# Vector Variants of Some Approximation Theorems of Korovkin and of Sendov and Popov 

Radu Păltănea

Dedicated to Academician Bl. Sendov on his 70th anniversary

## 1. Introduction. Higher Order Convexity

Let $(E,\langle\cdot, \cdot\rangle)$ be an Euclidean space with the norm denoted by $\|\cdot\|$. Let $I=[a, b], a<b$, be a real interval. Let $C(I, E)$ be the space of continuous functions, endowed with the sup-norm denoted by $\|\cdot\|_{I}$. If $\varphi: I \rightarrow \mathbb{R}$ and $w \in F$, we denote by $\varphi w$ the function $(\varphi w)(x)=\varphi(x) w$. Consider the monomial functions $e_{j}(x):=x^{j}, x \in I, j=0,1, \ldots$

If $L: C(I, E) \rightarrow C(I, E)$ is a linear operator, we denote

$$
\|L\|:=\sup _{\|f\|_{I} \leq 1}\|L(f)\|_{I}
$$

For any $f \in C(I, E)$ and any distinct points $y_{1}, \ldots, y_{p}$ of $I$, we denote by $\left[f ; y_{1}, \ldots, y_{p}\right]$, the divided difference of $f$ at these points.

Definition 1 ([2]). A function $f: I \rightarrow E$ is called convex of order $k, k \geq$ -1 , if for any strictly ordered (increasing or decreasing) points $x_{1}, \ldots, x_{k+3}$ of I we have

$$
\begin{equation*}
\left\langle\left[f ; x_{1}, \ldots, x_{k+2}\right],\left[f ; x_{2}, \ldots, x_{k+3}\right]\right\rangle \geq 0 \tag{1}
\end{equation*}
$$

or in an equivalent mode,

$$
\begin{equation*}
\left\|\left[f ; x_{1}, \ldots, x_{k+2}\right]+t\left[f ; x_{2}, \ldots, x_{k+3}\right]\right\| \geq\left\|\left[f ; x_{1}, \ldots, x_{k+2}\right]\right\| \tag{2}
\end{equation*}
$$

for all $t>0$. Denote by $K^{k}(I, E)$ the space of convex functions of order $k$.

Remark ([2]). In the case $E=\mathbb{R}, f \in K^{k}(I, \mathbb{R})$ if and only if $f$ or $-f$ is convex in the usual sense of order $k$.

This type of convexity is studied in [2]. In this paper we used only the cases $k=-1$ and $k=0$, when the convexity generalizes the positivity and the monotonicity.

Definition 2. A linear operator $L: C(I, E) \rightarrow C^{k+1}(I, E), k \geq-1$, is called convex of order $k$, if for any $f \in C^{k+1}(I, E)$ such that $f^{(\overline{k+1})} \in$ $K^{-1}(I, E)$, we have $(L(f))^{(k+1)} \in K^{-1}(I, E)$. In the case $k=-1$ the operator $L$ is called positive.

## 2. A Korovkin Type Theorem

Lemma 1. Let $\left\{L_{n}\right\}_{n}$ be a sequence of positive linear operators, $L_{n}$ : $C(I, E) \rightarrow C(I, E)$ with the property that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}\left(e_{j} w\right)-e_{j} w\right\|_{I}=0, \quad \text { for all } w \in E, \text { and } j=0,1 \tag{3}
\end{equation*}
$$

Then, there is a positive integer $n_{0}$ such that $\left\|L_{n}\right\| \leq 8$, for any $n \geq n_{0}$.
Proof. Let us denote $\rho:=\min \left\{\frac{1}{240}, \frac{1}{120} \cdot \frac{b-a}{1+|a|}\right\}$. Since the space $E$ is finite dimensional it follows that the limit in (3) is uniform with respect to $w$, $\|w\|=1$, and $j$. In other words, there is a natural number $n_{0}$ such that

$$
\left\|L_{n}\left(e_{j} w\right)-e_{j} w\right\|_{I}<\rho, \quad \text { for all } w \in E,\|w\|=1, j=0,1, n \geq n_{0}
$$

Let us fix a natural number $n \geq n_{0}$. Let $f \in C(I, E),\|f\|_{I} \leq 1$. Suppose that $\left\|L_{n}(f)\right\|_{I} \geq 8$. Let $z \in I$ be such that $\left\|L_{n}(f, z)\right\|=\left\|L_{n}(f)\right\|_{I}$. We distinguish between two cases.

