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1. Introduction. Higher Order Convexity

Let (E, 〈 · , · 〉) be an Euclidean space with the norm denoted by ‖ · ‖. Let
I = [a, b], a < b, be a real interval. Let C(I, E) be the space of continuous
functions, endowed with the sup-norm denoted by ‖·‖I . If ϕ : I→ R and w ∈ F ,
we denote by ϕw the function (ϕw)(x) = ϕ(x)w. Consider the monomial
functions ej(x) := xj , x ∈ I, j = 0, 1, . . .

If L : C(I, E)→ C(I, E) is a linear operator, we denote

‖L‖ := sup
‖f‖I≤1

‖L(f)‖I .

For any f ∈ C(I, E) and any distinct points y1, . . . , yp of I, we denote by
[f ; y1, . . . , yp], the divided difference of f at these points.

Definition 1 ([2]). A function f : I → E is called convex of order k, k ≥
−1, if for any strictly ordered (increasing or decreasing) points x1, . . . , xk+3 of
I we have

〈 [f ;x1, . . . , xk+2] , [f ;x2, . . . , xk+3] 〉 ≥ 0, (1)

or in an equivalent mode,

‖[f ;x1, . . . , xk+2] + t[f ;x2, . . . , xk+3]‖ ≥ ‖[f ;x1, . . . , xk+2]‖, (2)

for all t > 0. Denote by Kk(I, E) the space of convex functions of order k.
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Remark ([2]). In the case E = R, f ∈ Kk(I,R) if and only if f or −f is
convex in the usual sense of order k.

This type of convexity is studied in [2]. In this paper we used only the
cases k = −1 and k = 0, when the convexity generalizes the positivity and the
monotonicity.

Definition 2. A linear operator L : C(I, E) → Ck+1(I, E), k ≥ −1,
is called convex of order k, if for any f ∈ Ck+1(I, E) such that f (k+1) ∈
K−1(I, E), we have (L(f))(k+1) ∈ K−1(I, E). In the case k = −1 the operator
L is called positive.

2. A Korovkin Type Theorem

Lemma 1. Let {Ln}n be a sequence of positive linear operators, Ln :
C(I, E)→ C(I, E) with the property that

lim
n→∞

‖Ln(ejw)− ejw‖I = 0, for all w ∈ E, and j = 0, 1. (3)

Then, there is a positive integer n0 such that ‖Ln‖ ≤ 8, for any n ≥ n0.

Proof. Let us denote ρ := min
{

1
240 ,

1
120 ·

b−a
1+|a|

}
. Since the space E is

finite dimensional it follows that the limit in (3) is uniform with respect to w,
‖w‖ = 1, and j. In other words, there is a natural number n0 such that

‖Ln(ejw)− ejw‖I < ρ, for all w ∈ E, ‖w‖ = 1, j = 0, 1, n ≥ n0.

Let us fix a natural number n ≥ n0. Let f ∈ C(I, E), ‖f‖I ≤ 1. Suppose that
‖Ln(f)‖I ≥ 8. Let z ∈ I be such that ‖Ln(f, z)‖ = ‖Ln(f)‖I . We distinguish
between two cases.

Case 1. For all x ∈ I we have ‖Ln(f, x) − Ln(f, z)‖ < 1
32‖Ln(f)‖I . It

follows that ‖Ln(f, x) − Ln(f, y)‖ ≤ 1
16‖Ln(f)‖I , for all x, y ∈ I and also

‖Ln(f, x)‖ ≥ 31
32‖Ln(f)‖I , for all x ∈ I. Define

w :=
Ln(f, a)

‖Ln(f, a)‖
, µ :=

4

5
‖Ln(f, a)‖, g :=

µ

2(b− a)

(
(2b− 3a)e0 + e1

)
w − f.

