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Solving Equations by q-iterative Methods and
q-Sendov Conjecture

Miomir S. Stanković, Predrag M. Rajković and
Sladjana D. Marinković ∗

We develop methods which include q-derivatives for solving equations.
They are very useful when the continuous function does not have fine
smooth properties. We will discuss the convergence and accuracy of
those methods and compare them with well-known methods.

1. Introduction

At the last quarter of XX century, q-calculus appears like a connection
between mathematics and physics (see [5], [6]). It has a lot of applications in
different mathematical areas such as number theory, combinatorics, orthogonal
polynomials, basic hyper geometric functions and in other sciences like quantum
theory, mechanics and theory of relativity.

Let q ∈ (0, 1).A q-natural number [n]q is defined by [n]q := 1+q+· · ·+qn−1,
n ∈ N. Generally, a q-complex number [a]q is [a]q := (1 − qa)/(1 − q), a ∈ C.
The factorial of a number [n]q is [0]q! := 1, [n]q! := [n]q[n−1]q · · · [1]q, n ∈ N.

The q-derivative of a function f(z) is

(Dqf)(z) :=
f(z)− f(qz)

z − qz
(z 6= 0), (Dqf)(0) := lim

z→0
(Dqf)(z),

and high q-derivatives are D0
qf := f, Dn

q f := Dq(D
n−1
q f), n = 1, 2, 3, . . .

Notice that a continuous function on an interval, which does not include 0, is
continuously q-differentiable.

Jackson’s q-Taylor formula (see [3], [4] and [2]) is given by

f(z) =

∞∑
k=0

(
Dk
q f
)
(a)

[k]q!
(z − a)(k),

where (z − a)(0) = 1, (z − a)(k) =
k−1∏
i=0

(z − aqi), k ∈ N.
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In q-analysis, we define q-integral by

Iq(f) =

∫ a

0

f(t)dq(t) := a(1− q)
∞∑
n=0

f(aqn)qn, I1(f) = I(f) =

∫ a

0

f(t) dt.

Notice that I(f) = lim
q↑1

Iq(f). Also,

∫ b

a

f(t)dq(t) :=

∫ b

0

f(t)dq(t)−
∫ a

0

f(t)dq(t).

The next q-Taylor formula with a remainder term

f(z) =

n−1∑
k=0

(
Dk
q f
)
(a)

[k]q!
(z − a)(k) +Rn(f, z, a, q),

where

Rn(f, z, a, q) =

∫ t=z

t=a

(z − qt)(n−1)
(
Dn
q f
)
(t)

[n− 1]q!
dq(t).

is given in the paper of Ernst [2] (also see Jing and Fan [4]).

2. Analysis of the Convergence of an Iterative Process
by q-derivative

Our purpose is to formulate and prove a theorem for scanning the conver-
gence of an iterative process

xk+1 = Φ(xk), k = 0, 1, 2, . . . ,

by q-analysis. We have studied it for the first time in our paper [7].

The next lemma is needed.

Lemma 1. Let Φ(x) be a continuous function on [a, b] (0 /∈ [a, b]). Then,
for all x and y such that a < x < y < b, it is valid

Φ(y)− Φ(x) =
(
Dx/yΦ

)
(y)(y − x), Φ(y)− Φ(x) =

(
Dy/xΦ

)
(x)(y − x).

Proof. Taking q′ = x/y for the first, and q′′ = y/x, for the second case, we
derive the statement.

Now, we can prove the main result of this section.
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Theorem 1. Suppose that Φ(x) is a continuous function on [a, b] (0 /∈
[a, b]), which satisfies the next conditions:

(i) Φ : [a, b] 7→ [a, b];

(ii)
(
∀q ∈ (min{a, b}/max{a, b}, 1)

)(
∀x ∈ (a, b)

)
:
∣∣(Dqf)(x)

∣∣ ≤ d < 1.

Then the iterative process xk+1 = Φ(xk), k ∈ N0, with initial value x0 ∈ [a, b],
is converging to the fixed point of Φ(x), i.e., lim

k→∞
xk = ξ, Φ(ξ) = ξ.