Case 1. For all $x \in I$ we have $\left\|L_{n}(f, x)-L_{n}(f, z)\right\|<\frac{1}{32}\left\|L_{n}(f)\right\|_{I}$. It follows that $\left\|L_{n}(f, x)-L_{n}(f, y)\right\| \leq \frac{1}{16}\left\|L_{n}(f)\right\|_{I}$, for all $x, y \in I$ and also $\left\|L_{n}(f, x)\right\| \geq \frac{31}{32}\left\|L_{n}(f)\right\|_{I}$, for all $x \in I$. Define
$w:=\frac{L_{n}(f, a)}{\left\|L_{n}(f, a)\right\|}, \quad \mu:=\frac{4}{5}\left\|L_{n}(f, a)\right\|, \quad g:=\frac{\mu}{2(b-a)}\left((2 b-3 a) e_{0}+e_{1}\right) w-f$.
We show that $g \in K^{-1}(I, E)$. Let $x, y \in I$ and $t>0$. Note that $\mu>6$. We have successively:

$$
\begin{aligned}
& \|g(x)+t g(y)\|-\|g(x)\| \geq t(\|g(x)\|-\|g(x)-g(y)\|) \\
& \quad \geq t\left[\mu\left(1+\frac{x-a}{2(b-a)}\right)\|w\|-2\|f(x)\|-\|f(y)\|-\mu \frac{|y-x|}{2(b-a)}\|w\|\right] \\
& \quad \geq t\left(\frac{1}{2} \mu-3\right) \geq 0
\end{aligned}
$$

Since $L_{n}$ is positive it follows that $L_{n}(g) \in K^{-1}(I, E)$. But, on the other hand,

$$
\begin{aligned}
& \left\|L_{n}(g, a)+L_{n}(g, b)\right\|-\left\|L_{n}(g, a)\right\| \\
& \leq \quad\left\|\frac{5}{2} \mu w-L_{n}(f, a)-L_{n}(f, b)\right\|-\left\|\mu w-L_{n}(f, a)\right\| \\
& \quad+\mu\left[\left(3+\frac{3|a|}{2(b-a)}\right)\left\|L_{n}\left(e_{0} w\right)-e_{0} w\right\|_{I}+\frac{3}{2(b-a)}\left\|L_{n}\left(e_{1} w\right)-e_{1} w\right\|_{I}\right] \\
& \leq \\
& \quad\left\|L_{n}(f, a)-L_{n}(f, b)\right\|-\frac{1}{4} \mu+\frac{\mu}{40} \\
& \leq \frac{1}{16}\left\|L_{n}(f)\right\|_{I}-\frac{9}{50}\left\|L_{n}(f, a)\right\|<0
\end{aligned}
$$

a contradiction.
Case 2. There exists $x \in I$ such that $\left\|L_{n}(f, x)-L_{n}(f, z)\right\| \geq \frac{1}{32}\left\|L_{n}(f)\right\|_{I}$. Define
$\mu:=\frac{1}{5}\left\|L_{n}(f, x)+4 L_{n}(f, z)\right\|, \quad w:=\frac{1}{5 \mu}\left(L_{n}(f, x)+4 L_{n}(f, z)\right), \quad g:=\mu e_{0} w-f$.
We have

$$
\mu>\frac{4}{5}\left\|L_{n}(f, z)\right\|-\frac{1}{5}\left\|L_{n}(f, x)\right\| \geq \frac{3}{5}\left\|L_{n}(f)\right\|_{I} \geq \frac{24}{5} .
$$

For any $x_{1}, x_{2} \in I$ and $t>0$ we have:

$$
\begin{aligned}
\left\|g\left(x_{1}\right)+t g\left(x_{2}\right)\right\|-\left\|g\left(x_{1}\right)\right\| & \geq t\left(\left\|g\left(x_{1}\right)\right\|-\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\|\right) \\
& \geq t\left(\mu\|w\|-2\left\|f\left(x_{1}\right)\right\|-\left\|f\left(x_{2}\right)\right\|\right) \\
& \geq t(\mu-3) \geq 0
\end{aligned}
$$