We show that g ∈ K−1(I, E). Let x, y ∈ I and t > 0. Note that µ > 6. We
have successively:

‖g(x) + tg(y)‖ − ‖g(x)‖ ≥ t
(
‖g(x)‖ − ‖g(x)− g(y)‖

)
≥ t
[
µ
(

1 +
x− a

2(b− a)

)
‖w‖ − 2‖f(x)‖ − ‖f(y)‖ − µ |y − x|

2(b− a)
‖w‖

]
≥ t
(1

2
µ− 3

)
≥ 0.
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Since Ln is positive it follows that Ln(g) ∈ K−1(I, E). But, on the other hand,

‖Ln(g, a) + Ln(g, b)‖ − ‖Ln(g, a)‖

≤
∥∥∥5

2
µw − Ln(f, a)− Ln(f, b)

∥∥∥− ‖µw − Ln(f, a)‖

+ µ
[(

3 +
3|a|

2(b− a)

)
‖Ln(e0w)− e0w‖I +

3

2(b− a)
‖Ln(e1w)− e1w‖I

]
≤ ‖Ln(f, a)− Ln(f, b)‖ − 1

4
µ+

µ

40

≤ 1

16
‖Ln(f)‖I −

9

50
‖Ln(f, a)‖ < 0,

a contradiction.

Case 2. There exists x ∈ I such that ‖Ln(f, x) − Ln(f, z)‖ ≥ 1
32‖Ln(f)‖I .

Define

µ :=
1

5
‖Ln(f, x)+4Ln(f, z)‖, w :=

1

5µ
(Ln(f, x)+4Ln(f, z)), g := µe0w−f.

We have

µ >
4

5
‖Ln(f, z)‖ − 1

5
‖Ln(f, x)‖ ≥ 3

5
‖Ln(f)‖I ≥

24

5
.

For any x1, x2 ∈ I and t > 0 we have:

‖g(x1) + t g(x2)‖ − ‖g(x1)‖ ≥ t
(
‖g(x1)‖ − ‖g(x1)− g(x2)‖

)
≥ t
(
µ‖w‖ − 2‖f(x1)‖ − ‖f(x2)‖

)
≥ t(µ− 3) ≥ 0.

Hence g ∈ K−1(I, E). Then Ln(g) ∈ K−1(I, E). But

‖Ln(g, x) + 4Ln(g, x)‖ − ‖Ln(g, x)‖
≤ 6µ‖Ln(e0w)− e0w‖I − ‖µw − Ln(f, x)‖

< 6µρ− 4

5
‖Ln(f, z)− Ln(f, x)‖ ≤ ‖Ln(f)‖I

(
6ρ− 1

40

)
≤ 0,

and we arrived again at a contradiction. Therefore ‖Ln(f)‖I < 8. The lemma
is proved. �

Theorem 1. Let {Ln}n be a sequence of positive linear operators Ln :
C(I, E)→ C(I, E) with the property

lim
n→∞

‖Ln(ejw)− ejw‖I = 0, for all w ∈ E and j = 0, 1, 2.

Then, for any f ∈ C(I, E) we have

lim
n→∞

‖Ln(f)− f‖I = 0. (4)
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Proof. First, we consider the particular case where f ∈ C2(I, E). Let n0 be
the integer assured by Lemma 1. Let us fix a point x ∈ I and set v := f ′(x).
By Taylor’s formula,

f(y) = f(x) + (y − x)v +

∫ y

x

(y − u)f ′′(u) du, y ∈ I.

Now we choose a number µ such that

µ > max
{
‖f ′′‖I ,

16

(b− a)2
(
11‖f‖I + (b− a)‖v‖+ 1

)}
.

For any w ∈ E with ‖w‖ = 1 consider the functions

hw := e0f(x) + (e1 − xe0)v + µ(e1 − xe0)2w and gw := hw − f.

We claim that gw ∈ K−1(I, E). Indeed, let y1, y2 ∈ I. Consider first the
case when y1 6= x, y2 6= x. For i = 1, 2, put

Ti := (yi − x)−2
yi∫
x

(yi − u)f ′′(u) du.

