Approximate Recovery of Functions and Besov Spaces of Dominating Mixed Smoothness

Winfried Sickel *

We derive an estimate from above for the approximate optimal recovery of bivariate periodic functions taken from a Besov space of dominating mixed smoothness.

1. Approximate Optimal Recovery

We study the effectiveness of the approximation by generalized sampling operators. Let F be a class of continuous, periodic functions defined on $\mathbb{T}^{2}=$ $[0,2 \pi)^{2}$. Then, following [15, Chapter 4, Section 5], we consider for fixed m, $\xi=\left(\xi^{1}, \xi^{2}, \ldots, \xi^{m}\right), \xi^{j} \in \mathbb{T}^{2}, j=1, \ldots, m$, and $\psi_{1}\left(x_{1}, x_{2}\right), \ldots, \psi_{m}\left(x_{1}, x_{2}\right)$ the linear operator

$$
\Psi_{m}(f, \xi)\left(x_{1}, x_{2}\right):=\sum_{j=1}^{m} f\left(\xi^{j}\right) \psi_{j}\left(x_{1}, x_{2}\right)
$$

and define the quantities

$$
\Psi_{m}\left(F, \xi, L_{p}\left(\mathbb{T}^{2}\right)\right):=\sup _{f \in F}\left\|\Psi_{m}(f, \xi)-f \mid L_{p}\left(\mathbb{T}^{2}\right)\right\|
$$

and

$$
\varrho_{m}\left(F, L_{p}\left(\mathbb{T}^{2}\right)\right):=\inf _{\psi_{1}, \ldots, \psi_{m}} \inf _{\xi} \Psi_{m}\left(F, \xi, L_{p}\left(\mathbb{T}^{2}\right)\right)
$$

Hence $\varrho_{m}\left(F, L_{p}\left(\mathbb{T}^{2}\right)\right)$ measures the optimal approximate recovery of the functions from F. Here we are interested in the case when F is the unit ball in a Besov space $S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)$ of dominating mixed smoothness (a definition will be given below). Our main result reads as follows.

Theorem 1. Let $1<p<\infty, 1 \leq q \leq \infty$, and $r>1 / p$. Let F be the unit ball in $S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)$. For any natural number m there exists a system of points $\xi^{1}, \ldots, \xi^{m} \in \mathbb{T}^{2}$, a collection of trigonometric polynomials $\psi_{1}\left(x_{1}, x_{2}\right), \ldots$, $\psi_{m}\left(x_{1}, x_{2}\right)$, and a constant C (independent of m) such that

$$
\begin{equation*}
\sup _{f \in F}\left\|\Psi_{m}(f, \xi)-f \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| \leq C m^{-r}(\log m)^{r+1-1 / q} \tag{1}
\end{equation*}
$$

[^0]Remark 1. Our proof will be constructive. The functions $\psi_{j}\left(x_{1}, x_{2}\right), j=$ $1, \ldots, m$, are always certain tensor products of shifts of the (one-dimensional) Dirichlet kernel. Also the points ξ are given explicitly, cf. Section 2.

Remark 2. In case $q=\infty$ the estimate (1) has been proved earlier by Temlyakov, cf. [15, Chapter 4, Theorem 5.1].

2. The Sampling Operator

As usual, \mathbb{N} stands for the natural numbers, by \mathbb{N}_{0} we denote the natural numbers including 0 and by \mathbb{Z}^{d} the d-tupels of integers. Let

$$
\mathcal{D}_{m}(t):=\sum_{|k| \leq m} e^{i k t}, \quad t \in \mathbb{T}, \quad m \in \mathbb{N}_{0}
$$

be the Dirichlet kernel and let

$$
I_{m} f(t):=\frac{1}{2 m+1} \sum_{\ell=0}^{2 m} f\left(t_{\ell}\right) \mathcal{D}_{m}\left(t-t_{\ell}\right), \quad t_{\ell}=\frac{2 \pi \ell}{2 m+1}
$$

be the unique trigonometric polynomial of degree less than or equal to m which interpolates f at the nodes t_{ℓ}. We do not need the complete sequence of interpolatory polynomials of a given function. We concentrate on a dyadic subsequence. To have a convenient notation we put $L_{j}:=I_{2^{j}}, j=0,1, \ldots$ By $L_{j, k}:=L_{j} \otimes L_{k}$ we denote the tensor product of L_{j} and L_{k}. The sampling operators B_{m} we are going to study are defined as

$$
B_{m}:=\sum_{j=0}^{m} L_{j, m-j}-\sum_{j=0}^{m-1} L_{j, m-j-1}, \quad m=1,2, \ldots
$$