Hence $g \in K^{-1}(I, E)$. Then $L_{n}(g) \in K^{-1}(I, E)$. But

$$
\begin{aligned}
\| L_{n}(g, x)+4 & L_{n}(g, x)\|-\| L_{n}(g, x) \| \\
& \leq 6 \mu\left\|L_{n}\left(e_{0} w\right)-e_{0} w\right\|_{I}-\left\|\mu w-L_{n}(f, x)\right\| \\
& <6 \mu \rho-\frac{4}{5}\left\|L_{n}(f, z)-L_{n}(f, x)\right\| \leq\left\|L_{n}(f)\right\|_{I}\left(6 \rho-\frac{1}{40}\right) \leq 0
\end{aligned}
$$

and we arrived again at a contradiction. Therefore $\left\|L_{n}(f)\right\|_{I}<8$. The lemma is proved.

Theorem 1. Let $\left\{L_{n}\right\}_{n}$ be a sequence of positive linear operators $L_{n}$ : $C(I, E) \rightarrow C(I, E)$ with the property

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(e_{j} w\right)-e_{j} w\right\|_{I}=0, \quad \text { for all } w \in E \text { and } j=0,1,2
$$

Then, for any $f \in C(I, E)$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}(f)-f\right\|_{I}=0 \tag{4}
\end{equation*}
$$

Proof. First, we consider the particular case where $f \in C^{2}(I, E)$. Let $n_{0}$ be the integer assured by Lemma 1. Let us fix a point $x \in I$ and set $v:=f^{\prime}(x)$. By Taylor's formula,

$$
f(y)=f(x)+(y-x) v+\int_{x}^{y}(y-u) f^{\prime \prime}(u) d u, \quad y \in I
$$

Now we choose a number $\mu$ such that

$$
\mu>\max \left\{\left\|f^{\prime \prime}\right\|_{I}, \frac{16}{(b-a)^{2}}\left(11\|f\|_{I}+(b-a)\|v\|+1\right)\right\} .
$$

For any $w \in E$ with $\|w\|=1$ consider the functions

$$
h_{w}:=e_{0} f(x)+\left(e_{1}-x e_{0}\right) v+\mu\left(e_{1}-x e_{0}\right)^{2} w \quad \text { and } \quad g_{w}:=h_{w}-f
$$

We claim that $g_{w} \in K^{-1}(I, E)$. Indeed, let $y_{1}, y_{2} \in I$. Consider first the case when $y_{1} \neq x, y_{2} \neq x$. For $i=1,2$, put

$$
T_{i}:=\left(y_{i}-x\right)^{-2} \int_{x}^{y_{i}}\left(y_{i}-u\right) f^{\prime \prime}(u) d u
$$

Clearly $\left\|T_{i}\right\| \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|_{I}$. One obtains

$$
\begin{aligned}
\left\langle g\left(y_{1}\right), g\left(y_{2}\right)\right\rangle & =\left(y_{1}-x\right)^{2}\left(y_{2}-x\right)^{2}\left[\mu^{2}-\mu\left(\left\langle w, T_{1}\right\rangle+\left\langle w, T_{2}\right\rangle\right)+\left\langle T_{1}, T_{2}\right\rangle\right] \\
& =\left(y_{1}-x\right)^{2}\left(y_{2}-x\right)^{2}\left[\mu^{2}-\frac{1}{2} \mu\left\|f^{\prime \prime}\right\|_{I}-\frac{1}{4}\left\|f^{\prime \prime}\right\|_{I}^{2}\right] \geq 0
\end{aligned}
$$

For $y_{1}=x$ or $y_{2}=x$ the inequality above is immediate. Consequently, $L_{n}\left(g_{w}\right)$ is positive.

