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Orthogonal Product Systems of Rational
Functions
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In a Hilbert space the Gram-Schmidt method can be used to construct
orthogonal systems. Orthogonal polynomials, the Franklin system and
its generalizations, the Malmquist—Takenaka systems are examples that
can be derived this way [1], [3], [11].

Another class of orthogonal systems can be constructed from condi-
tionally orthogonal systems by multiplications [1], [4], [5]. Several classi-
cal systems, including the trigonometric system, the Walsh system or the
Vilenkin system, character systems of additive and multiplicative groups
of local fields [11], [12], Walsh-similar systems recently introduced by
Sendov [14], [15], [16] belong to this class. These systems have impor-
tant theoretical properties that are useful in numerical computations,
too. For instance Fourier coefficients and partial sums can be computed
by applying fast algorithms similar to FFT [6].

In this paper we investigate product systems generated by Blaschke
functions. Discrete rational orthogonal functions of this type are useful
in control theory [2].

1. Introduction

In this section we recall some notions and results on unitary dyadic mar-
tingale differences (shortly: UDMD) systems introduced in [12]. Let as fix a
probability space (X, A, u). The conditional expectation (CE) of the function
f with respect to the sub-o-algebra B C A is denoted by EBf. The L9-space
of B-measurable functions will be denoted by LY(B) := L%(X, B, ;). Instead
of LU(X, A, u) we write L9. It is well-known that for 1 < ¢ < oo the map
L3> f — EBf is a bounded linear projection onto L4(B), and ||[EB f||, < || f]l4-
We note that if B := {X, 0} is the trivial o-algebra, then EFf = [, fdu, i.e.,
CE is a generalization of the integral (see [17]).

The conditional expectation operator has a simple form if B is an atomic
o-algebra, i.e., if B is generated by the collection of pairwise disjoint sets:

B:=oc{l;:j=12,...,m}, ILn;=0(1<i<j<m), UL

m I = X.
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The sets I; (j = 1,... ,m) are called the atoms of B and the B-measurable func-
tions are exactly the step functions, constant on the I;’s. This m-dimensional

space coincides with L!(B). Denote the collection of atoms in B by B. Then
the conditional expectation is of the form

(Bf /fdu IEIEB).

In order to get orthonormal product systems we fix a stochastic basis, i.e.,
an increasing sequence of sub-g-algebras of A:

Ayc A Cc---CA,C---CA,

and a sequence ® = (¢p, k € N*) (N* := {1,2,...}) of adapted standardized
functions. This means that the functions ¢, are Ai-measurable and

Er_1(¢r) =0, Era(lgel’)=1  (keN%), (1)

where E}, denotes the conditional expectation with respect to Aj. In other
words (1) means that ® is a normalized martingale difference sequence with
respect to the stochastic basis (Ag, k=0,1,...).

For the definition of product systems of ® we shall use the expansion of
natural numbers with respect to the base 2. It is well-known that every number
m € N:={0,1,...} can uniquely be written in the form

o0
m = E mp2F1,
k=1

where my, € {0,1}. Then for each m € N we define the product

oo
Tl
k=1

The system ¥ = (¢,,, m € N) is called the product system of the system ®.
It is known (see [4], [5], [12]) that conditions (1) imply that the product
system ¥ is an orthonormal system (ONS) with respect to the scalar product

g>=/Xf§du (f.g€L?.

Theorem 1. Let U be the product system of ® satisfying (1). Then U is
an orthonormal system.

The stochastic basis (A, k € N) is called dyadic if for every k the o- algebra

Ay, is atomic and every atom I € .Ak can be split into two atoms I’, " € AkH,
such that p(I') = p(I”). If |¢x| = 1, then the system ® satisfying ( ) is called
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a system of unitary dyadic martingale differences, or UDMD-system. In the
dyadic case the atoms I}' (k=0,1,...,2" — 1) of A, are ordered so that

Ir=ntunt  (k=0,1,...,2" -1, neN).

The definition of product systems implies that the Dirichlet kernels

2" —1
Dyn(x,t) := Y tp(x)n(t) (2.t € X, neN)
k=0

of the system ¥ can be written in the product form

n—1

Don(z,t) := H(1—|—¢k($)¢T(t)) (z,t € X, neN).
k=0

The functions Dan(z,t) (x € X) are constant on the atoms of A,. Fur-
thermore, it turns out (see [12, Theorem 4, pp. 99) that in the case of dyadic
stochastic basis we have

Dzn (SU,t) = 2”53&5,

where Z denotes the atom in ﬁn containing the point x € X and d,, is the
Kronecker symbol.
Introduce the following system of functions:

ho(x) =1,  honyp(x) :=27"/2¢,(x)Dan (z, I}),

where 0 < k < 2", neNand z € X.

The system H = (h,,n € N) is called the Haar-system generated by the
system @ (see [7]).

It is easy to show that the Haar-system generated by the UDMD system is
an orthonormal system.