Clearly ‖Ti‖ ≤ 1
2‖f

′′‖I . One obtains

〈 g(y1) , g(y2)〉 = (y1 − x)2(y2 − x)2
[
µ2 − µ (〈w , T1〉+ 〈w , T2〉) + 〈T1 , T2〉

]
= (y1 − x)2(y2 − x)2

[
µ2 − 1

2
µ‖f ′′‖I −

1

4
‖f ′′‖2I

]
≥ 0.

For y1 = x or y2 = x the inequality above is immediate. Consequently, Ln(gw)
is positive.

Let ε > 0. From the hypothesis there exists nx ∈ N, nx ≥ n0, such that

‖Ln(hw)− hw‖ <
ε

4
, for all w ∈ E, ‖w‖ = 1, n ≥ nx.

Suppose that there is n ≥ nx such that ‖Ln(f, x)− f(x)‖ ≥ ε
2 . Consider, for a

choice that x ≤ 1
2 (a+ b). Choose

w :=
Ln(f, x)− f(x)

‖Ln(f, x)− f(x)‖
, and put λ :=

‖Ln(f, x)− f(x)‖
µ(b− x)2

.

Note that hw(x) = f(x) and

λ ≤ ‖f‖I + ‖Ln(f)‖I
µ(b− x)2

≤ 9 ‖f‖I
µ(b− x)2

< 1.
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It follows:

‖Ln(gw, b) + Ln(gw, x)‖ − ‖Ln(gw, b)‖
≤ ‖λLn(gw, b) + Ln(gw, x)‖ − λ‖Ln(gw, b)‖
≤ 2λ‖Ln(gw, b)− gw(b)‖+ ‖Ln(hw, x)− hw(x)‖

+ ‖λgw(b)− Ln(f, x) + f(x)‖ − λ‖gw(b)‖
≤ 2λ((b− x)‖v‖+ ‖f(x)‖+ ‖f(b)‖)

+ 2λ
(
‖Ln(hw, b)− hw(b)‖+ ‖Ln(f, b)‖+ ‖f(b)‖

)
+
ε

4
− λ(b− x)2µ

≤ 2λ
(ε

4
+ 11‖f‖I + (b− a)‖v‖

)
+
ε

4
− λ(b− x)2µ

<
ε

4
− 1

2
λ(b− x)2µ ≤ 0.

The contradiction that we obtained prove that ‖Ln(f, x)−f(x)‖ < ε
2 . From the

continuity of the function Ln(f) − f it follows that there is a neighbourhood
Vx of x such that

‖Ln(f, y)− f(y)‖ < ε, for all y ∈ I ∩ Vx, n ≥ nx.

Since I is compact, there are the points x1, . . . , xm ∈ I such that I ⊂ Vx1
∪

. . . ∪ Vxm
. Set nε := max{nx1

, . . . , nxm
}. Then we have ‖Ln(f)− f‖I < ε, for

n ≥ nε.
Consider now the general case, when f ∈ C(I, E). Let 0 < ε < 1. Choose

f̃ ∈ C2(I, E), such that ‖f − f̃‖I < ε
18 . There is nε ∈ N, nε > n0, such that

‖Ln(f̃)− f̃‖ < ε
2 , for n ≥ nε. Then, for such integers n we have

‖Ln(f)− f‖I ≤ ‖Ln(f − f̃)‖I + ‖Ln(f̃)− f̃‖I + ‖f̃ − f‖I
≤ 9 ‖f − f̃‖I + ‖Ln(f̃)− f̃‖I < ε. �

3. Simultaneous Approximation

In this section we give a generalization of the theorem of Sendov and Popov
on simultaneous approximation. The idea of the proof is the same as in [1].

Lemma 2. If a, b, v ∈ E are such that ‖a‖ = ‖b‖ = ‖v‖ = 1 and 〈 a , b 〉 ≤ 0
then max{〈 a , v 〉, 〈 b , v 〉} ≥ − 1√

2
.

