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On Uniform Summability of Discrete
(Interpolatory) Processes

László Szili ∗

The aim of this paper is to construct a wide class of discrete trigono-
metric or algebraic polynomial processes which are uniformly convergent
in a suitable Banach space of continuous functions.

1. Introduction

The Lagrange interpolation is one of the most natural discrete approximat-
ing tools on an interval I ⊂ R. However, as it was proved by G. Faber in 1914,
there is no point system for which the corresponding sequence of Lagrange in-
terpolatory polynomials converges uniformly for all continuous functions. It is
natural to ask how to construct such processes which are uniformly convergent
in suitable spaces of continuous functions.

One way of achieving this aim is to loosen the strict condition on the degree
of interpolating polynomials, thus introducing free parameters to be suitably
determined for the uniform convergence (see [8, Chapter II], [2], [16], [14]). The
success of a construction like this strongly depends on the matrix of nodes.

Another way to obtain uniformly convergent discrete processes is to consider
suitable sums of the Lagrange interpolatory polynomials (see [1], [6], [3], [15],
[10], [11]).

In Section 2 we shall define a wide class of discrete processes using the so
called Θ-summation and we shall formulate a very general problem with respect
to the uniform convergence in a suitable Banach space of continuous functions.
The aim of this paper is to solve this problem choosing the parameters and the
Banach spaces in various ways. The uniform convergence of the corresponding
processes would follow immediately from their explicit form.

Several interpolatory properties of the corresponding polynomials will be
also given from which many earlier results of the interpolation theory can be
obtained as corollaries of our general theorems.
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2. A General Construction of Discrete Processes

Let I ⊂ R be an interval and let us fix the natural numbers m and N .
Consider a point system XN := {xN,N < xN−1,N < · · · < x1,N}, a discrete
measure (or nonnegative weights) µN := {µN,N , µN−1,N , . . . , µ1,N} and a ba-
sis Pm :=

{
p0, p1, . . . , pm

}
in the linear space of trigonometric or algebraic

polynomials with real coefficients of degree not greater than m.
We investigate summation processes generated by a function Θ as defined

below. Let us denote by Φ the set of summation functions Θ : [0,+∞) → R
satisfying the following requirements:

(i) supp Θ ⊂ [0, 1],
(ii) limt→0+ Θ(t) = Θ(0) := 1,
(iii) the limits Θ(t0±0) := limt→t0±0 Θ(t) exist and they are finite at every

point t0 ∈ [0,+∞),
(iv) for all t ≥ 0 the function value Θ(t) lies in the closed interval deter-

mined by Θ(t− 0) and Θ(t+ 0).

It may be shown that (see [10, p. 161]) Θ is continuous except at most at a
countable set of points in [0, 1].

For an arbitrary function f : I → R, we define(
SΘ
m,Nf

)
(x) := SΘ

m,N

(
f,XN , µN , Pm, x

)
:=

m∑
l=0

Θ
( l
m

)
cl,N (f)pl(x), (1)

where

cl,N (f) := cl,N (f,XN , µN , Pm) :=

N∑
k=1

f(xk,N )pl(xk,N )µk,N .

With any two index sequences (mn, n ∈ N := {1, 2, . . . }) and (Nn, n ∈ N) we
associate the sequence of polynomials(

SΘ
mn,Nnf, n ∈ N

)
(2)

for all f : I → R.
The following problem will be investigated:

Problem 1. Choose the parameters XNn , µNn , Pmn , so that the correspond-
ing sequence (2) tends uniformly to f in a suitable subspace of continuous func-
tions for a fairly wide class of summation functions Θ.