Proof. Let us consider the series ξ = x0 +
∞∑
k=0

(xk+1 − xk). Let x
(M)
k =

max{xk, xk−1}, x(m)
k = min{xk, xk−1} and q = x

(m)
k /x

(M)
k . According to

Lemma 1, we have

Φ(xk)− Φ(xk−1) = (DqΦ)(x
(M)
k )(xk − xk−1).

So, ∣∣xk+1 − xk
∣∣ =

∣∣(DqΦ
)
(x

(M)
k )

∣∣|xk − xk−1| ≤ d|xk − xk−1|.
A repeated use of the last estimate yields

∣∣xk+1 − xk
∣∣ ≤ dk|x1 − x0|, and

therefore
∞∑
k=0

|xk+1 − xk| ≤ |x1 − x0|
∞∑
k=0

dk =
|x1 − x0|

1− d
.

Hence, the series S converges and ξ = lim
n→∞

Sn = lim
n→∞

xn+1. Since Φ(x) is a

continuous function, we have

ξ = lim
n→∞

xn+1 = lim
n→∞

Φ(xn) = Φ( lim
n→∞

xn) = Φ(ξ).

Definition 1. An iterative method xk+1 = Φ(xk) with a fixed point ξ has
(r; q)-order of convergence if there exists a constant Cr ∈ R+ such that

|ξ − xn+1| ≤ Cr|(ξ − xn)(r)|

for large enough n.

3. On q-Newton Method

Suppose that the equation f(x) = 0 has a unique isolated solution x = ξ.
If xn is an approximation for the exact solution ξ, by using Jackson’s q-Taylor
formula, we have

0 = f(ξ) ≈ f(xn) + (Dqf)(xn)(ξ − xn) ⇒ ξ ≈ xn −
f(xn)

(Dqf)(xn)
.
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So, we can construct q-Newton method

xn+1 = xn −
f(xn)

(Dqf)(xn)
or xn+1 = xn

(
1− 1− q

1− f(qxn)/f(xn)

)
.

This method, written in the form

xn+1 = xn −
xn − qxn

f(xn)− f(qxn)
f(xn),

reminds of the method of chords (secants).
The next theorem is a q-analogue of a well-known result (see Bakhvalov [1]).

Theorem 2. Let the equation f(x) = 0 has a unique isolated root x = ξ
and a > 0, 1 ≤ p ≤ 2. If the function f(x) satisfies

(i) |(Dqf)(x)| ≥Mp−1
1 > 0,

(ii) |f(x)− f(y)− (Dqf)(y)(x− y)| < Lp−1|x− y|p,
then, for all initial values x0 ∈ (ξ − b, ξ + b), where b = min{a,M1/L}, the
q-Newton method converges to the exact solution of the equation f(x) = 0 and

|ξ − xn| ≤
M1

L

(
L

M1
|ξ − x0|

)pn
.

Proof. We can write the q-Newton method in the form

(Dqf)(xn)(xn+1 − xn) = −f(xn).

From the condition (ii), we have

|f(ξ)− f(xn)− (Dqf)(xn)(ξ − xn)| < Lp−1|ξ − xn|p.

Hence, using the fact that f(ξ) = 0, we obtain

|(Dqf)(xn)(ξ − xn+1)| < Lp−1|ξ − xn|p.

By condition (i),

|ξ − xn+1| <
Lp−1

|(Dqf)(xn)|
|ξ − xn|p <

( L

M1

)p−1
|ξ − xn|p.

Now, if xn ∈ (ξ − b, ξ + b), then

|ξ − xn+1| <
( L

M1

)p−1
bp =

( L

M1

)p−1
bp−1b ≤ b.

Let us denote c = L/M1. Now

|ξ − xn+1| < cp−1|ξ − xn|p ⇒ c |ξ − xn+1| < cp|ξ − xn|p,

which yields the final conclusion.
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4. An Error Estimation

First of all, we shall give a q-analogue of the well-known mean value theorem
for integrals which we have proved in our paper [8].

Theorem 3. Let f(x) and g(x) be some continuous functions on [a, b].
Then there exists q̂ ∈ (0, 1) such that(

∀q ∈ (q̂, 1)
)(
∃τ ∈ (a, b)

)
: Iq(fg) = g(τ)Iq(f).

Let us return to the q-Taylor formula with a remainder term.