Proof. Let m := dimE. Suppose that m ≥ 2 and a 6= −b, since otherwise,
lemma is obvious. Let {u1, . . . , um} be an orthonormal base such that u1 =

a+b
‖a+b‖ , u2 = a−b

‖a−b‖ . We have the representation v =
m∑
i=1

λiui, where
m∑
i=1

λ2i = 1.
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We get

max{〈 a , v 〉, 〈 b , v 〉}

= max
{λ1(1 + 〈 a , b 〉)

‖a+ b‖
+
λ2(1− 〈 a , b 〉)
‖a− b‖

,
λ1(〈 a , b 〉+ 1)

‖a+ b‖
+
λ2(〈 a , b 〉 − 1)

‖a− b‖

}
=
λ1(1 + 〈 a , b 〉)
‖a+ b‖

+
|λ2|(1− 〈 a , b 〉)
‖a− b‖

.

In this expression, let consider a, b be fixed and v variable. The minimum value
is obtained for λ1 = −1 and λi = 0, for 2 ≤ i ≤ m and it is equal to

−1 + 〈 a , b 〉
‖a+ b‖

= − 1√
2
·
√

1 + 〈 a , b 〉 ≥ e− 1√
2
. �

Lemma 3. If the sequence of functions {fn}n, fn ∈ C1(I, E) is uniformly
convergent on I to the function f ∈ C1(I, E), and if f ′n ∈ K0(I, E), n ∈ N,
then for any subinterval [c, d] ⊂ (a, b), the sequence {f ′n}n is uniformly conver-
gent on [c, d] to f ′.

Proof. Suppose the contrary. Then there are a number λ > 0, a sequence
(xk)k, xk ∈ [c, d] and a subsequence of natural numbers (nk)k such that

‖f ′(xk)− (fnk
)′(xk)‖ > λ, k ∈ N.

There is δ1 > 0 such that ‖f ′(x)−f ′(y)‖ < λ
4 , for all x, y ∈ I, |x−y| < δ1. Put

δ := min{δ1, c−a, b−d} and ρ := 1
8λδ. Let k be fixed such that ‖f−fnk

‖[a,b] <
ρ. Put g := fnk

and

T1 :=

∫ xk

xk−δ

(
g′(t)− g′(xk)

)
dt, T2 :=

∫ xk+δ

xk

(
g′(t)− g′(xk)

)
dt.

Since g′ ∈ K0(I, E) it follows that 〈 g′(t1)− g′(xk) , g(t2)− g(xk) 〉 ≤ 0, for all
t1 ∈ [a, xk), t2 ∈ (xk, b]. If we approximate the integrals T1 and T2 by Riemann
sums we get from above that

〈T1 , T2〉 ≤ 0.

First consider that Ti 6= 0, i = 1, 2. Define

α :=
T1
‖T1‖

, β :=
T2
‖T2‖

, v :=
u

‖u‖
,

where u := δ
(
g′(xk) − f ′(xk)

)
. By Lemma 2 we have max{〈α , v 〉, 〈β , v 〉} ≥
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− 1√
2
. Suppose, for a choice that 〈β , v 〉 ≥ − 1√

2
. We have successively

‖g(xk + δ)− f(xk + δ)‖ =
∥∥∥g(xk) +

∫ xk+δ

xk

g′(t) dt− f(xk)−
∫ xk+δ

xk

f ′(t) dt
∥∥∥

≥
∥∥∥∫ xk+δ

xk

(g′(t)− f ′(t)) dt
∥∥∥− ρ

≥
∥∥∥∫ xk+δ

xk

(g′(t)− f ′(xk)) dt
∥∥∥− ∥∥∥ ∫ xk+δ

xk

(f ′(xk)− f ′(t)) dt
∥∥∥− ρ

≥
∥∥∥∫ xk+δ

xk

(g′(t)− f ′(xk)) dt
∥∥∥− 3ρ = ‖T2 + u‖ − 3ρ

=
√
‖T2‖2 + ‖u‖2 + 2 < T2, u >− 3ρ ≥

√
‖T2‖2 + ‖u‖2 −

√
2‖T2‖ ‖u‖ − 3ρ

≥ 1√
2
‖u‖ − 3ρ >

1√
2
λδ − 3ρ > ρ.

