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Approximate Recovery of Functions and Besov
Spaces of Dominating Mixed Smoothness

Winfried Sickel ∗

We derive an estimate from above for the approximate optimal recovery
of bivariate periodic functions taken from a Besov space of dominating
mixed smoothness.

1. Approximate Optimal Recovery

We study the effectiveness of the approximation by generalized sampling
operators. Let F be a class of continuous, periodic functions defined on T2 =
[0, 2π)2. Then, following [15, Chapter 4, Section 5], we consider for fixed m,
ξ = (ξ1, ξ2, . . . , ξm), ξj ∈ T2, j = 1, . . . ,m, and ψ1(x1, x2), . . . , ψm(x1, x2) the
linear operator

Ψm(f, ξ)(x1, x2) :=

m∑
j=1

f(ξj)ψj(x1, x2)

and define the quantities

Ψm(F, ξ, Lp(T2)) := sup
f∈F
‖Ψm(f, ξ)− f |Lp(T2)‖

and
%m(F,Lp(T2)) := inf

ψ1,... ,ψm

inf
ξ

Ψm(F, ξ, Lp(T2)) .

Hence %m(F,Lp(T2)) measures the optimal approximate recovery of the func-
tions from F . Here we are interested in the case when F is the unit ball in a
Besov space Srp,qB(T2) of dominating mixed smoothness (a definition will be
given below). Our main result reads as follows.

Theorem 1. Let 1 < p <∞, 1 ≤ q ≤ ∞, and r > 1/p. Let F be the unit
ball in Srp,qB(T2). For any natural number m there exists a system of points
ξ1, . . . , ξm ∈ T2, a collection of trigonometric polynomials ψ1(x1, x2), . . . ,
ψm(x1, x2), and a constant C (independent of m) such that

sup
f∈F
‖Ψm(f, ξ)− f |Lp(T2)‖ ≤ Cm−r (logm)r+1−1/q . (1)
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Remark 1. Our proof will be constructive. The functions ψj(x1, x2), j =
1, . . . ,m, are always certain tensor products of shifts of the (one-dimensional)
Dirichlet kernel. Also the points ξ are given explicitly, cf. Section 2.

Remark 2. In case q = ∞ the estimate (1) has been proved earlier by
Temlyakov, cf. [15, Chapter 4, Theorem 5.1].

2. The Sampling Operator

As usual, N stands for the natural numbers, by N0 we denote the natural
numbers including 0 and by Zd the d-tupels of integers. Let

Dm(t) :=
∑
|k|≤m

eikt , t ∈ T, m ∈ N0 ,

be the Dirichlet kernel and let

Imf(t) :=
1

2m+ 1

2m∑
`=0

f(t`)Dm(t− t`) , t` =
2π`

2m+ 1
,

be the unique trigonometric polynomial of degree less than or equal to m which
interpolates f at the nodes t`. We do not need the complete sequence of
interpolatory polynomials of a given function. We concentrate on a dyadic
subsequence. To have a convenient notation we put Lj := I2j , j = 0, 1, . . . By
Lj,k := Lj ⊗ Lk we denote the tensor product of Lj and Lk. The sampling
operators Bm we are going to study are defined as

Bm :=

m∑
j=0

Lj,m−j −
m−1∑
j=0

Lj,m−j−1 , m = 1, 2, . . .

This is Smolyak’s construction (sometimes called Smolyak algorithm or blend-
ing operators) with respect to the Lj , cf. e.g. [2, 11, 12, 15, 17]. We collect a
few properties of Bm. Therefore we need some further notations. As usual, let

ck(f) = (2π)−d
∫
Td

f(t) e−ikt dt , k ∈ Zd ,

be the Fourier coefficient of f ∈ L1(Td). We put

Tm :=
{( 2π`1

2j+1 + 1
,

2π`2
2m−j+1 + 1

)
: 0 ≤ `1 ≤ 2j+1, 0 ≤ `2 ≤ 2m−j+1 ,

j = 0, . . . ,m
}
.
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Lemma 1. Let m ∈ N.

(i) Bm uses samples of f from the sparse grid Tm ∪ Tm−1.

(ii) It holds ck(Bmf) = 0 if

k 6∈ Hm :=
{

(`1, `2) : ∃r ∈ (N0∩ [0,m]) s.t. |`1| ≤ 2r and |`2| ≤ 2m−r
}
.

(iii) Suppose that f is a trigonometric polynomial with harmonics from Hm.
Then Bmf = f .

Proof. Using the projection property of Lj the proof is elementary, but see
also [14].

3. Besov Spaces of Dominating Mixed Smoothness

For us it is convenient to introduce the Besov spaces by making use of a
Littlewood-Paley decomposition, cf. [6, 9]. Let

P0 = (−1, 1) , Pj = {x : 2j−1 ≤ |x| < 2j } , j ∈ N ,
Pj,k = Pj × Pk , j, k ∈ N0 .

