
CONSTRUCTIVE THEORY OF FUNCTIONS, Varna 2002

(B. Bojanov, Ed.), DARBA, Sofia, 2003, pp. 397-403.

Majorization of Zeros of Polynomials

Gerhard Schmeisser

Let f be a monic polynomial of degree n with zeros z1, . . . , zn. We
show that

k∑
ν=1

φ
(
|zν |
)
≤ φ

(
M0(f)

)
+ (k − 1)φ(1) (k = 1, . . . , n−1),

n∑
ν=1

φ
(
|zν |
)
≤ φ

(
M0(f)

)
+ (n− 2)φ(1) + φ

(
|f(0)| /M0(f)

)
,

where φ is any non-decreasing function such that φ ◦ exp is convex on
R and M0(f) is the so-called Mahler measure of f . These inequalities
describe a weak majorization. Certain upper bounds for the Mahler
measure allow us to establish more explicit results, which are still sharp.

1. Introduction and Statement of Results

First, we introduce the following notation (see [3, p.10]). For any vector
x = (x1, . . . , xn) ∈ Rn, we denote by (x[1], . . . , x[n]) a rearrangement of the
components of x such that x[1] ≥ · · · ≥ x[n]. Now we can define the term
majorization as follows.

Definition 1. For two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), we
say that a is weakly majorized by b, and write this as a ≺w b, if

k∑
j=1

a[j] ≤
k∑
j=1

b[j] (k = 1, . . . , n). (1)

Furthermore, we say that a is (strongly) majorized by b, and write this as
a ≺ b, if in (1) equality occurs for k = n.

Clearly, the inequalities (1) remain true if, on the left-hand side, we use any
other arrangement of the components of a.
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A result of Weyl (see [8] or [3, p. 116, A.2]) states that, if a ≺w b and ψ is
any non-decreasing convex function on R, then(

ψ(a1), . . . , ψ(an)
)
≺w

(
ψ(b1), . . . , ψ(bn)

)
.

Majorizations have been studied not only in various branches of mathemat-
ics, but also in other subjects such as economics (see [3]). They are of interest
since they provide some information about the distribution of the components
of a as compared to those of b. They also imply individual bounds for the
components of a.

In this paper, we are interested in majorizations for the moduli of the zeros
of a polynomial f . Our main result refines and extends Theorem 1 in [5]. We
shall use the quantity

M0(f) := exp

(
1

2π

∫ 2π

0

log |f(eiθ)|dθ
)
,

which has sometimes been called the Mahler measure of f .
Furthermore, we shall denote by F the class of all non-decreasing functions

φ : (0,∞) → R for which φ ◦ exp is convex on R. Examples of functions
belonging to F are φ(x) = log x, φ(x) = max{a, log x} for any a ∈ R, and
φ(x) = xp for any p > 0.

Theorem 1. Let f be a monic polynomial of degree n with zeros z1, . . . , zn.
Then, for any φ ∈ F ,

k∑
ν=1

φ
(
|zν |
)
≤ φ

(
M0(f)

)
+ (k − 1)φ(1) (k = 1, . . . , n−1),

n∑
ν=1

φ
(
|zν |
)
≤ φ

(
M0(f)

)
+ (n− 2)φ(1) + φ

(
|f(0)| /M0(f)

)
.

Equality is attained throughout when

f(z) = (z − z1)(z − zn)

n−1∏
ν=2

(
z − eiθν

)
,

where |z1| ≥ 1, |zn| ≤ 1, and θ2, . . . , θn−1 ∈ [0, 2π).

Note that the class of polynomials for which equality is attained is relatively
large since it can be described by n+2 independent real parameters. Moreover,
the proof will show that, for any monic polynomial, there is equality in at least
two of the relations when φ is the logarithm.

However, from a practical point of view, Theorem 1 may not be easily
applicable since, in general, the determination of the Mahler measure M0(f)
can be as difficult as the calculation of the zeros. This is shown by the following
observation.
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Proposition 1. For a polynomial f of degree n ≥ 5 , it is in general not
possible to express M0(f) in terms of the coefficients of f by means of a finite
number of rational operations and radicals.

