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Cubature Formulae for the Sphere and the Ball
in Rn

Guergana Petrova ∗

We construct explicitly the unique cubature for the unit ball in Rn based
on integrals over spheres (balls), centered at the origin, that integrates
exactly all m-harmonic functions. We show that there are no cubatures
of this type with higher degree of precision. In particular, this gives
integration rule for all polynomials in n variables of degree 2m− 1.

1. Introduction

Recent problems from practice require the use of generalizations of the
classical quadratures for an interval, based on point evaluations. The interest
is focused on explicit construction of multivariate cubatures, based on different
type of data available for the recovery (see, for example [4, 5]). Except for
a few cases, there are no known explicit formulae that integrate exactly all
polynomials in n variables of degree as high as possible. However, in the last
few years, an approach that utilizes the theory of polyharmonic functions was
used to obtain cubatures that are exact for classes of multivariate algebraic
polynomials (see [2, 3, 6]).

A function u, defined on a simply connected domain D ⊂ Rn, is called
a polyharmonic function of order m (or m-harmonic function) (see [1, 7]) if
u ∈ C2m−1(D̄) ∩ C2m(D) and it satisfies the equation

∆mu(x) = 0, x ∈ D, where ∆ :=

n∑
i=1

∂2

∂x2i
, ∆m := ∆∆m−1.

In particular, when m = 1 (m = 2), u is called harmonic (biharmonic). We
denote the set of all m-harmonic functions on the ball with radius r, B(r) :=
{x ∈ Rn : |x| < r}, by Hm(B(r)). Here |x| = (

∑n
i=1 x

2
i )

1/2, and when r = 1
we will write B instead of B(1).

Note that every polynomial in n variables of degree 2m−1 is a polyharmonic
function of order m. Thus, any approximation rule that applies to polyhar-
monic functions would apply to the corresponding set of algebraic polynomials.
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This gives the possibility to exploit the properties of polyharmonic functions for
the purpose of studying polynomial approximation problems, especially when
the domain of interest is the sphere or the ball.

We investigate cubature of the form∫
D(r)

µu ≈
m−1∑
j=0

Cj(r)

∫
D(rj)

µu, r 6= rj , j = 0, . . . ,m− 1, (1)

where µ is a weight function and D(r) is either the sphere or the ball in Rn,
centered at the origin with radius r ∈ (0, 1). We say that p is the polyharmonic
degree of precision (PDP) of (1) if this cubature is exact for all u ∈ Hp(D(r)),
and p is the biggest number with this property. This notion is a generalization
of the notion of algebraic degree of precision (ADP) for classical quadratures.

We construct explicitly the unique formula, that integrates exactly all poly-
harmonic functions of order m, and prove that there is no formula of this type
with precision higher than m.

In the case of integration over a ball, we show a direct relation between (1)
(with r = 1) and the one-dimensional interval quadrature

∫ 1

−1
νf ≈

m−1∑
j=0

Aj

∫ rj

−rj
νf (2)

with even weight ν. We also prove that there is a unique formula of type (2)
that is exact for all polynomials of degree 2m − 1, and show that this is the
highest possible precision.

The proofs are based on basic properties of harmonic functions and on the
following representation of m-harmonic functions (see [3, Lemma 2]).

Lemma 1. Let φ0, . . . , φm−1, be a basis in the space of univariate algebraic
polynomials of degree m− 1. For each u ∈ Hm(B) there exist unique functions
b0, . . . , bm−1, each harmonic in B, such that

u(x) =

m−1∑
j=0

φj(|x|2)bj(x), x ∈ B.

Aside of the theory of cubatures, formulae (1) are interesting on their own
since they can be viewed as extensions of the Pizzetti formula for polyharmonic
functions (see [9, 2]),

∫
B(r)

u(x) dx = πn/2rn
m−1∑
k=0

r2k

22kΓ(n/2 + k + 1)
· ∆ku(0)

k!
,

and its analogue on the sphere [7] (here Γ is the Gamma function).
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2. Formulae for the Sphere and the Ball

First, we investigate cubature of the form∫
S(r)

u(ξ) dσ(ξ) ≈
m−1∑
j=0

Cj(r)

∫
S(rj)

u(ξ) dσ(ξ), r ∈ (0, 1), r 6= rj , (3)

with 0 < r0 < · · · < rm−1 < 1 fixed, where S(r) := {x ∈ Rn : |x| = r} and dσ
is the (n− 1)-dimensional surface measure. Observe that (3) is not exact for

L(x) :=

m−1∏
j=0

(|x|2 − r2j ) ∈ π2m(Rn),

and hence the polyharmonic degree of precision of (3) can be at most m.
Next, for every r, we find the unique formula of type (3), that is exact

for all u ∈ Hm(B(r)). In particular, this cubature will have ADP = 2m − 1
(PDP = m), and can be viewed as a multidimensional analogue of the Gaussian
quadrature in the one-dimensional case. More precisely, the following theorem
holds.

