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Entropic Schemes for Conservation Laws

Bojan Popov

A new class of Godunov-type numerical methods (called here entropic)
for solving nonlinear scalar conservation laws is introduced. This new
class generalizes from the classical Godunov scheme. Convergence and
error estimates for the entropic methods are proved. In the case of one
space dimension the projection in an entropic scheme is characterized via
approximations from above and below.

1. Introduction

We are interested in the scalar hyperbolic conservation law{
ut + divx f(u) = 0, (x, t) ∈ Rd × (0,∞)
u(x, 0) = u0(x), x ∈ Rd,

(1)

where f is a given flux function. In recent years, there has been enormous
activity in the development of the mathematical theory and in the construction
of numerical methods for (1). Even though the existence-uniqueness theory of
weak solutions is complete, there are many numerically efficient methods for
which the questions of convergence and error estimates are still open. For
example, the original MinMod, UNO, ENO, and WENO methods are known
to be numerically robust, at least for piecewise smooth initial data u0, but
theoretical results about convergence are still missing [3, 7, 8, 19].

In this paper, we consider a class of the so-called Godunov-type schemes for
solving (1), see [21]. There are two main steps in such schemes: evolution and
projection. In the original Godunov scheme, the projection is onto piecewise
constant functions – the cell averages. In a general Godunov-type method,
the projection is onto piecewise polynomials. To determine the properties of
a scheme it is necessary to study the properties of the projection operator.
For example, it is important to know whether this operator reproduces poly-
nomials of a given degree, whether it is total variation diminishing (TVD) or
non-oscillatory. TVD and non-oscillation properties are invariants of the ex-
act solution operator and many numerical methods are build to preserve one
of these properties, see [7, 9, 10, 11, 12]. However, none of them is sufficient
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for convergence of such methods to the entropy solution, and more restrictions
on the projection step are needed. For example, one can impose the so-called
entropy inequalities [1, 18] or require that the projection step is entropy dimin-
ishing or entropic [2, 6, 14]. Alternatively, for a convex flux, one can impose
one-sided stability on the projection and then prove convergence via Tadmor’s
Lip′ theory [17, 20].

In this paper, we follow the approach in [2, 6, 14]. We consider Godunov-
type schemes with entropic projection. We restrict our attention to Godunov-
type methods with exact evolution. A convergence result in this case is impor-
tant since it is a key ingredient in the proof of convergence of the fully discrete
schemes. Our main results are an error estimate for Godunov-type schemes
with exact evolution and entropic projection step, and a characterization the-
orem of such schemes via one-sided approximations (from below and above) in
the one-dimensional case.

2. Error Estimates for Entropic Schemes

Consider the initial value problem{
ut + divx f(u) = 0, (x, t) ∈ Rd × (0, T )
u(x, 0) = u0(x), u0 ∈ L1(Rd),

(2)

where T > 0 and f is Lipschitz continuous vector function, i.e., f ∈ Lip (1, L∞).
A function

u ∈ C
(
(0, T ], L1(Rd)

)
:=
{
u : Rd → R | u(t, ·) ∈ L1, t ∈ (0, T ],

lim
t′→t
‖u(t, ·)− u(t′, ·)‖L1 = 0

}
is called the entropy solution of (2) if

−
∫ T

0

∫
Rd

(
|u− c|ϕt + sign (u− c) (f(u)− f(c)) divxϕ

)
dxdt

+

∫
Rd

|u(x, T )− c|ϕ(x, T ) dx−
∫
Rd

|u0(x)− c|ϕ(x, 0) dx ≤ 0,

for all c ∈ R and all nonnegative continuously differentiable functions ϕ =
ϕ(x, t), compactly supported on Rd × R+. While there can be many weak
solutions, it is well-known that the entropy solution of (2) is unique (see [15]).
It is also known that if f ∈ Lip (1, L∞), then the entropy solution of (2) is total
variation diminishing (TVD), i.e.,

|u(·, t)|BV(Rd) ≤ |u0|BV(Rd) , t > 0,

see [22] for a definition and properties of the space BV(Rd).
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Suppose that u is the entropy solution of (2) corresponding to the initial
data u0 ∈ BV(Rd). Let N ≥ 1 and 0 = t0 < · · · < tN := T . Let v(x, t) be
a right-continuous function in t such that, for each n = 0, . . . , N − 1, v is an
entropy solution of{

un
t + divxf(un) = 0, (x, t) ∈ Rd × (tn, tn+1)

un(·, tn) = v(·, tn), v(·, tn) ∈ L1(Rd).

Note that v is uniquely determined by the functions {v(·, tn)}N−1n=0 .
In the original Godunov method, v(·, tn) is the average of v(·, t−n ) on a

cell I, where v(·, t−0 ) := u0. For a general Godunov-type method, v(·, tn)
is determined from v(·, t−n ) by v(·, tn) := Phv(·, t−n ), where Ph : L1(Rd) →
L1(Rd) is a “projection” operator. For a function g ∈ L1(Rd), Phg is usually a
“simpler” function that makes it possible to solve (2) exactly with initial data
Phg for small time. For the sake of simplicity, only regular grids are considered
in this paper. That is, I is a generic d-dimensional cube with side h > 0, and
D is a partition of Rd. Hence, |I| = hd and ∪DI = Rd.