3. The Trigonometric Case

Let us fix a natural number N ∈ N and consider the equidistant point
system XN := {xk,N := k 2π

N | k = 0, 1, . . . , N − 1}, the discrete measure
µk,N := 1

N (k = 0, 1, . . . , N − 1), and the complex trigonometric system
pj(x) := eijx (x ∈ R, j ∈ Z).
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In this case we assume that the summation function Θ : R→ R is even and
on the interval [0,+∞) it satisfies the conditions of Section 2. The convergence
will be considered in the Banach space (C2π, ‖ · ‖∞), where C2π denotes the
linear space of complex valued 2π-periodic continuous functions defined on R
and ‖ · ‖∞ is the supremum norm.

A necessary and sufficient condition may be given for the summation func-
tion Θ which guarantees the uniform convergence of (2).

Theorem 1 ([10, Theorem 1]). Suppose that one of the following two con-
ditions holds:

(a) Θ ∈ Φ and for the index sequences (mn, n ∈ N), (Nn, n ∈ N) we have
limn→+∞mn = +∞ and limn→+∞(Nn −mn) = +∞,

(b) Θ ∈ Φ, Θ is continuous at the point 1 and the index sequences (mn, n ∈
N) and (Nn, n ∈ N) satisfy the relations limn→+∞mn = +∞ and Nn ≥
mn(1 + o(1)) (n→ +∞).

Then the sequence (SΘ
mn,Nn

f, n ∈ N) converges uniformly on R to f for every
f ∈ C2π if and only if the Fourier transform of Θ, i.e., the function

Θ̂(x) :=
1

2π

∫ +∞

−∞
Θ(t)e−ixtdt (x ∈ R),

is Lebesgue integrable on R.

This statement is a discrete version of a well-known fundamental result in
the theory of Fourier series (see [7, p. 168]). We also remark that by choosing
different parameters of these operators, different orders of the uniform conver-
gence can be attained (see [10, Section 5]).

Several interpolatory properties of SΘ
m,Nf can be seen immediately using

the following result:

Theorem 2 ([11, Lemma 3]). Suppose that the function Θ : R → R is an
even function supported in [−1, 1], Θ(1) = 0 and N ≥ m.

(a) The polynomial SΘ
m,Nf interpolates the function f at the points of XN

if and only if

Θ
( j
m

)
+ Θ

(N − j
m

)
= 1 (j = 1, 2, . . . , N − 1).

(b) If r is a positive integer, then
(
Sϕm,Nf

)(r)
(xk,N ) = 0 (k = 0, 1, . . . , N −

1) if and only if

jrΘ
( j
m

)
+ (−1)r(N − j)rΘ

(N − j
m

)
= 0, (j = 1, 2, . . . , N − 1).

Theorems 1 and 2 generalize a lot of earlier results in interpolation theory,
giving also the order of convergence (see [11]).

Here we emphasize on the following: The (0, r) lacunary interpolatory poly-
nomials (r ∈ N) can be obtained by a suitable Θ-summation and the conver-
gence behaviour of these processes can be easily described immediately from
their explicit forms (compare [11] with [8, Section 4 of Chapter VIII]).
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4. The Algebraic Cases

The algebraic cases are more complicated. Our far-reaching program is
to find the analogue of Theorem 1. Next we formulate some results in this
direction.

4.1. Processes Using the Roots of Chebyshev Polynomials

Let us fix N ∈ N and consider a given point system XN ⊂ [−1, 1]. The index
of the point x ∈ XN is defined to be 1 if x ∈ (−1, 1) and is 1/2 if x ∈ {−1, 1}.
The index of the point system XN is the sum of the indices of its points. It
will be denoted by IXN =: IN . It is clear that IN = N,N − 1/2, or N − 1, for
any XN .

Let us define the measure µN by

µk,N :=


1

2IN
, if xk,N ∈ {−1, 1}

1

IN
, if xk,N ∈ (−1, 1)

(k = 1, 2, . . . , N, N ∈ N). (3)

We shall choose the basis in the following way

Pm := {T0,
√

2T1,
√

2T2, . . . ,
√

2Tm} ⊂ Pm,

where Tl(x) := cos(l arccosx) (l ∈ N0 := {0, 1, 2, . . . }) is the Chebyshev poly-
nomial of the first kind.