Let $\varepsilon>0$. From the hypothesis there exists $n_{x} \in \mathbb{N}, n_{x} \geq n_{0}$, such that

$$
\left\|L_{n}\left(h_{w}\right)-h_{w}\right\|<\frac{\varepsilon}{4}, \quad \text { for all } w \in E,\|w\|=1, n \geq n_{x}
$$

Suppose that there is $n \geq n_{x}$ such that $\left\|L_{n}(f, x)-f(x)\right\| \geq \frac{\varepsilon}{2}$. Consider, for a choice that $x \leq \frac{1}{2}(a+b)$. Choose

$$
w:=\frac{L_{n}(f, x)-f(x)}{\left\|L_{n}(f, x)-f(x)\right\|}, \quad \text { and put } \quad \lambda:=\frac{\left\|L_{n}(f, x)-f(x)\right\|}{\mu(b-x)^{2}} .
$$

Note that $h_{w}(x)=f(x)$ and

$$
\lambda \leq \frac{\|f\|_{I}+\left\|L_{n}(f)\right\|_{I}}{\mu(b-x)^{2}} \leq \frac{9\|f\|_{I}}{\mu(b-x)^{2}}<1
$$

It follows:

$$
\begin{aligned}
&\left\|L_{n}\left(g_{w}, b\right)+L_{n}\left(g_{w}, x\right)\right\|-\left\|L_{n}\left(g_{w}, b\right)\right\| \\
& \leq\left\|\lambda L_{n}\left(g_{w}, b\right)+L_{n}\left(g_{w}, x\right)\right\|-\lambda\left\|L_{n}\left(g_{w}, b\right)\right\| \\
& \leq 2 \lambda\left\|L_{n}\left(g_{w}, b\right)-g_{w}(b)\right\|+\left\|L_{n}\left(h_{w}, x\right)-h_{w}(x)\right\| \\
& \quad+\left\|\lambda g_{w}(b)-L_{n}(f, x)+f(x)\right\|-\lambda\left\|g_{w}(b)\right\| \\
& \leq 2 \lambda((b-x)\|v\|+\|f(x)\|+\|f(b)\|) \\
&+2 \lambda\left(\left\|L_{n}\left(h_{w}, b\right)-h_{w}(b)\right\|+\left\|L_{n}(f, b)\right\|+\|f(b)\|\right)+\frac{\varepsilon}{4}-\lambda(b-x)^{2} \mu \\
& \leq 2 \lambda\left(\frac{\varepsilon}{4}+11\|f\|_{I}+(b-a)\|v\|\right)+\frac{\varepsilon}{4}-\lambda(b-x)^{2} \mu \\
&< \frac{\varepsilon}{4}-\frac{1}{2} \lambda(b-x)^{2} \mu \leq 0 .
\end{aligned}
$$

The contradiction that we obtained prove that $\left\|L_{n}(f, x)-f(x)\right\|<\frac{\varepsilon}{2}$. From the continuity of the function $L_{n}(f)-f$ it follows that there is a neighbourhood $V_{x}$ of $x$ such that

$$
\left\|L_{n}(f, y)-f(y)\right\|<\varepsilon, \quad \text { for all } y \in I \cap V_{x}, n \geq n_{x}
$$

Since $I$ is compact, there are the points $x_{1}, \ldots, x_{m} \in I$ such that $I \subset V_{x_{1}} \cup$ $\ldots \cup V_{x_{m}}$. Set $n_{\varepsilon}:=\max \left\{n_{x_{1}}, \ldots, n_{x_{m}}\right\}$. Then we have $\left\|L_{n}(f)-f\right\|_{I}<\varepsilon$, for $n \geq n_{\varepsilon}$.

Consider now the general case, when $f \in C(I, E)$. Let $0<\varepsilon<1$. Choose $\tilde{f} \in C^{2}(I, E)$, such that $\|f-\tilde{f}\|_{I}<\frac{\varepsilon}{18}$. There is $n_{\varepsilon} \in \mathbb{N}, n_{\varepsilon}>n_{0}$, such that $\left\|L_{n}(\tilde{f})-\tilde{f}\right\|<\frac{\varepsilon}{2}$, for $n \geq n_{\varepsilon}$. Then, for such integers $n$ we have

$$
\begin{aligned}
\left\|L_{n}(f)-f\right\|_{I} & \leq\left\|L_{n}(f-\tilde{f})\right\|_{I}+\left\|L_{n}(\tilde{f})-\tilde{f}\right\|_{I}+\|\tilde{f}-f\|_{I} \\
& \leq 9\|f-\tilde{f}\|_{I}+\left\|L_{n}(\tilde{f})-\tilde{f}\right\|_{I}<\varepsilon . \quad \square
\end{aligned}
$$

## 3. Simultaneous Approximation

In this section we give a generalization of the theorem of Sendov and Popov on simultaneous approximation. The idea of the proof is the same as in [1].