Theorem 1. Given any 0 < r0 < · · · < rm−1 < 1 and information
{
∫
S(rj)

u(ξ) dσ(ξ)}m−1j=0 , for every 0 < r < 1, r 6= rj, there is a unique cu-

bature formula ∫
S(r)

u(ξ) dσ(ξ) ≈
m−1∑
j=0

Aj(r)

∫
S(rj)

u(ξ) dσ(ξ),

exact for all u ∈ Hm(B(r)). Its weights are

Aj(r) =
rn−1

rn−1j

· ω(r2)

(r2 − r2j )ω′(r2j )
, ω(t) := (t− r20) . . . (t− r2m−1).

An approach similar to the technique in [3] can be applied to construct
cubature with the data given being integrals of u and its consecutive normal

derivatives {∂
ku
∂νk }, namely

∫
S(r)

u(ξ) dσ(ξ) ≈
m−1∑
j=0

νj−1∑
k=0

Cjk(r)

∫
S(rj)

∂ku

∂νk
(ξ) dσ(ξ), r ∈ (0, 1),

for any given multiplicities ν0, . . . , νm−1.

Next, we consider cubature for the integral over the ball B(r),∫
B(r)

µ(|x|)u(x) dx ≈
m−1∑
j=0

Cj(r)

∫
B(rj)

µ(|x|)u(x) dx, (4)
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where the weight µ : [0, 1]→ R has the property

µ(qt) = qaµ(t), (5)

for some constant a.

Theorem 2. Let 0 < r0 < · · · < rm−1 < 1 be given radii. For every
0 < r < 1, r 6= rj, and every weight µ, satisfying (5), there is a unique
cubature ∫

B(r)

µ(|x|)u(x) dx ≈
m−1∑
j=0

Aj(r)

∫
B(rj)

µ(|x|)u(x) dx, (6)

exact for all u ∈ Hm(B(r)). Its weights are

Aj(r) = (−1)j · r
n+a

rn+aj

·
Wj(r

2, r20, . . . , r
2
m−1)

V (r20, . . . , r
2
m−1)

,

where

Wj(r
2, r20, . . . , r

2
m−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r20 − r2 r40 − r4 ... r
2(m−1)
0 − r2(m−1)

... ... ... ...

r2j−1 − r2 r4j−1 − r4 ... r
2(m−1)
j−1 − r2(m−1)

r2j+1 − r2 r4j+1 − r4 ... r
2(m−1)
j+1 − r2(m−1)

... ... ... ...

r2m−1 − r2 r4m−1 − r4 ... r
2(m−1)
m−1 − r2(m−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and V is the Vandermond determinant.

Further, we show that m is the highest possible precision for cubatures
(4). To do that, we investigate the univariate interval quadrature (2) and its
connection to (4).

3. Quadrature Based on Intervals

Here, we consider quadrature of type (2) with even weight ν (similar for-
mulae were investigated in [4, 8]). The following theorem holds.

Theorem 3. For every 0 < r0 < · · · < rm−1 < 1 and even continuous
positive weight ν there is a unique quadrature of type (2) with ADP= 2m− 1.
There is no quadrature of this type with ADP≥ 2m.

A simple relation between the polyharmonic degree of precision of cubature
(4) (with r = 1) and the algebraic degree of precision of the univariate interval
quadrature (2) is given by the next lemma.
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Lemma 2. Cubature (4) (with r = 1) has polyharmonic degree of precision
p if and only if the quadrature rule∫ 1

−1
µ̃(t)f(t) dt ≈

m−1∑
j=0

Cj(1)

∫ rj

−rj
µ̃(t)f(t) dt,

with

µ̃(t) :=

{
µ(t)tn−1, 0 < t < 1

µ(−t)|t|n−1, −1 < t < 0,

has algebraic degree of precision 2p− 1.

Lemma 2 and Theorem 3 show that there is no cubature of type (4) with
PDP> m, and therefore the explicit formula (6) is the only one with the highest
possible degree of precision.
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