For every m,N ∈ N the point system XN determines uniquely the param-
eters (XN , µN , Pm) of sequence (2). Therefore, in the sequel, speaking about
an XN -system, we mean (XN , µN , Pm).

We shall consider the following four XN -systems.

TN :=
{
xk,N := cos

2k − 1

2N
π | k = 1, 2, . . . , N

}
,

TN are the roots of TN (the Chebyshev polynomial of the first kind);

U±N :=
{
xk,N := cos

k − 1

N − 1
π | k = 1, 2, . . . , N

}
,

U±N are the roots of UN−2 (the Chebyshev polynomial of the second kind)
supplemented with the endpoints −1 and 1;

V−N :=
{
xk,N := cos

2k − 1

2N − 1
π | k = 1, 2, . . . , N

}
,

V−N are the roots of VN−1 (the Chebyshev polynomial of the third kind) sup-
plemented with −1;

W+
N :=

{
xk,N := cos

2(k − 1)

2N − 1
π | k = 1, 2, . . . , N

}
,
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W+
N are the roots of WN−1 (the Chebyshev polynomial of the fourth kind)

supplemented with 1.

In the following statement we give a sufficient condition on the summation
function Θ which guarantees the uniform convergence of (2) for the above four
point systems.

Theorem 3 ([13, Theorem 6.2]). Let XN be one of the point systems TN ,
U±N , V−N , W+

N . Suppose that mn → +∞ if n→ +∞ and mn ≤ 2INn (n ∈ N).
If for a given summation function Θ ∈ Φ, the function

Θ̂(x) :=
1

2π

∫ +∞

0

Θ(t) cos(tx) dt
(
x ∈ [0,+∞)

)
is Lebesgue integrable on [0,+∞), then the sequence SΘ

mn,Nn
f (n ∈ N) converges

uniformly on [−1, 1] to f for all f ∈ C[−1, 1].

The polynomials SΘ
2IN ,N

f are of degree < 2IN . It is clear that among them
there are a lot which interpolate the function f at the points of XN . In [13,
Theorem 5.1] we give a necessary and sufficient condition on the summation
function Θ to satisfy this requirement.

4.2. Processes Based on the Roots of Orthogonal Polynomials

Let us choose the parameters XN , µN , Pm, defined in Section 2 in the follow-
ing way. Suppose that w : I → R is a weight, XN consists of the roots of pN (w)
(the orthonormal polynomial for the weight w), µk,N ’s are the corresponding
Cotes numbers and Pm:={p0(w), . . . , pm(w)}.

The starting result is due to Grünwald [3]: The Rogosinski type summation,
based on the roots of TN , is uniformly convergent. On the Jacobi roots, the
uniform convergence takes place only on [a, b] ⊂ (−1, 1) (see [18] and [17]).

A significant observation shows that if we consider the weighted approxima-
tion with another suitable weight %, then uniform convergence may be obtained
on the whole interval I. Therefore, in these cases new difficulties arise: the suit-
able choice of the weight %. In [12] we investigated this problem for the roots
of Jacobi polynomials. A special case of the results in [12] is formulated below.

Theorem 4 ([12, Corollary 4.2]). Let w(x) := (1−x)α(1+x)β (x ∈ (−1, 1),
α, β ≥ −1/2. Choose XN , µN and Pm as above. Assume that Θ : [0, 1] → R,
is convex, Θ(0) = 1, Θ(1) = 0, Θ ∈ Lip1[0, 1]. Then

lim
N→+∞

‖(f − SΘ
N,Nf)%‖∞ = 0 (∀f ∈ C%),

where %(x) = (1− x)
α
2 + 1

4 (1 + x)
β
2 + 1

4 (x ∈ (−1, 1)) and C% := {f ∈ C(−1, 1) |
lim±1 f% = 0}.
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