < \frac{\lambda}{4}$, for all $x, y \in I$, $|x - y| < \delta_1$. Put $\delta := \min\{\delta_1, c - a, b - d\}$ and $\rho := \frac{1}{8}\lambda\delta$. Let k be fixed such that $||f - f_{n_k}||_{[a,b]} < \rho$. Put $g := f_{n_k}$ and

$$T_1 := \int_{x_k-\delta}^{x_k} \left(g'(t) - g'(x_k) \right) dt, \qquad T_2 := \int_{x_k}^{x_k+\delta} \left(g'(t) - g'(x_k) \right) dt.$$

Since $g' \in K^0(I, E)$ it follows that $\langle g'(t_1) - g'(x_k), g(t_2) - g(x_k) \rangle \leq 0$, for all $t_1 \in [a, x_k), t_2 \in (x_k, b]$. If we approximate the integrals T_1 and T_2 by Riemann sums we get from above that

$$\langle T_1, T_2 \rangle \leq 0.$$

First consider that $T_i \neq 0$, i = 1, 2. Define

$$\alpha := \frac{T_1}{\|T_1\|}, \qquad \beta := \frac{T_2}{\|T_2\|}, \qquad v := \frac{u}{\|u\|},$$

where $u := \delta(g'(x_k) - f'(x_k))$. By Lemma 2 we have $\max\{\langle \alpha, v \rangle, \langle \beta, v \rangle\} \geq$

 $\begin{aligned} &-\frac{1}{\sqrt{2}}. \text{ Suppose, for a choice that } \langle \beta, v \rangle \geq -\frac{1}{\sqrt{2}}. \text{ We have successively} \\ &\|g(x_k+\delta) - f(x_k+\delta)\| = \left\|g(x_k) + \int_{x_k}^{x_k+\delta} g'(t) \, dt - f(x_k) - \int_{x_k}^{x_k+\delta} f'(t) \, dt\right\| \\ &\geq \left\|\int_{x_k}^{x_k+\delta} (g'(t) - f'(t)) \, dt\right\| - \rho \\ &\geq \left\|\int_{x_k}^{x_k+\delta} (g'(t) - f'(x_k)) \, dt\right\| - \left\|\int_{x_k}^{x_k+\delta} (f'(x_k) - f'(t)) \, dt\right\| - \rho \\ &\geq \left\|\int_{x_k}^{x_k+\delta} (g'(t) - f'(x_k)) \, dt\right\| - 3\rho = \|T_2 + u\| - 3\rho \\ &= \sqrt{\|T_2\|^2 + \|u\|^2 + 2} < T_2, \, u > -3\rho \geq \sqrt{\|T_2\|^2 + \|u\|^2 - \sqrt{2}\|T_2\| \|u\|} - 3\rho \\ &\geq \frac{1}{\sqrt{2}} \|u\| - 3\rho > \frac{1}{\sqrt{2}} \, \lambda\delta - 3\rho > \rho. \end{aligned}$

Therefore we obtained a contradiction. In the case $T_2 = 0$, then like as above we obtain $||g(x_k + \delta) - f(x_k + \delta)|| \ge ||u|| - 3\rho > \rho$. Contradiction. Lemma is proved. \Box

Theorem 2. Let $\{L_n\}_n$ be a sequence of linear operators $L_n : C(I, E) \to C^{r+1}(I, E), r \ge 1$, with the properties:

1) L_n are convex of order k for $-1 \le k \le r$.

2) $\lim_{m \to \infty} \|L(e_j w) - e_j w\|_{[a,b]} = 0$, for all $w \in E$ and $0 \le j \le r+2$.

