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Orthogonal Product Systems of Rational
Functions

Ferenc Schipp∗

In a Hilbert space the Gram-Schmidt method can be used to construct
orthogonal systems. Orthogonal polynomials, the Franklin system and
its generalizations, the Malmquist–Takenaka systems are examples that
can be derived this way [1], [3], [11].

Another class of orthogonal systems can be constructed from condi-
tionally orthogonal systems by multiplications [1], [4], [5]. Several classi-
cal systems, including the trigonometric system, the Walsh system or the
Vilenkin system, character systems of additive and multiplicative groups
of local fields [11], [12], Walsh–similar systems recently introduced by
Sendov [14], [15], [16] belong to this class. These systems have impor-
tant theoretical properties that are useful in numerical computations,
too. For instance Fourier coefficients and partial sums can be computed
by applying fast algorithms similar to FFT [6].

In this paper we investigate product systems generated by Blaschke
functions. Discrete rational orthogonal functions of this type are useful
in control theory [2].

1. Introduction

In this section we recall some notions and results on unitary dyadic mar-
tingale differences (shortly: UDMD) systems introduced in [12]. Let as fix a
probability space (X,A, µ). The conditional expectation (CE) of the function
f with respect to the sub-σ-algebra B ⊆ A is denoted by EBf. The Lq-space
of B-measurable functions will be denoted by Lq(B) := Lq(X,B, µ). Instead
of Lq(X,A, µ) we write Lq. It is well-known that for 1 ≤ q ≤ ∞ the map
Lq 3 f → EBf is a bounded linear projection onto Lq(B), and ‖EBf‖q ≤ ‖f‖q.
We note that if B := {X, ∅} is the trivial σ-algebra, then EBf =

∫
X
f dµ, i.e.,

CE is a generalization of the integral (see [17]).
The conditional expectation operator has a simple form if B is an atomic

σ-algebra, i.e., if B is generated by the collection of pairwise disjoint sets:

B := σ{Ij : j = 1, 2, . . . ,m}, Ii ∩ Ij = ∅ (1 ≤ i < j ≤ m), ∪mj=1Ij = X.
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The sets Ij (j = 1, . . . ,m) are called the atoms of B and the B-measurable func-
tions are exactly the step functions, constant on the Ij ’s. This m-dimensional

space coincides with L1(B). Denote the collection of atoms in B by B̂. Then
the conditional expectation is of the form

(EBf)(x) =
1

µ(I)

∫
I

f dµ (x ∈ I ∈ B̂).

In order to get orthonormal product systems we fix a stochastic basis, i.e.,
an increasing sequence of sub-σ-algebras of A:

A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · ⊂ A,

and a sequence Φ = (φk, k ∈ N∗) (N∗ := {1, 2, . . . }) of adapted standardized
functions. This means that the functions φk are Ak-measurable and

Ek−1(φk) = 0, Ek−1(|φk|2) = 1 (k ∈ N∗), (1)

where Ek denotes the conditional expectation with respect to Ak. In other
words (1) means that Φ is a normalized martingale difference sequence with
respect to the stochastic basis (Ak, k = 0, 1, . . . ).

For the definition of product systems of Φ we shall use the expansion of
natural numbers with respect to the base 2. It is well-known that every number
m ∈ N := {0, 1, . . . } can uniquely be written in the form

m =

∞∑
k=1

mk2k−1,

where mk ∈ {0, 1}. Then for each m ∈ N we define the product

ψm :=

∞∏
k=1

φmk

k .

The system Ψ = (ψm,m ∈ N) is called the product system of the system Φ.
It is known (see [4], [5], [12]) that conditions (1) imply that the product

system Ψ is an orthonormal system (ONS) with respect to the scalar product

〈f, g〉 =

∫
X

fg dµ (f, g ∈ L2).

Theorem 1. Let Ψ be the product system of Φ satisfying (1). Then Ψ is
an orthonormal system.

The stochastic basis (Ak, k ∈ N) is called dyadic if for every k the σ-algebra

Ak is atomic and every atom I ∈ Âk can be split into two atoms I ′, I ′′ ∈ Âk+1,
such that µ(I ′) = µ(I ′′). If |φk| = 1, then the system Φ satisfying (1) is called
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a system of unitary dyadic martingale differences, or UDMD-system. In the
dyadic case the atoms Ink (k = 0, 1, . . . , 2n − 1) of Ân are ordered so that

Ink = In+1
2k ∪ In+1

2k+1 (k = 0, 1, . . . , 2n − 1, n ∈ N).

The definition of product systems implies that the Dirichlet kernels

D2n(x, t) :=

2n−1∑
k=0

ψk(x)ψk(t) (x, t ∈ X, n ∈ N)

of the system Ψ can be written in the product form

D2n(x, t) :=

n−1∏
k=0

(1 + φk(x)φk(t)) (x, t ∈ X, n ∈ N).

The functions D2n(x, t) (x ∈ X) are constant on the atoms of Ân. Fur-
thermore, it turns out (see [12, Theorem 4, pp. 99) that in the case of dyadic
stochastic basis we have

D2n(x, t) = 2nδx̂t̂,

where x̂ denotes the atom in Ân containing the point x ∈ X and δuv is the
Kronecker symbol.