For this reason, it is desirable to have results in terms of the L2 norm

‖f‖ :=

(
1

2π

∫ π

−π

∣∣f(eit)
∣∣2 dt

)1/2

=

(
n∑
ν=0

|aν |2
)1/2

of a polynomial f(z) =
∑n
ν=0 aνz

ν . From Theorem 1, we can deduce the
following statement.

Corollary 1. Let f be a monic polynomial of degree n with zeros z1, . . . , zn.
Define

N±(f) :=

√
1

2

(
‖f‖2 ±

√
‖f‖4 − 4|f(0)|2

)
.

Then, for any φ ∈ F ,
k∑
ν=1

φ
(
|zν |
)
≤ φ

(
N+(f)

)
+ (k − 1)φ(1) (k = 1, . . . , n−1),

n∑
ν=1

φ
(
|zν |
)
≤ φ

(
N+(f)

)
+ (n− 2)φ(1) + φ

(
N−(f)

)
.

Equality is attained throughout when f(z) = zn + eiθ, where θ ∈ [0, 2π).

Finally, we state another consequence of Theorem 1. It is slightly weaker
than Corollary 1, but it allows us to interpret the polynomial f as a perturba-
tion of a binomial. As such, the result is a counterpart to Theorem 4 in [5].

Corollary 2. Let f be a monic polynomial of degree n with zeros z1, . . . , zn
and let f∗(z) := zn + eiθ, where θ ∈ R. Then, for any φ ∈ F ,

k∑
ν=1

φ
(
|zν |
)
≤ φ

(
1+‖f−f∗‖

)
+ (k − 1)φ(1) (k = 1, . . . , n− 1),

n∑
ν=1

φ
(
|zν |
)
≤ φ

(
1+‖f−f∗‖

)
+ (n− 2)φ(1) + φ

(
|f(0)| /(1+‖f−f∗‖)

)
.

Equality is attained throughout when f = f∗.

2. Auxiliary Results

It is well known (see, e.g., [1, Theorem 184]) that, for any monic polyno-
mial f , we have M0(f) ≤ ‖f‖ . The following lemma gives a refinement of
this inequality.
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Lemma 1. For any monic polynomial f, we have, in the notation of Corol-
lary 1,

M0(f) ≤ N+(f). (2)

Proof. Let f(z) =
∏n
ν=1(z − zν) , and let

{1, . . . , n} = I1 ∪ I2 (I1 ∩ I2 = ∅)

be any decomposition of the set of indices into two disjoint subsets. Then, by
an inequality of Vicente Gonçalves [7],∏

µ∈I1

|zµ|2 +
∏
ν∈I2

|zν |2 ≤ ‖f‖2, (3)

where a product has to be replaced by 1 if the corresponding subset of indices
is the empty set. Since

M0(f) =

n∏
ν=1

max{1, |zν |} (4)

(see [2, p.98, formula(2)] or [4, p.105]), there exists a decomposition such that

M0(f) =
∏
µ∈I1

|zµ|.

Moreover, z1 · · · zn = (−1)nf(0). Hence, it follows from (3) that

M0(f)2 + |f(0)|2M0(f)−2 ≤ ‖f‖2,

that is,

M0(f)4 − ‖f‖2M0(f)2 + |f(0)|−2 ≤ 0.

This is a quadratic inequality for M0(f)2, which implies (2). �

Lemma 2. For a ∈ C, define

Φ(x) :=
[
x+ (1− |a|)2

] [
x+ (1 + |a|)2

]
and

Ψ(x) :=
[
2− 2<a+ |1− a|2 + x+ 4

√
x+ |1− a|2

]2
.

Then

Φ(x) ≤ Ψ(x) (x ≥ 0). (5)
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Proof. At x = 0, we have

Ψ(0) =
[
2− 2<a+ |1− a|2 + 4|1− a|

]2
=
[
1− |a|2 + 2|1− a|2 + 4|1− a|

]2
=

(
1− |a|2

)2
+ 4

(
|1− a|2 + 2|1− a|

) (
|1− a|2 + 2|1− a|+ 1− |a|2

)
= Φ(0) + 4

(
|1− a|2 + 2|1− a|

) [
(1 + |1− a|)2 − |a|2

]
.

Since, by the triangular inequality, |a| ≤ 1 + |1 − a|, we see that the term in
square brackets is non-negative, and so Φ(0) ≤ Ψ(0).