Then, for any subinterval $[c,d] \subset (a,b)$, we have

$$\lim_{n \to \infty} \| \left(L_n(f) \right)^{(r)} - f^{(r)} \|_{[c,d]} = 0, \qquad \text{for all } f \in C^r(I, E).$$
(5)

Proof. Fix a subinterval $[c, d] \subset [a, b]$. For $0 \leq k \leq r$, consider the points $c_k := a + \frac{k}{r}(c-a)$ and $d_k := b - \frac{k}{r}(b-d)$. We prove by induction with respect to $0 \leq k \leq r$ the following relations

$$\lim_{n \to \infty} \| \left(L_n(e_j w) \right)^{(k)} - (e_j w)^{(k)} \|_{[c_k, d_k]} = 0, \tag{6}$$

for all $w \in E$, $0 \leq j \leq r+2$. For k = 0 relations (6) are assured by the condition 2) of the theorem. Suppose now that relations (6) are true for k < r and prove it for k + 1. Fix w and j. One can obtain immediately that $(e_jw)^{(k+2)} \in K^{-1}(I, E)$. Since L_n is an operator which is convex of order k+1, then $(L_n(e_jw))^{(k+2)} \in K^{-1}(I, E)$. It follows that $(L_n(e_jw))^{(k+1)} \in K^0(I, E)$. Indeed, let us denote $g := (L_n(e_jw))^{(k+1)}$ and take the points $x_1 < x_2 < x_3$ of I. For any $s \in [x_1, x_2]$ and $t \in [x_2, x_3]$ we have $\langle g'(s), g'(t) \rangle \geq 0$. Then, by approximation of the integrals $\int_{x_1}^{x_2} g'(s) ds$ and $\int_{x_2}^{x_3} g'(t) dt$ by Riemann sums,

372

we get $\langle \int_{x_1}^{x_2} g'(s) ds, \int_{x_2}^{x_3} g'(t) dt \rangle \ge 0$, that is $\langle g(x_2) - g(x_1), g(x_3) - g(x_2) \rangle \ge 0$. Then using Lemma 3, we get relation (6) for k + 1.

Now, consider the operators

$$U(g,x) := \int_{a}^{x} \frac{(x-t)^{r-1}}{(r-1)!} g(t) dt, \quad g \in C(I,E), \ x \in I; \ R_{n} := (L_{n} \circ U)^{(r)}, \ n \in \mathbb{N}.$$

If $f \in C^r(I, E)$ and $n \in \mathbb{N}$ we have

$$\left(L_n(f)\right)^{(r)} = \sum_{p=0}^{r-1} \sum_{j=0}^p \binom{p}{j} \frac{(-a)^{p-j}}{p!} \left(L_n(e_j f^{(p)}(a))\right)^{(r)} + R_n(f^{(r)}).$$
(7)

From relations (7) and (6), (for k = r and $0 \le j \le r - 1$), it follows that in order to prove the theorem it suffices to show that

$$\lim_{n \to \infty} \|R_n(f^{(r)}) - f^{(r)}\|_{[c,d]} = 0.$$

For this we apply Theorem 1. Since $(U(g))^{(r)} = g$ for any $g \in C(I, E)$ and L_n is convex of order r-1, it follows that the operator R_n is positive. It remains to show that

$$\lim_{n \to \infty} \|R_n(e_j w) - e_j w\|_{[c,d]} = 0, \quad \text{for all } w \in E \text{ and } j = 0, 1, 2.$$
(8)

For such $w \in E$ and j we have, after a short calculus, that

$$R_n(e_j w) = \left[L_n \left(\left(\sum_{i=0}^j \frac{i!}{(r+i)!} {j \choose i} a^{j-i} (e_1 - ae_0)^{r+i} \right) w \right) \right]^{(r)}.$$
(9)

Now from (9) we can remark that relations (6) imply relations (8). \Box

References

- BL. SENDOV AND V. POPOV, Convergence of the derivatives of positive linear operators, C. R. Acad. Bulgare Sci. 22 (1969), 507–509. [In Russian]
- [2] R. PĂLTĂNEA, "Approximation Operators and Their Connections with Some Particular Allures", Ph.D. Thesis, Cluj-Napoca, 1992. [In Romanian]

RADU PĂLTĂNEA Transilvania University Department of Mathematics Eroilor Street 29, Braşov – 2200 ROMANIA *E-mail:* r.paltanea@info.unitbv.ro