Lemma 2. If $a, b, v \in E$ are such that $\|a\|=\|b\|=\|v\|=1$ and $\langle a, b\rangle \leq 0$ then $\max \{\langle a, v\rangle,\langle b, v\rangle\} \geq-\frac{1}{\sqrt{2}}$.

Proof. Let $m:=\operatorname{dim} E$. Suppose that $m \geq 2$ and $a \neq-b$, since otherwise, lemma is obvious. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be an orthonormal base such that $u_{1}=$ $\frac{a+b}{\|a+b\|}, u_{2}=\frac{a-b}{\|a-b\|}$. We have the representation $v=\sum_{i=1}^{m} \lambda_{i} u_{i}$, where $\sum_{i=1}^{m} \lambda_{i}^{2}=1$.

We get

$$
\begin{aligned}
& \max \{\langle a, v\rangle,\langle b, v\rangle\} \\
& =\max \left\{\frac{\lambda_{1}(1+\langle a, b\rangle)}{\|a+b\|}+\frac{\lambda_{2}(1-\langle a, b\rangle)}{\|a-b\|}, \frac{\lambda_{1}(\langle a, b\rangle+1)}{\|a+b\|}+\frac{\lambda_{2}(\langle a, b\rangle-1)}{\|a-b\|}\right\} \\
& =\frac{\lambda_{1}(1+\langle a, b\rangle)}{\|a+b\|}+\frac{\left|\lambda_{2}\right|(1-\langle a, b\rangle)}{\|a-b\|} .
\end{aligned}
$$

In this expression, let consider $a, b$ be fixed and $v$ variable. The minimum value is obtained for $\lambda_{1}=-1$ and $\lambda_{i}=0$, for $2 \leq i \leq m$ and it is equal to

$$
-\frac{1+\langle a, b\rangle}{\|a+b\|}=-\frac{1}{\sqrt{2}} \cdot \sqrt{1+\langle a, b\rangle} \geq e-\frac{1}{\sqrt{2}}
$$

Lemma 3. If the sequence of functions $\left\{f_{n}\right\}_{n}, f_{n} \in C^{1}(I, E)$ is uniformly convergent on $I$ to the function $f \in C^{1}(I, E)$, and if $f_{n}^{\prime} \in K^{0}(I, E), n \in \mathbb{N}$, then for any subinterval $[c, d] \subset(a, b)$, the sequence $\left\{f_{n}^{\prime}\right\}_{n}$ is uniformly convergent on $[c, d]$ to $f^{\prime}$.

Proof. Suppose the contrary. Then there are a number $\lambda>0$, a sequence $\left(x_{k}\right)_{k}, x_{k} \in[c, d]$ and a subsequence of natural numbers $\left(n_{k}\right)_{k}$ such that

$$
\left\|f^{\prime}\left(x_{k}\right)-\left(f_{n_{k}}\right)^{\prime}\left(x_{k}\right)\right\|>\lambda, \quad k \in \mathbb{N} .
$$

There is $\delta_{1}>0$ such that $\left\|f^{\prime}(x)-f^{\prime}(y)\right\|<\frac{\lambda}{4}$, for all $x, y \in I,|x-y|<\delta_{1}$. Put $\delta:=\min \left\{\delta_{1}, c-a, b-d\right\}$ and $\rho:=\frac{1}{8} \lambda \delta$. Let $k$ be fixed such that $\left\|f-f_{n_{k}}\right\|_{[a, b]}<$ $\rho$. Put $g:=f_{n_{k}}$ and

$$
T_{1}:=\int_{x_{k}-\delta}^{x_{k}}\left(g^{\prime}(t)-g^{\prime}\left(x_{k}\right)\right) d t, \quad T_{2}:=\int_{x_{k}}^{x_{k}+\delta}\left(g^{\prime}(t)-g^{\prime}\left(x_{k}\right)\right) d t
$$