This is Smolyak's construction (sometimes called Smolyak algorithm or blending operators) with respect to the L_{j}, cf. e.g. $[2,11,12,15,17]$. We collect a few properties of B_{m}. Therefore we need some further notations. As usual, let

$$
c_{k}(f)=(2 \pi)^{-d} \int_{\mathbb{T}^{d}} f(t) e^{-i k t} d t, \quad k \in \mathbb{Z}^{d}
$$

be the Fourier coefficient of $f \in L_{1}\left(\mathbb{T}^{d}\right)$. We put

$$
\begin{aligned}
\mathcal{T}_{m}:=\left\{\left(\frac{2 \pi \ell_{1}}{2^{j+1}+1}, \frac{2 \pi \ell_{2}}{2^{m-j+1}+1}\right): 0 \leq \ell_{1} \leq 2^{j+1}, 0 \leq \ell_{2}\right. & \leq 2^{m-j+1} \\
& j=0, \ldots, m\}
\end{aligned}
$$

Lemma 1. Let $m \in \mathbb{N}$.
(i) B_{m} uses samples of f from the sparse grid $\mathcal{T}_{m} \cup \mathcal{T}_{m-1}$.
(ii) It holds $c_{k}\left(B_{m} f\right)=0$ if

$$
k \notin H_{m}:=\left\{\left(\ell_{1}, \ell_{2}\right): \exists r \in\left(\mathbb{N}_{0} \cap[0, m]\right) \text { s.t. }\left|\ell_{1}\right| \leq 2^{r} \text { and }\left|\ell_{2}\right| \leq 2^{m-r}\right\} .
$$

(iii) Suppose that f is a trigonometric polynomial with harmonics from H_{m}. Then $B_{m} f=f$.

Proof. Using the projection property of L_{j} the proof is elementary, but see also [14].

3. Besov Spaces of Dominating Mixed Smoothness

For us it is convenient to introduce the Besov spaces by making use of a Littlewood-Paley decomposition, cf. [6, 9]. Let

$$
\begin{gathered}
P_{0}=(-1,1), \quad P_{j}=\left\{x: 2^{j-1} \leq|x|<2^{j}\right\}, \quad j \in \mathbb{N}, \\
P_{j, k}=P_{j} \times P_{k}, \quad j, k \in \mathbb{N}_{0}
\end{gathered}
$$

As an abbreviation we shall use

$$
f_{j, k}(x)=\sum_{\ell \in P_{j, k}} c_{\ell}(f) e^{i \ell x}, \quad x \in \mathbb{T}^{2}, \quad j, k \in \mathbb{N}_{0}
$$

which results in

$$
f=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} f_{j, k}
$$

Let $1<p<\infty, 1 \leq q \leq \infty$, and $r>0$. Then the Besov space $S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)$ of dominating mixed smoothness is the collection of all functions $f \in L_{p}\left(\mathbb{T}^{2}\right)$ such that

$$
\left\|f \mid S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)\right\|:=\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} 2^{r(j+k) q}\left\|f_{j, k} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\|^{q}\right)^{1 / q}<\infty
$$

For $r>1 / p$ one knows that $S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)$ contains continuous functions only, cf. [9, 2.4.1].