The Godunov-type schemes considered in this paper are such that the pro-
jection operator Ph meets the following requirements:

(P1) Ph is conservative:∫
I

Phg(x) dx =

∫
I

g(x) dx, g ∈ L1(Rd), I ∈ D.

(P2) Ph has the approximation property: For any g ∈ BV(Rd),

‖Phg − g‖L1(Rd) ≤ C0h|g|BV(Rd),

where C0 is a non-negative constant.

(P3) Ph is entropic:∫
I

(|Phg(x)− l| − |g(x)− l|) dx ≤ 0, g ∈ BV(Rd), (3)

for all I ∈ D and all l ∈ R.

An example of a projection operator satisfying (P1)-(P3) is the averaging
operator Ah: for g ∈ L1, we define Ahg to be the piecewise constant function
such that

Ahg|I :=
1

h

∫
I

g dx, I ∈ D.

Definition 1. A Godunov-type scheme is called total variation bounded
(TVB) if there exists a constant C2 such that

|v(·, tn)|BV(Rd) ≤ C1|u0|BV(Rd)

for all n = 0, . . . , N .
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With this notation, we have the following result.

Theorem 1. Let u be the entropy solution of (2) with initial condition
u0 ∈ BV. Also, let v be the numerical solution obtained by a TVB Godunov-
type method satisfying (P1)–(P3) and hN ≤ C2T , for an absolute constant C2.
Then

‖v(·, T )− u(·, T )‖L1(Rd) ≤ C
√
h |u0|BV(Rd)

where C depends on T and Ci, 0 ≤ i ≤ 2.

Proof. This result in the one-dimensional case follows from the more general
result given in [14]. The proof of the theorem in the general case is based on
a version of Kuznetsov’s error estimates [4, 14, 16, 13]. Using the approach
in [4] (see also [14]), we arrive at the following estimate for the Godunov-type
method described above:

‖v(·, T )− u(·, T )‖L1(Rd) ≤ C
√
h |u0|BV(Rd)

+

N∑
n=1

∑
I∈D

∫
Rd

∫
I

cI(y){|Phv(x, t−n )− u(y, tn)| − |v(x, t−n )− u(y, tn)|}dxdy,

where C depends on T and Ci, 0 ≤ i ≤ 2, and cI(y) is a function of I, h and y
but independent of x. Using that and (P3), we conclude

‖v(·, T ) − u(·, T )‖L1(Rd) ≤ C
√
h |u0|BV(Rd)

+

N∑
n=1

∑
I∈D

∫
Rd

cI(y) sup
l∈R

(

∫
I

{|Phv(x, t−n )− l| − |v(x, t−n )− l|}dx)dy,

≤ C
√
h |u0|BV(Rd).

3. Characterization of Entropic Schemes

In this section, we consider the one-dimensional case (d = 1). Let us consider
a partition D = ∪jIj , where Ij := [jh, (j + 1)h), j ∈ Z and h > 0. In the
context of conservation laws, it is reasonable to assume that the projection Ph

is a co-monotone operator. That is, if g is non-increasing (non-decreasing) on
Ij , for some j ∈ Z, then Phg is also non-increasing (non-decreasing) on Ij . This
property is satisfied for the so-called non-oscillatory methods [5, 7, 10, 11, 12]
in all intervals but the ones near an extremum. We call Ph entropic on I if (3)
holds for that interval and all l ∈ R. Let G and Gh be the primitive functions
of g and Phg respectively, i.e.,

G(x) =

∫ x

∞
g(y) dy, Gh(x) =

∫ x

∞
Phg(y) dy.
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We have the following characterization of co-monotone entropic projections.

Theorem 2. Let g, Phg ∈ BV(R), and Ph be co-monotone and conserva-
tive.

(i) If g is non-decreasing on Ij, then Ph is entropic on Ij if and only if

G(x) ≤ Gh(x), for any x ∈ Ij .

(ii) If g is non-increasing on Ij, then Ph is entropic on Ij if and only if

G(x) ≥ Gh(x), for any x ∈ Ij .

Proof. The if direction was proved for linear Phg in [1], the general case is
similar and it also follows from Corollary 1.3 in [4]. The only if direction can
be proved using standard real analysis arguments using appropriate choices for
l in (3).

Remark 1. It can be shown that Theorem 2 holds for any partition D.
It will be interesting to see what is the analog of this characterization in the
multidimensional case.

Remark 2. In the case when g is not monotone on Ij , the canonical choice
for Phg is the average of g on Ij . That choice was used in [1] to construct
an entropic method with linear Phg on each Ij , j ∈ Z. Using Theorem 2, it
is easy to show that their method is the best possible entropic, co-monotone
and conservative method with piecewise linear approximation in the projection
step.
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