Since $g^{\prime} \in K^{0}(I, E)$ it follows that $\left\langle g^{\prime}\left(t_{1}\right)-g^{\prime}\left(x_{k}\right), g\left(t_{2}\right)-g\left(x_{k}\right)\right\rangle \leq 0$, for all $t_{1} \in\left[a, x_{k}\right), t_{2} \in\left(x_{k}, b\right]$. If we approximate the integrals $T_{1}$ and $T_{2}$ by Riemann sums we get from above that

$$
\left\langle T_{1}, T_{2}\right\rangle \leq 0
$$

First consider that $T_{i} \neq 0, i=1,2$. Define

$$
\alpha:=\frac{T_{1}}{\left\|T_{1}\right\|}, \quad \beta:=\frac{T_{2}}{\left\|T_{2}\right\|}, \quad v:=\frac{u}{\|u\|}
$$

where $u:=\delta\left(g^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k}\right)\right)$. By Lemma 2 we have $\max \{\langle\alpha, v\rangle,\langle\beta, v\rangle\} \geq$
$-\frac{1}{\sqrt{2}}$. Suppose, for a choice that $\langle\beta, v\rangle \geq-\frac{1}{\sqrt{2}}$. We have successively
$\left\|g\left(x_{k}+\delta\right)-f\left(x_{k}+\delta\right)\right\|=\left\|g\left(x_{k}\right)+\int_{x_{k}}^{x_{k}+\delta} g^{\prime}(t) d t-f\left(x_{k}\right)-\int_{x_{k}}^{x_{k}+\delta} f^{\prime}(t) d t\right\|$
$\geq\left\|\int_{x_{k}}^{x_{k}+\delta}\left(g^{\prime}(t)-f^{\prime}(t)\right) d t\right\|-\rho$
$\geq\left\|\int_{x_{k}}^{x_{k}+\delta}\left(g^{\prime}(t)-f^{\prime}\left(x_{k}\right)\right) d t\right\|-\left\|\int_{x_{k}}^{x_{k}+\delta}\left(f^{\prime}\left(x_{k}\right)-f^{\prime}(t)\right) d t\right\|-\rho$
$\geq\left\|\int_{x_{k}}^{x_{k}+\delta}\left(g^{\prime}(t)-f^{\prime}\left(x_{k}\right)\right) d t\right\|-3 \rho=\left\|T_{2}+u\right\|-3 \rho$
$=\sqrt{\left\|T_{2}\right\|^{2}+\|u\|^{2}+2<T_{2}, u>}-3 \rho \geq \sqrt{\left\|T_{2}\right\|^{2}+\|u\|^{2}-\sqrt{2}\left\|T_{2}\right\|\|u\|}-3 \rho$
$\geq \frac{1}{\sqrt{2}}\|u\|-3 \rho>\frac{1}{\sqrt{2}} \lambda \delta-3 \rho>\rho$.
Therefore we obtained a contradiction. In the case $T_{2}=0$, then like as above we obtain $\left\|g\left(x_{k}+\delta\right)-f\left(x_{k}+\delta\right)\right\| \geq\|u\|-3 \rho>\rho$. Contradiction. Lemma is proved.

Theorem 2. Let $\left\{L_{n}\right\}_{n}$ be a sequence of linear operators $L_{n}: C(I, E) \rightarrow$ $C^{r+1}(I, E), r \geq 1$, with the properties:

1) $L_{n}$ are convex of order $k$ for $-1 \leq k \leq r$.
2) $\lim _{n \rightarrow \infty}\left\|L\left(e_{j} w\right)-e_{j} w\right\|_{[a, b]}=0$, for all $w \in E$ and $0 \leq j \leq r+2$.

Then, for any subinterval $[c, d] \subset(a, b)$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(L_{n}(f)\right)^{(r)}-f^{(r)}\right\|_{[c, d]}=0, \quad \text { for all } f \in C^{r}(I, E) \tag{5}
\end{equation*}
$$

Proof. Fix a subinterval $[c, d] \subset[a, b]$. For $0 \leq k \leq r$, consider the points $c_{k}:=a+\frac{k}{r}(c-a)$ and $d_{k}:=b-\frac{k}{r}(b-d)$. We prove by induction with respect to $0 \leq k \leq r$ the following relations