4. The Approximation Power of $\boldsymbol{B}_{\boldsymbol{m}}$

Let I be the identity operator (we do not indicate the space where I is considered, hoping this will be clear from the context). We recall the identity

$$
\begin{align*}
I \otimes I-B_{m}= & \left(I-L_{m}\right) \otimes L_{0}+I \otimes\left(I-L_{m}\right) \\
& +\sum_{j=0}^{m-1}\left(I-L_{j}\right) \otimes\left(L_{m-j}-L_{m-j-1}\right) \tag{2}
\end{align*}
$$

valid for each $m \in \mathbb{N}$, cf. [2, Prop. 1.4/2] or [17], the following assertion concerning tensor products of Sobolev spaces

$$
\begin{equation*}
W_{p}^{r}(\mathbb{T}) \otimes_{\alpha_{p}} W_{p}^{r}(\mathbb{T})=S_{p}^{r} W\left(\mathbb{T}^{2}\right), \quad 1<p<\infty, r \geq 0 \tag{3}
\end{equation*}
$$

(here α_{p} denotes the p-nuclear norm and $S_{p}^{r} W\left(\mathbb{T}^{2}\right)$ denotes a Sobolev space of dominating mixed smoothness), cf. [13], and

$$
\begin{equation*}
\left\|f-L_{j} f\left|L_{p}(\mathbb{T})\left\|\leq c 2^{-j r}\right\| f\right| W_{p}^{r}(\mathbb{T})\right\| \tag{4}
\end{equation*}
$$

with some constant c independent of f and $j(1<p<\infty, r>1 / p$, cf. $[3,4,15,10])$. Since α_{p} is an uniform norm it follows from (2)-(4) that

$$
\begin{equation*}
\left\|f-B_{m} f\left|L_{p}\left(\mathbb{T}^{2}\right)\left\|\leq C m 2^{-m r}\right\| f\right| S_{p}^{r} W\left(\mathbb{T}^{2}\right)\right\| \tag{5}
\end{equation*}
$$

$(1<p<\infty, r>1 / p)$ holds with some constant C independent of f and m. In what follows we shall show that one can replace the factor m on the right-hand side of (5) by m^{γ} with $\gamma<1$. We denote $a \sim b$ if there exists a constant $c>0$ (independent of the context dependent relevant parameters) such that

$$
c^{-1} a \leq b \leq c a
$$

Proposition 1. Suppose $1<p<\infty, 1 \leq q \leq \infty$, and $r>1 / p$. Then

$$
\begin{equation*}
\left\|I-B_{m}: S_{p, q}^{r} B\left(\mathbb{T}^{2}\right) \mapsto L_{p}\left(\mathbb{T}^{2}\right)\right\| \sim m^{1-\frac{1}{q}} 2^{-m r} \tag{6}
\end{equation*}
$$

Proof. Step 1. Using the projection property of L_{j} we derive

$$
\begin{equation*}
\left(\left(I-L_{j}\right) \otimes\left(L_{m-j}-L_{m-j-1}\right)\right) f_{u, v}=0 \tag{7}
\end{equation*}
$$

if either $j \geq u$ or if $m-j-1 \geq v$. Next we recall the Littlewood-Paley characterization of $S_{p}^{r} W\left(\mathbb{T}^{2}\right)$. If $1<p<\infty$ and $r \geq 0$, then

$$
\begin{equation*}
\left\|\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} 2^{r(j+k) 2}\left|f_{j, k}\right|^{2}\right)^{1 / 2} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| \tag{8}
\end{equation*}
$$

generates an equivalent norm on $S_{p}^{r} W\left(\mathbb{T}^{2}\right)$, cf. [6]. Let r_{0} be a real number such that $1 / p<r_{0}<r$. Further, we shall use the abbreviation $a_{+}=\max \{a, 0\}$ for real numbers a. We derive from (4), (7), and (8)