As an abbreviation we shall use

fj,k(x) =
∑
`∈Pj,k

c`(f) ei`x , x ∈ T2, j, k ∈ N0 ,

which results in

f =

∞∑
j=0

∞∑
k=0

fj,k .

Let 1 < p < ∞, 1 ≤ q ≤ ∞, and r > 0. Then the Besov space Srp,qB(T2) of
dominating mixed smoothness is the collection of all functions f ∈ Lp(T2) such
that

‖ f |Srp,qB(T2)‖ :=

 ∞∑
j=0

∞∑
k=0

2r(j+k)q ‖fj,k |Lp(T2)‖q
1/q

<∞ .

For r > 1/p one knows that Srp,qB(T2) contains continuous functions only, cf.
[9, 2.4.1].
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4. The Approximation Power of Bm

Let I be the identity operator (we do not indicate the space where I is
considered, hoping this will be clear from the context). We recall the identity

I ⊗ I −Bm = (I − Lm)⊗ L0 + I ⊗ (I − Lm)

+

m−1∑
j=0

(I − Lj)⊗ (Lm−j − Lm−j−1) ,
(2)

valid for each m ∈ N, cf. [2, Prop. 1.4/2] or [17], the following assertion
concerning tensor products of Sobolev spaces

W r
p (T)⊗αp W

r
p (T) = SrpW (T2) , 1 < p <∞ , r ≥ 0 , (3)

(here αp denotes the p-nuclear norm and SrpW (T2) denotes a Sobolev space of
dominating mixed smoothness), cf. [13], and

‖ f − Ljf |Lp(T)‖ ≤ c 2−jr ‖ f |W r
p (T)‖ (4)

with some constant c independent of f and j (1 < p < ∞, r > 1/p, cf.
[3, 4, 15, 10]). Since αp is an uniform norm it follows from (2)–(4) that

‖ f −Bmf |Lp(T2)‖ ≤ Cm 2−mr ‖ f |SrpW (T2)‖ (5)

(1 < p <∞, r > 1/p) holds with some constant C independent of f and m. In
what follows we shall show that one can replace the factor m on the right-hand
side of (5) by mγ with γ < 1. We denote a ∼ b if there exists a constant c > 0
(independent of the context dependent relevant parameters) such that

c−1 a ≤ b ≤ c a .

Proposition 1. Suppose 1 < p <∞, 1 ≤ q ≤ ∞, and r > 1/p. Then

‖ I −Bm : Srp,qB(T2) 7→ Lp(T2)‖ ∼ m1− 1
q 2−mr . (6)

Proof. Step 1. Using the projection property of Lj we derive(
(I − Lj)⊗ (Lm−j − Lm−j−1)

)
fu,v = 0 (7)

if either j ≥ u or if m − j − 1 ≥ v. Next we recall the Littlewood-Paley
characterization of SrpW (T2). If 1 < p <∞ and r ≥ 0, then

∥∥∥∥( ∞∑
j=0

∞∑
k=0

2r(j+k)2 |fj,k|2
)1/2 ∣∣∣∣Lp(T2)

∥∥∥∥ (8)
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generates an equivalent norm on SrpW (T2), cf. [6]. Let r0 be a real number
such that 1/p < r0 < r. Further, we shall use the abbreviation a+ = max{a, 0}
for real numbers a. We derive from (4), (7), and (8)∥∥∥m−1∑

j=0

(
(I − Lj)⊗ (Lm−j − Lm−j−1)

)
fu,v |Lp(T2)

∥∥∥
≤

min{u−1,m−1}∑
j=max{0,m−v}

∥∥(I − Lj)⊗ (Lm−j − Lm−j−1) fu,v |Lp(T2)
∥∥

≤ c1 2−mr0
(

min{u− 1,m− 1} −max{0,m− v}
)
+
‖ fu,v |Sr0p W (T2)‖

≤ c2 2−mr0
(

min{u− 1,m− 1} −max{0,m− v}
)
+

2(u+v)r0‖ fu,v |Lp(T2)‖

for some constant c2 independent of f . Because of (3), (2) and (4) this implies

‖ fu,v − Bmfu,v |Lp(T2)‖
≤ c 2−mr0

(
min{u,m} −max{0,m− v}

)
+

2(u+v)r0 ‖ fu,v |Lp(T2)‖

+
∥∥ ((I − Lm)⊗ L0

)
fu,v |Lp(T2)

∥∥+
∥∥ (I ⊗ (I − Lm)

)
fu,v |Lp(T2)

∥∥
≤ c

(
1 +

(
min{u,m} −max{0,m− v}

)
+

)
2(u+v−m)r0 ‖ fu,v |Lp(T2)‖ ,

(9)

for some constant c independent of f,m, u and v and for arbitrary r0 > 1/p.
Here we used also the boundedness of L0 considered as a mapping of W r0

p (T)
into Lp(T), cf. (3) and (4).