In this paper we investigate dyadic stochastic base and finite product sys-
tems. We suppose that A4 = Axr is the collection of subsets of X. In this case
X has 2V elements and the Fourier-coefficients with respect to the system ¥
can be written in the form

of = (fon) =27 Y fl@yla)  (k=0,1,...,2Y 1), (2)

zeX

Furthermore, each function f : X — C can be reconstructed from the coeffi-
cients (c¢f,0 < k < 2V) by

2N 1

fla) =Y clvn(x)  (ze€X). (3)

k=0

In order to compute the W-Fourier coefficients of a function f or to recon-
struct f from the ¢}’s by formula (2) and (3) one needs 2%V - 2" multiplications
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and 2V (2V — 1) additions. In the trigonometric case, there is an algorithm
which computes the discrete Fourier coefficients using O(N2%) algebraic oper-
ations (additions or multiplications). This algorithm is called the Fast Fourier
Transform or, briefly, FFT. It was shown (see [6], [8], [9], [10], [13]) that such
an algorithm exists for any W-transform provided W is a product system of
systems satisfying (1).

In the case of the Haar-Fourier coefficients

off = (f,he) =27 f@he(x)  (k=0,1,...,2Y —1)

zeX

can be computed by using O(2") operation and the same holds for the recon-
struction of function from Haar-Fourier coefficients [10].

2. Rational UDMD Systems

In this section we shall use dyadic stochastic base generated by function
systems. Let S : X — X be an A-measurable function and let us denote by
B := 0(S) the o-algebra generated by S. Then o(S) is of the form

o(S) = {S7L(H) : H € A},

where ST!(H) is the pre image of H € A. It is known, that the B-measurable
functions f : X — C are of the form f = go S, where g : X — C is a
Borel-measurable function. If the image of S is finite, then B is atomic and
B={S"'(y):y € ImS}. Here S~'(y) is the pre image of the singleton {y}.
Especially, if S; = Ao S with the function A : X — X, then C := 0(51) C B :=
o(S) and the atoms of C can be written as union of atoms belonging to 5:

Sii(e)=5"1AT (o) = U STHb).

beImS, A(b)=c

Hence, it follows that the conditional expectation E€ of the B measurable
function f = go S at the atom C' = 57 '(¢) can be expressed in the form

ENC) =—— S gu(s 1)), (4)

'LL(C) beIm S, A(b)=c

In order to define the dyadic stochastic bases we fix a sequence A; : X —
X (j =1,2,...) of twofold maps. This means that we suppose that for every
z € X and j € N the pre image Aj_l(x) is a set with two elements. Introduce
the maps

Sy =Apt10---0A4, (0<k<nmn=12...), (5)
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Sp(x) == (re X,neN).
For a fixed number y € X set

Xp =X ={zeX:5(z) =y} (n € N).

Then X,, has 2™ elements.

Fix N € N* and for 0 < n < N denote by AY the o-algebra generated
by the restriction of S to Xx. On Xy let us introduce the discrete measure
defined by pny({z}) := 27V (z € Xy). Then (X, AY,un) is a probability
space. It is easy to check that

AV ={Xn,0} c AY c--- Cc AY (6)

is a dyadic stochastic basis and py(H) = 2" if H € AN. We shall say that
the function g, : X — C is odd with respect to the map A, if the condition
Ap(z1) = An(22), 21 # 22 (21,72 € X) implies g,(21) = —gn(22). Moreover,
if g (2)] = 1 (z € X,n € N*), then the functions ¢~ := g,0SN (n=1,... ,N)
form a UDMD system with respect to the stochastic basis (6). By (5), SN, =
A, 0 SN, Consequently, by using (4) for ¢& = g, o S we get

1
N
E"L—lgbn = 5 Z gn(b) =0.
Ay (b)=c
In this section we investigate discrete martingale differences constructed by
rational functions. To this end, let us denote by D := {z € C : |z| < 1} the
open unit disc. In our construction the Blaschke functions

By(z) := 2b (z €C)

play a basic role. If the parameter b belongs to D, then the restriction of By
to D is a bijection of D. Furthermore B is a 1 — 1 map on the unit circle
T :={z € C: |z| = 1}. For every complex number a € D we introduce the
Blaschke products of order two:

Ay(2) := Ba(2)B_o(2) = Bp2(2%) (2 €C, a€D).

The map A, : T — T is twofold and A,(z1) = Au(22), 21 # 22 (21,22 € T)
implies z; = —z9. Consequently the identity map g(z) = z is an odd map with
respect to A,. It can be proved that for every sequence a,, € D (n € N*) the
functions ¢ := A, 110---0Ay (n < N) are rational functions with 2V =" poles
outside the closed unit disc. Moreover, this is a UDMD system with respect to
the stochastic basis (6).

Theorem 2. The system (¢X,1 < n < N) generated by the sequence
an € D (n € N*) is a UDMD system of rational functions and consequently
the product system W is a discrete rational orthonormal system. The Fourier
coefficients with respect to the system W can be computed by a fast algorithm
using O(N2N) operations.
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