Introduce the following system of functions:

h0(x) := 1, h2n+k(x) := 2−n/2φn(x)D2n(x, Ink ),

where 0 ≤ k < 2n, n ∈ N and x ∈ X.
The system H = (hn, n ∈ N) is called the Haar-system generated by the

system Φ (see [7]).
It is easy to show that the Haar-system generated by the UDMD system is

an orthonormal system.
In this paper we investigate dyadic stochastic base and finite product sys-

tems. We suppose that A = AN is the collection of subsets of X. In this case
X has 2N elements and the Fourier-coefficients with respect to the system Ψ
can be written in the form

cΨk = 〈f, ψk〉 = 2−N
∑
x∈X

f(x)ψk(x) (k = 0, 1, . . . , 2N − 1). (2)

Furthermore, each function f : X → C can be reconstructed from the coeffi-
cients (cΨk , 0 ≤ k < 2N ) by

f(x) =

2N−1∑
k=0

cΨk ψk(x) (x ∈ X). (3)

In order to compute the Ψ-Fourier coefficients of a function f or to recon-
struct f from the cΨk ’s by formula (2) and (3) one needs 2N ·2N multiplications
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and 2N (2N − 1) additions. In the trigonometric case, there is an algorithm
which computes the discrete Fourier coefficients using O(N2N ) algebraic oper-
ations (additions or multiplications). This algorithm is called the Fast Fourier
Transform or, briefly, FFT. It was shown (see [6], [8], [9], [10], [13]) that such
an algorithm exists for any Ψ-transform provided Ψ is a product system of
systems satisfying (1).

In the case of the Haar-Fourier coefficients

cHk = 〈f, hk〉 = 2−N
∑
x∈X

f(x)hk(x) (k = 0, 1, . . . , 2N − 1)

can be computed by using O(2N ) operation and the same holds for the recon-
struction of function from Haar-Fourier coefficients [10].

2. Rational UDMD Systems

In this section we shall use dyadic stochastic base generated by function
systems. Let S : X → X be an A-measurable function and let us denote by
B := σ(S) the σ-algebra generated by S. Then σ(S) is of the form

σ(S) = {S−1(H) : H ∈ A},

where S−1(H) is the pre image of H ∈ A. It is known, that the B-measurable
functions f : X → C are of the form f = g ◦ S, where g : X → C is a
Borel-measurable function. If the image of S is finite, then B is atomic and
B = {S−1(y) : y ∈ ImS}. Here S−1(y) is the pre image of the singleton {y}.
Especially, if S1 = A◦S with the function A : X → X, then C := σ(S1) ⊆ B :=
σ(S) and the atoms of C can be written as union of atoms belonging to B:

S−1
1 (c) = S−1(A−1(c)) =

⋃
b∈ ImS, A(b)=c

S−1(b).

Hence, it follows that the conditional expectation EC of the B measurable
function f = g ◦ S at the atom C = S−1

1 (c) can be expressed in the form

(ECf)(C) =
1

µ(C)

∑
b∈ ImS, A(b)=c

g(b)µ(S−1(b)). (4)

In order to define the dyadic stochastic bases we fix a sequence Aj : X →
X (j = 1, 2, . . . ) of twofold maps. This means that we suppose that for every
x ∈ X and j ∈ N the pre image A−1

j (x) is a set with two elements. Introduce
the maps

Sn
k := Ak+1 ◦ · · · ◦An (0 ≤ k < n, n = 1, 2, . . . ), (5)
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Sn
n(x) := x (x ∈ X,n ∈ N).

For a fixed number y ∈ X set

Xn := Xy
n := {x ∈ X : Sn

0 (x) = y} (n ∈ N).

Then Xn has 2n elements.
Fix N ∈ N∗ and for 0 ≤ n ≤ N denote by AN

n the σ-algebra generated
by the restriction of SN

n to XN . On XN let us introduce the discrete measure
defined by µN ({x}) := 2−N (x ∈ XN ). Then (X,AN

N , µN ) is a probability
space. It is easy to check that

AN
0 = {XN , ∅} ⊂ AN

1 ⊂ · · · ⊂ AN
N (6)

is a dyadic stochastic basis and µN (H) = 2−n if H ∈ ÂN
n . We shall say that

the function gn : X → C is odd with respect to the map An if the condition
An(x1) = An(x2), x1 6= x2 (x1, x2 ∈ X) implies gn(x1) = −gn(x2). Moreover,
if |gn(x)| = 1 (x ∈ X,n ∈ N∗), then the functions φNn := gn◦SN

n (n = 1, . . . , N)
form a UDMD system with respect to the stochastic basis (6). By (5), SN

n−1 =
An ◦ SN

n . Consequently, by using (4) for φNn = gn ◦ SN
n we get

En−1φ
N
n =

1

2

∑
An(b)=c

gn(b) = 0.

In this section we investigate discrete martingale differences constructed by
rational functions. To this end, let us denote by D := {z ∈ C : |z| < 1} the
open unit disc. In our construction the Blaschke functions

Bb(z) :=
z − b
1− bz

(z ∈ C)

play a basic role. If the parameter b belongs to D, then the restriction of Bb

to D is a bijection of D. Furthermore Bb is a 1 − 1 map on the unit circle
T := {z ∈ C : |z| = 1}. For every complex number a ∈ D we introduce the
Blaschke products of order two:

Aa(z) := Ba(z)B−a(z) = Ba2(z2) (z ∈ C, a ∈ D).

The map Aa : T → T is twofold and Aa(z1) = Aa(z2), z1 6= z2 (z1, z2 ∈ T)
implies z1 = −z2. Consequently the identity map g(z) = z is an odd map with
respect to Aa. It can be proved that for every sequence an ∈ D (n ∈ N∗) the
functions φNn := An+1◦· · ·◦AN (n < N) are rational functions with 2N−n poles
outside the closed unit disc. Moreover, this is a UDMD system with respect to
the stochastic basis (6).

Theorem 2. The system (φNn , 1 ≤ n ≤ N) generated by the sequence
an ∈ D (n ∈ N∗) is a UDMD system of rational functions and consequently
the product system Ψ is a discrete rational orthonormal system. The Fourier
coefficients with respect to the system Ψ can be computed by a fast algorithm
using O(N2N ) operations.
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