$$
\begin{aligned}
& \| \sum_{j=0}^{m-1}\left(\left(I-L_{j}\right) \otimes\left(L_{m-j}-L_{m-j-1}\right)\right) f_{u, v} \mid L_{p}\left(\mathbb{T}^{2}\right) \| \\
& \quad \leq \sum_{j=\max \{0, m-v\}}^{\min \{u-1, m-1\}}\left\|\left(I-L_{j}\right) \otimes\left(L_{m-j}-L_{m-j-1}\right) f_{u, v} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| \\
& \quad \leq c_{1} 2^{-m r_{0}}(\min \{u-1, m-1\}-\max \{0, m-v\})_{+}\left\|f_{u, v} \mid S_{p}^{r_{0}} W\left(\mathbb{T}^{2}\right)\right\| \\
& \quad \leq c_{2} 2^{-m r_{0}}(\min \{u-1, m-1\}-\max \{0, m-v\})_{+} 2^{(u+v) r_{0}}\left\|f_{u, v} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\|
\end{aligned}
$$

for some constant c_{2} independent of f. Because of (3), (2) and (4) this implies

$$
\begin{align*}
& \left\|f_{u, v}-B_{m} f_{u, v} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| \\
& \leq c 2^{-m r_{0}}(\min \{u, m\}-\max \{0, m-v\})_{+} 2^{(u+v) r_{0}}\left\|f_{u, v} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| \\
& \quad+\left\|\left(\left(I-L_{m}\right) \otimes L_{0}\right) f_{u, v}\left|L_{p}\left(\mathbb{T}^{2}\right)\|+\|\left(I \otimes\left(I-L_{m}\right)\right) f_{u, v}\right| L_{p}\left(\mathbb{T}^{2}\right)\right\| \tag{9}\\
& \leq c\left(1+(\min \{u, m\}-\max \{0, m-v\})_{+}\right) 2^{(u+v-m) r_{0}}\left\|f_{u, v} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\|
\end{align*}
$$

for some constant c independent of f, m, u and v and for arbitrary $r_{0}>1 / p$. Here we used also the boundedness of L_{0} considered as a mapping of $W_{p}^{r_{0}}(\mathbb{T})$ into $L_{p}(\mathbb{T})$, cf. (3) and (4).

Step 2. Let $1 / q+1 / q^{\prime}=1$. For given m we shall use the splitting $f=$ $f_{1}+f_{2}+f_{3}+f_{4}+f_{5}$, where

$$
\begin{gathered}
f_{1}=\sum_{u+v \leq m} f_{u, v}, \quad f_{2}=\sum_{u=1}^{m} \sum_{v=m-u+1}^{m} f_{u, v}, \quad f_{3}=\sum_{u=0}^{m} \sum_{v=m+1}^{\infty} f_{u, v} \\
f_{4}=\sum_{u=m+1}^{\infty} \sum_{v=0}^{m} f_{u, v}, \quad \text { and } \quad f_{5}=\sum_{u=m+1}^{\infty} \sum_{v=m+1}^{\infty} f_{u, v}
\end{gathered}
$$

Lemma 1(iii) yields $B_{m} f_{1}=f_{1}$. Furthermore, with $r_{0}<r$ we derive from (9) and Hölder's inequality

$$
\begin{aligned}
& \left\|f_{2}-B_{m} f_{2}\left|L_{p}\left(\mathbb{T}^{2}\right)\left\|\leq c_{1} \sum_{u=1}^{m} \sum_{v=m-u+1}^{m} 2^{(u+v-m) r_{0}}(u+v-m)\right\| f_{u, v}\right| L_{p}\left(\mathbb{T}^{2}\right)\right\| \\
& \quad \leq c_{1} 2^{-m r_{0}}\left(\sum_{u=1}^{m} \sum_{v=m-u+1}^{m} 2^{(u+v)\left(r_{0}-r\right) q^{\prime}}(u+v-m)^{q^{\prime}}\right)^{1 / q^{\prime}}\left\|f_{2} \mid S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)\right\| \\
& \quad=c_{1} 2^{-m r}\left(\sum_{u=1}^{m} \sum_{\ell=1}^{u} 2^{\ell\left(r_{0}-r\right) q^{\prime}} \ell^{q^{\prime}}\right)^{1 / q^{\prime}}\left\|f_{2} \mid S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)\right\| \\
& \quad \leq c_{2}(m+1)^{1 / q^{\prime}} 2^{-m r}\left\|f_{2} \mid S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)\right\|
\end{aligned}
$$