Step 2. Let 1/q + 1/q′ = 1. For given m we shall use the splitting f =
f1 + f2 + f3 + f4 + f5, where

f1 =
∑

u+v≤m

fu,v , f2 =

m∑
u=1

m∑
v=m−u+1

fu,v , f3 =

m∑
u=0

∞∑
v=m+1

fu,v ,

f4 =

∞∑
u=m+1

m∑
v=0

fu,v , and f5 =

∞∑
u=m+1

∞∑
v=m+1

fu,v .

Lemma 1(iii) yields Bmf1 = f1. Furthermore, with r0 < r we derive from (9)
and Hölder’s inequality

‖f2 −Bmf2|Lp(T2)‖ ≤ c1
m∑
u=1

m∑
v=m−u+1

2(u+v−m)r0(u+ v −m)‖fu,v|Lp(T2)‖

≤ c1 2−mr0
( m∑
u=1

m∑
v=m−u+1

2(u+v)(r0−r)q
′
(u+ v −m)q

′
)1/q′

‖ f2 |Srp,qB(T2)‖

= c1 2−mr
( m∑
u=1

u∑
`=1

2`(r0−r)q
′
`q
′
)1/q′

‖ f2 |Srp,qB(T2)‖

≤ c2 (m+ 1)1/q
′
2−mr ‖ f2 |Srp,qB(T2)‖ .
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Similarly we proceed in estimating fi −Bmfi, i = 3, 4, 5. We find

‖ f3 −Bmf3 |Lp(T2)‖ ≤ c1
m∑
u=0

∞∑
v=m+1

2(u+v−m)r0 (1 + u) ‖ fu,v |Lp(T2)‖

≤ c1 ‖ f3 |Srp,∞B(T2)‖
m∑
u=0

∞∑
v=m+1

2(u+v)(r0−r)2−mr0(1 + u)

≤ c2 2−mr ‖ f3 |Srp,∞B(T2)‖ ,

and analogously

‖ fi −Bmfi |Lp(T2)‖ ≤ c 2−mr ‖ fi |Srp,∞B(T2)‖ , i = 4, 5 .

This proves the estimate from above.

Step 3. Estimate from below. We employ lacunary series as test functions.
Let

fm(x1, x2) :=

m−1∑
u=2

ei2
ux1+i2

m−u+1x2 , m = 3, 4, . . . (10)

Then

Bmfm(x1, x2) = −(m− 2) e−i(x1+x2) +

m−1∑
u=2

ei2
ux1−ix2 +

m−1∑
u=2

e−ix1+i2
m−u+1x2 .

Obviously

‖ fm |Srp,qB(T2)‖ ∼ m1/q 2mr . (11)

To calculate the Lp-norm of fm and Bm we shall use the following Littlewood-
Paley assertion, cf. [6]. There exist positive constants Ap and Bp such that

Ap ‖ f |Lp(T2)‖ ≤
∥∥∥∥( ∞∑

j=0

∞∑
k=0

|fj,k(x)|2
)1/2 ∣∣∣∣Lp(T2)

∥∥∥∥ ≤ Bp ‖ f |Lp(T2)‖

holds for all f ∈ Lp(T2) (1 < p <∞). This yields

‖ fm |Lp(T2)‖ ∼ m1/2 , (12)

‖Bmfm |Lp(T2)‖ ∼ m, (13)

if 1 < p < ∞. Combining (11) with (12) and (13) the estimate from below
follows. The proof is complete.

Corollary 1. (i) Suppose 1 < p ≤ 2 and r > 1/p. Then

‖ I −Bm : SrpW (T2) 7→ Lp(T2)‖ ∼ m1/2 2−mr .

(ii) Suppose 2 < p <∞ and r > 1/p. Then there exists a constant c such that

‖ I −Bm : SrpW (T2) 7→ Lp(T2)‖ ≤ c m1−1/p 2−mr .
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Proof. The estimate from above becomes a consequence of the continuous
embedding SrpW (T2) ↪→ Srp,max{p,2}B(T2), cf. [8]. In (i) the estimate from
below follows from

‖ fm |SrpW (T2)‖ ∼ m1/2 2mr ,

where fm are the functions defined in (10).

Proof of the Theorem. Because of |Tm| ≤ (m + 1) 2m+2 the sampling op-
erator Bm can be used to estimate %Mm , where Mm = (3m + 1) 2m+1. An
application of Proposition 1 yields an upper bound for this particular sequence
%Mm

, m = 1, 2, . . . . Using the monotonicity of the numbers %M we arrive at
(1). This completes the proof.
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