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(L_{n}\left(e_{j} w\right)\right)^{(k)}-\left(e_{j} w\right)^{(k)}\right\|_{\left[c_{k}, d_{k}\right]}=0 \tag{6}
\end{equation*}
$$

for all $w \in E, 0 \leq j \leq r+2$. For $k=0$ relations (6) are assured by the condition 2) of the theorem. Suppose now that relations (6) are true for $k<$ $r$ and prove it for $k+1$. Fix $w$ and $j$. One can obtain immediately that $\left(e_{j} w\right)^{(k+2)} \in K^{-1}(I, E)$. Since $L_{n}$ is an operator which is convex of order $k+1$, then $\left(L_{n}\left(e_{j} w\right)\right)^{(k+2)} \in K^{-1}(I, E)$. It follows that $\left(L_{n}\left(e_{j} w\right)\right)^{(k+1)} \in K^{0}(I, E)$. Indeed, let us denote $g:=\left(L_{n}\left(e_{j} w\right)\right)^{(k+1)}$ and take the points $x_{1}<x_{2}<x_{3}$ of $I$. For any $s \in\left[x_{1}, x_{2}\right]$ and $t \in\left[x_{2}, x_{3}\right]$ we have $\left\langle g^{\prime}(s), g^{\prime}(t)\right\rangle \geq 0$. Then, by approximation of the integrals $\int_{x_{1}}^{x_{2}} g^{\prime}(s) d s$ and $\int_{x_{2}}^{x_{3}} g^{\prime}(t) d t$ by Riemann sums,
we get $\left\langle\int_{x_{1}}^{x_{2}} g^{\prime}(s) d s, \int_{x_{2}}^{x_{3}} g^{\prime}(t) d t\right\rangle \geq 0$, that is $\left\langle g\left(x_{2}\right)-g\left(x_{1}\right), g\left(x_{3}\right)-g\left(x_{2}\right)\right\rangle \geq 0$. Then using Lemma 3, we get relation (6) for $k+1$.

Now, consider the operators
$U(g, x):=\int_{a}^{x} \frac{(x-t)^{r-1}}{(r-1)!} g(t) d t, g \in C(I, E), x \in I ; \quad R_{n}:=\left(L_{n} \circ U\right)^{(r)}, n \in \mathbb{N}$.
If $f \in C^{r}(I, E)$ and $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left(L_{n}(f)\right)^{(r)}=\sum_{p=0}^{r-1} \sum_{j=0}^{p}\binom{p}{j} \frac{(-a)^{p-j}}{p!}\left(L_{n}\left(e_{j} f^{(p)}(a)\right)\right)^{(r)}+R_{n}\left(f^{(r)}\right) \tag{7}
\end{equation*}
$$

From relations (7) and (6), (for $k=r$ and $0 \leq j \leq r-1$ ), it follows that in order to prove the theorem it suffices to show that

$$
\lim _{n \rightarrow \infty}\left\|R_{n}\left(f^{(r)}\right)-f^{(r)}\right\|_{[c, d]}=0
$$

For this we apply Theorem 1. Since $(U(g))^{(r)}=g$ for any $g \in C(I, E)$ and $L_{n}$ is convex of order $r-1$, it follows that the operator $R_{n}$ is positive. It remains to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|R_{n}\left(e_{j} w\right)-e_{j} w\right\|_{[c, d]}=0, \quad \text { for all } w \in E \text { and } j=0,1,2 \tag{8}
\end{equation*}
$$

For such $w \in E$ and $j$ we have, after a short calculus, that

$$
\begin{equation*}
R_{n}\left(e_{j} w\right)=\left[L_{n}\left(\left(\sum_{i=0}^{j} \frac{i!}{(r+i)!}\binom{j}{i} a^{j-i}\left(e_{1}-a e_{0}\right)^{r+i}\right) w\right)\right]^{(r)} \tag{9}
\end{equation*}
$$

Now from (9) we can remark that relations (6) imply relations (8).

## References

[1] Bl. Sendov and V. Popov, Convergence of the derivatives of positive linear operators, C. R. Acad. Bulgare Sci. 22 (1969), 507-509. [In Russian]
[2] R. Păltănea, "Approximation Operators and Their Connections with Some Particular Allures", Ph.D. Thesis, Cluj-Napoca, 1992. [In Romanian]

## Radu PĂLTĂNEA

Transilvania University
Department of Mathematics
Eroilor Street 29, Braşov - 2200
ROMANIA
E-mail: r.paltanea@info.unitbv.ro