Similarly we proceed in estimating $f_{i}-B_{m} f_{i}, i=3,4,5$. We find

$$
\begin{aligned}
\left\|f_{3}-B_{m} f_{3} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| & \leq c_{1} \sum_{u=0}^{m} \sum_{v=m+1}^{\infty} 2^{(u+v-m) r_{0}}(1+u)\left\|f_{u, v} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| \\
& \leq c_{1}\left\|f_{3} \mid S_{p, \infty}^{r} B\left(\mathbb{T}^{2}\right)\right\| \sum_{u=0}^{m} \sum_{v=m+1}^{\infty} 2^{(u+v)\left(r_{0}-r\right)} 2^{-m r_{0}}(1+u) \\
& \leq c_{2} 2^{-m r}\left\|f_{3} \mid S_{p, \infty}^{r} B\left(\mathbb{T}^{2}\right)\right\|
\end{aligned}
$$

and analogously

$$
\left\|f_{i}-B_{m} f_{i}\left|L_{p}\left(\mathbb{T}^{2}\right)\left\|\leq c 2^{-m r}\right\| f_{i}\right| S_{p, \infty}^{r} B\left(\mathbb{T}^{2}\right)\right\|, \quad i=4,5
$$

This proves the estimate from above.
Step 3. Estimate from below. We employ lacunary series as test functions. Let

$$
\begin{equation*}
f_{m}\left(x_{1}, x_{2}\right):=\sum_{u=2}^{m-1} e^{i 2^{u} x_{1}+i 2^{m-u+1} x_{2}}, \quad m=3,4, \ldots \tag{10}
\end{equation*}
$$

Then
$B_{m} f_{m}\left(x_{1}, x_{2}\right)=-(m-2) e^{-i\left(x_{1}+x_{2}\right)}+\sum_{u=2}^{m-1} e^{i 2^{u} x_{1}-i x_{2}}+\sum_{u=2}^{m-1} e^{-i x_{1}+i 2^{m-u+1} x_{2}}$.
Obviously

$$
\begin{equation*}
\left\|f_{m} \mid S_{p, q}^{r} B\left(\mathbb{T}^{2}\right)\right\| \quad \sim \quad m^{1 / q} 2^{m r} \tag{11}
\end{equation*}
$$

To calculate the L_{p}-norm of f_{m} and B_{m} we shall use the following LittlewoodPaley assertion, cf. [6]. There exist positive constants A_{p} and B_{p} such that

$$
A_{p}\left\|f\left|L_{p}\left(\mathbb{T}^{2}\right)\|\leq\|\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left|f_{j, k}(x)\right|^{2}\right)^{1 / 2}\right| L_{p}\left(\mathbb{T}^{2}\right)\right\| \leq B_{p}\left\|f \mid L_{p}\left(\mathbb{T}^{2}\right)\right\|
$$

holds for all $f \in L_{p}\left(\mathbb{T}^{2}\right)(1<p<\infty)$. This yields

$$
\begin{align*}
\left\|f_{m} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| & \sim m^{1 / 2} \tag{12}\\
\left\|B_{m} f_{m} \mid L_{p}\left(\mathbb{T}^{2}\right)\right\| & \sim m \tag{13}
\end{align*}
$$

if $1<p<\infty$. Combining (11) with (12) and (13) the estimate from below follows. The proof is complete.

Corollary 1. (i) Suppose $1<p \leq 2$ and $r>1 / p$. Then

$$
\left\|I-B_{m}: S_{p}^{r} W\left(\mathbb{T}^{2}\right) \mapsto L_{p}\left(\mathbb{T}^{2}\right)\right\| \quad \sim \quad m^{1 / 2} 2^{-m r}
$$

(ii) Suppose $2<p<\infty$ and $r>1 / p$. Then there exists a constant c such that

$$
\left\|I-B_{m}: S_{p}^{r} W\left(\mathbb{T}^{2}\right) \mapsto L_{p}\left(\mathbb{T}^{2}\right)\right\| \leq c m^{1-1 / p} 2^{-m r}
$$

Proof. The estimate from above becomes a consequence of the continuous embedding $S_{p}^{r} W\left(\mathbb{T}^{2}\right) \hookrightarrow S_{p, \max \{p, 2\}}^{r} B\left(\mathbb{T}^{2}\right)$, cf. [8]. In (i) the estimate from below follows from

$$
\left\|f_{m} \mid S_{p}^{r} W\left(\mathbb{T}^{2}\right)\right\| \quad \sim \quad m^{1 / 2} 2^{m r}
$$

where f_{m} are the functions defined in (10).