Therefore we obtained a contradiction. In the case T2 = 0, then like as above
we obtain ‖g(xk + δ) − f(xk + δ)‖ ≥ ‖u‖ − 3ρ > ρ. Contradiction. Lemma is
proved. �

Theorem 2. Let {Ln}n be a sequence of linear operators Ln : C(I, E) →
Cr+1(I, E), r ≥ 1, with the properties:

1) Ln are convex of order k for −1 ≤ k ≤ r.
2) lim

n→∞
‖L(ejw)− ejw‖[a,b] = 0, for all w ∈ E and 0 ≤ j ≤ r + 2.

Then, for any subinterval [c, d] ⊂ (a, b), we have

lim
n→∞

‖
(
Ln(f)

)(r) − f (r)‖[c,d] = 0, for all f ∈ Cr(I, E). (5)

Proof. Fix a subinterval [c, d] ⊂ [a, b]. For 0 ≤ k ≤ r, consider the points
ck := a+ k

r (c− a) and dk := b− k
r (b− d). We prove by induction with respect

to 0 ≤ k ≤ r the following relations

lim
n→∞

‖
(
Ln(ejw)

)(k) − (ejw)(k)‖[ck,dk] = 0, (6)

for all w ∈ E, 0 ≤ j ≤ r + 2. For k = 0 relations (6) are assured by the
condition 2) of the theorem. Suppose now that relations (6) are true for k <
r and prove it for k + 1. Fix w and j. One can obtain immediately that
(ejw)(k+2) ∈ K−1(I, E). Since Ln is an operator which is convex of order k+1,

then
(
Ln(ejw)

)(k+2) ∈ K−1(I, E). It follows that
(
Ln(ejw)

)(k+1) ∈ K0(I, E).

Indeed, let us denote g :=
(
Ln(ejw)

)(k+1)
and take the points x1 < x2 < x3

of I. For any s ∈ [x1, x2] and t ∈ [x2, x3] we have 〈 g′(s) , g′(t) 〉 ≥ 0. Then,

by approximation of the integrals
x2∫
x1

g′(s) ds and
x3∫
x2

g′(t) dt by Riemann sums,
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we get 〈
x2∫
x1

g′(s) ds ,
x3∫
x2

g′(t) dt 〉 ≥ 0, that is 〈 g(x2)− g(x1) , g(x3)− g(x2) 〉 ≥ 0.

Then using Lemma 3, we get relation (6) for k + 1.
Now, consider the operators

U(g, x) :=

∫ x

a

(x− t)r−1

(r − 1)!
g(t) dt, g ∈ C(I, E), x ∈ I; Rn := (Ln◦U)(r), n ∈ N.

If f ∈ Cr(I, E) and n ∈ N we have

(
Ln(f)

)(r)
=

r−1∑
p=0

p∑
j=0

(
p

j

)
(−a)p−j

p!

(
Ln(ejf

(p)(a))
)(r)

+Rn(f (r)). (7)

From relations (7) and (6), (for k = r and 0 ≤ j ≤ r − 1), it follows that in
order to prove the theorem it suffices to show that

lim
n→∞

‖Rn(f (r))− f (r)‖[c,d] = 0.

For this we apply Theorem 1. Since
(
U(g)

)(r)
= g for any g ∈ C(I, E) and Ln

is convex of order r − 1, it follows that the operator Rn is positive. It remains
to show that

lim
n→∞

‖Rn(ejw)− ejw‖[c,d] = 0, for all w ∈ E and j = 0, 1, 2. (8)

For such w ∈ E and j we have, after a short calculus, that

Rn(ejw) =
[
Ln

(( j∑
i=0

i!

(r + i)!

(
j

i

)
aj−i(e1 − ae0)r+i

)
w
)](r)

. (9)

Now from (9) we can remark that relations (6) imply relations (8). �
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ROMANIA
E-mail: r.paltanea@info.unitbv.ro