Theorem 4. Let f(x) be a continuous function on [a, b] and Rn(f, z, c, q),
(z, c ∈ (a, b)) be the remainder term in the q-Taylor formula. Then there exists
q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1), one can find a point τ ∈ (a, b) between c
and z which satisfies

Rn(f, z, c, q) =
(Dn

q f)(τ)

[n− 1]q!

∫ t=z

t=c

(z − qt)(n−1)dq(t).

Proof. Since f(x) is a continuous function on [a, b], it can be expanded by
the q-Taylor formula of order n at the point c with the remainder term

Rn(f, z, c, q) =

∫ t=z

t=c

(z − qt)(n−1)
(Dn

q f)(t)

[n− 1]q!
dq(t).

Notice that the functions (z − t)(n−1) and (Dn
q f)(t)/[n − 1]q! are continuous

on the segment between c and z which is contained in (a, b). According to
Theorem 3, there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) one can find a
point τ between c and z such that the statement of theorem is valid.

Now, we are ready to prove the main theorem of this section.

Theorem 5. Suppose that the function f(x) is continuous on [a, b] and the
equation f(x) = 0 has a unique isolated solution ξ ∈ (a, b). If the conditions

|(Dqf)(x)| ≥M1 > 0, |(D2
qf)(x)| ≤M2

are satisfied for all x ∈ (a, b), then there exists q̂ ∈ (0, 1) such that for all
q ∈ (q̂, 1), the iterations obtained by the q-Newton method satisfy

|ξ − xk+1| ≤
M2

(1 + q)M1
|(ξ − xk)(2)|,

i.e., the q-Newton method has (2; q)-order of convergence.
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Proof. From the formulation of the q-Newton method we have

xk+1 − ξ = xk − ξ −
f(xk)

(Dqf)(xk)
.

Hence
f(xk) + (Dqf)(xk)(ξ − xk) = (Dqf)(xk)(ξ − xk+1).

By using q-Taylor’s formula of order n = 2 at the point xk for f(ξ), we have

f(ξ) = f(xk) + (Dqf)(xk)(ξ − xk) +R2(f, ξ, xk, q).

Since f(ξ) = 0, we obtain (Dqf)(xk)(ξ − xk+1) = −R2(f, ξ, xk, q), i.e.,

|ξ − xk+1| =
|R2(f, ξ, xk, q)|
|(Dqf)(xk)|

.

According to Theorem 4, there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) a
point τ ∈ (a, b) can be found such that

R2(f, ξ, xk, q) = (D2
qf)(τ)

∫ t=ξ

t=xk

(ξ − qt)dq(t).

Evaluating the last integral, by definition, we obtain∫ t=ξ

t=xk

(ξ − qt)dq(t) =
(ξ − xk)(ξ − qxk)

1 + q
.

Thus

|ξ − xk+1| =
|(D2

qf)(τ))|
|(Dqf)(xk)|

(ξ − xk)(2)

1 + q
.

Using now the conditions the function f(x) and its q-derivatives have been
supposed to satisfy we finish the proof of the theorem.

5. On q-Sendov Conjectures

These methods can be successfully used for finding all zeros of complex poly-
nomials. Our numerical investigations persuade us that the next conjectures
might be true.

Conjecture 1 (q-Sendov). If all zeros of a polynomial lie in the unit cir-
cle, then the circle of radius 1 centered at each of them contains a zero of the
q-derivative of the polynomial.

Conjecture 2 (Strong q-Sendov). If all zeros of a polynomial p lie in the
unit circle, then there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) the circle of
radius q centered at each zero of p contains a zero of the q-derivative of the
polynomial.
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Remark. The bound q̂ can not be excluded from Conjecture 2. Here is a
simple counterexample for it. Let us consider the polynomial p(z) = 4z2 − 1
whose zeros are z1 = −1/2 and z2 = 1/2. Now, its q-derivative is (Dqp)(z) =
(1 + q)z. Obviously, for q < 1/2, the zero w = 0 of (Dqp)(z) does not lie in any
of the disks {z : |z − zk| < q} (k = 1, 2).
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orems in q-calculus, 5th International Symposium on Mathematical Analysis and
its Applications, Nǐs, Yugoslavia, 2002.
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