Proof of the Theorem. Because of $\left|\mathcal{T}_{m}\right| \leq(m+1) 2^{m+2}$ the sampling operator B_{m} can be used to estimate $\varrho_{M_{m}}$, where $M_{m}=(3 m+1) 2^{m+1}$. An application of Proposition 1 yields an upper bound for this particular sequence $\varrho_{M_{m}}, m=1,2, \ldots$ Using the monotonicity of the numbers ϱ_{M} we arrive at (1). This completes the proof.

References

[1] G. Baszenski and F.-J. Delvos, A discrete Fourier transform scheme for Boolean sums of trigonometric operators, in "International Series of Numerical Mathematics", pp. 15-24, Birkhäuser, Basel, 1989.
[2] F.-J. Delvos and W. Schempp, "Boolean Methods in Interpolation and Approximation", Longman Scientific \& Technical, Harlow, 1989.
[3] V. N. Hristov, On convergence of some interpolation processes in integral descrete norms, in "Constructive Theory of Functions '81", pp. 185-188, BAN, Sofia, 1983.
[4] K. G. Ivanov, On the rates of convergence of two moduli of functions, Pliska Stud. Math. Bulgar. 15 (1983), 97-104.
[5] P. I. Lizorkin, On Fourier multipliers in spaces $L_{p, \Theta}$, Trudy Mat. Inst. Steklov 89 (1967), 231-248.
[6] S. M. Nikol'skij, "Approximation of Functions of Several Variables and Imbedding Theorems", Springer, Berlin, 1975.
[7] H.-J. Schmeisser, An unconditional basis in periodic spaces with dominating mixed smoothness properties, Anal. Math. 13 (1987), 153-168.
[8] H.-J. Schmeisser and W. Sickel, Spaces of functions of mixed smoothness and their relations to approximation from hyperbolic crosses, Preprint, Jena, 2002.
[9] H.-J. Schmeisser and H. Triebel, "Topics in Fourier Analysis and Function Spaces", Wiley, Chichester, 1987.
[10] W. Sickel, Some remarks on trigonometric interpolation on the n-torus, Z. Anal. Anwendungen 10 (1991), 551-562.
[11] W. Sickel and F. Sprengel, Interpolation on sparse grids and Nikol'skijBesov spaces of dominating mixed smoothness, J. Comp. Anal. Appl. 1 (1999), 263-288.
[12] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk USSR 148 (1963), 1042-1045.
[13] F. Sprengel, A tool for approximation in bivariate periodic Sobolev spaces, in "Approximation Theory IX", Vol. 2, pp. 319-326, Vanderbilt Univ. Press, Nashville, 1999.
[14] V. N. Temlyakov, On approximate recovery of functions with bounded mixed derivatives, J. Complexity 9 (1993), 41-59.
[15] V. N. Temlyakov, "Approximation of Periodic Functions", Nova Science, New York, 1993.
[16] V. M. Tikhomirov, Approximation theory, in "Encyclopaedia of Math. Sciences" Vol. 14 (1990), Springer, Berlin, pp. 93-244.
[17] G. Wasilkowski and H. Woźniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity 11 (1995), 1-56.
[18] A. Zygmund, "Trigonometric Series", Cambridge Univ. Press, Cambridge, 1959.

Winfried Sickel
Mathematisches Institut
Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 1-4
D-07743 Jena
GERMANY
E-mail: sickel@minet.uni-jena.de

[^0]: *Supported by the German Research Foundation under Grant No. SCHM 969-3.