Next, we compare the derivatives of Φ and Ψ. Obviously,

Ψ′(x) = 2
[
2 + |1− a|2 − 2<a+ x+ 4

√
x+ |1− a|2

](
1 +

2√
x+ |1− a|2

)
.

Since
2− 2<a+ 2

√
x+ |1− a|2 ≥ 2(1−<a) + 2|1− a| ≥ 0,

we conclude that

Ψ′(x) ≥ 2
[
|1− a|2 + x+ 2

√
x+ |1− a|2

](
1 +

2√
x+ |1− a|2

)
≥ 2[|1− a|2 + 2|1− a|+ x] + 8

= 2(|1− a|+ 1)2 + 2x+ 6 ≥ 2|a|2 + 2x+ 6 = Φ′(x) + 4.

Altogether, we have shown that Φ(0) ≤ Ψ(0) and Φ′(x) ≤ Ψ′(x) for x ≥ 0.
This implies that (5) holds. �

Lemma 3. Let f be a monic polynomial of positive degree and let f∗(z) :=
zn + eiθ for any θ ∈ R. Then, in the notation of Corollary 1,

N+(f) ≤ 1 + ‖f − f∗‖.

Proof. First, we note that

‖f − f∗‖ =
√
‖f‖2 − 2<a ,

where a = f(0)e−iθ. Hence we have to show that[
1

2

(
‖f‖2 +

√
‖f‖4 − 4|a|2

)]1/2
− 1 ≤

√
‖f‖2 − 2<a .

By a simple calculation, we find that this inequality is equivalent to(
‖f‖2 − 2|a|

) (
‖f‖2 + 2|a|

)
≤
[
2 + ‖f‖2 − 4<a+ 4

√
‖f‖2 − 2<a

]2
. (6)

Finally, introducing S :=
∑n−1
ν=1 |aν |2, we have

‖f‖2 = 1 + |a|2 + S, ‖f‖2 − 2<a = S + |1− a|2,
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and so (6) may be rewritten as[
S + (1− |a|)2

] [
S + (1 + |a|)2

]
≤
[
2− 2<a+ |1− a|2 + S + 4

√
S + |1− a|2

]2
,

which is true, as a consequence of Lemma 2 and the fact that S ≥ 0. This
completes the proof. �

3. Proofs of the Results

Proof of Theorem 1. Clearly, (4) implies that, for any k ∈ {1, . . . , n}, we
have

k∑
j=1

log |zj | ≤
n∑
ν=1

log
(

max{1, |zν |}
)

= logM0(f).

Moreover,
n∑
j=1

log |zj | = log |f(0)| .

Hence we have the (strong) majorization(
log |z1| , . . . , log |zn|

)
≺
(

logM0(f), 0, . . . , 0, log(|f(0)| /M0(f)
)
, (7)

and so the result follows from Weyl’s theorem. �

Proof of Proposition 1. With the help of a computer algebra program (such
as Maple), it is readily verified that the polynomial

h(z) := z5 − 10z4 + 11z3 − 10z2 + 6z − 5

has a zero at z1 := 8.880 35 275 . . . and two pairs of conjugate zeros inside the
unit circle. Hence, in view of (4),

f(z) := (z − 1)n−5 h(z) (n ≥ 5)

is a monic polynomial such that M0(f) = z1. It is shown in [6, pp. 393–394]
that the Galois group of h(−z) is the symmetric group. This implies that none
of the zeros of h is contained in an extension of the field of rational numbers
by radicals. Thus M0(f) cannot be expressed in terms of the coefficients of f
by means of rational operations and radicals. �

Proof of Corollaries 1 and 2. The relation (7) is equivalent to

k∑
j=1

log |zj | ≤ logM0(f) (k = 1, . . . , n− 1),

n∑
j=1

log |zj | = log |f(0)| .
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This implies that, if K ≥M0(f), then also(
log |z1| , . . . , log |zn|

)
≺
(

logK, 0, . . . , 0, log(|f(0)| /K)
)
.

According to Lemmas 1 and 3, the numbers N+(f) and 1 + ‖f − f∗‖ are upper
bounds for M0(f). Using these bounds as K, and applying again Weyl’s result,
we obtain the conclusions of the corollaries. �
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