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Chebyshev Rational Functions

Spas Tashev ∗

Dedicated to Professor Bl. Sendov on the occasion of his 70th birthday

In this paper, Chebyshev polynomials of the first and second kind are
introduced and studied for the system{

1, x, x2, . . . , xn,
1

x− a1
,

1

x− a2
, . . . ,

1

x− am

}
where ak, |ak| > 1, are real. Bernstein and Markov type inequalities for
the derivative of the Chebyshev polynomials of the first kind are proved
(Theorem 3). Recursion formulas for these polynomials are established.

1. Introduction

Let us denote by {φj}n+m
j=0 the system of functions

1, x, x2, . . . , xn,
1

x− a1
,

1

x− a2
, . . . ,

1

x− am
(1)

where {aj} are preassigned distinct points such that |aj | > 1. We shall assume
that {aj} are real, althought our study can be easily modified to cover also
the case of complex aj . The functions (1) form a Chebyshev system on the
interval [−1, 1]. We shall study some classical extremal problems in the class
of generalized polynomials p(x) =

∑n+m
k=0 ckφk(x).

Definition 1. The Chebyshev polynomial of the first kind for the system
(1), or Chebyshev rational function, is defined as a solution of the extremal
problem

min
cj

{
‖p‖L∞

[−1,1]
: p(x) =

n+m∑
j=0

cjφj(x), cn = 1
}
. (2)

Note that φn(x) = xn, and thus, in the case m = 0 the solution coincides
with the classical Chebyshev polynomial. The case n = 0 was considered in [2].
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2. Chebyshev Rational Functions

Throughout this paper we shall use the substitutions

x =
1

2

(
v +

1

v

)
, ak =

1

2

(
αk +

1

αk

)
, |αk| < 1,

for complex numbers v, and for |ak| > 1. Evidently, if |v| = 1, then x ∈ [−1, 1],
and if ak are real and |ak| > 1, then −1 < αk < 1.

Recall that the Blaschke product for α1, . . . , αm is defined by

Bm(v) :=

m∏
k=1

v − αk

1− αkv

and B0(v) ≡ 1. Let us denote

Tn,m(x) :=
Mn,m

2

(
fn,m(v) +

1

fn,m(v)

)
, (3)

Un,m(x) :=
Mn,m

v − v−1

(
fn,m(v)− 1

fn,m(v)

)
, (4)

where fn,m(v) = vnBn,m(v). The functions of type Tn,1 have been used by
Achiezer in [1] to find the best uniform algebraic approximation of the function
(x− a)−1.

The rational function Tn,m does not change, while Un,m changes its sign if
we substitute v by v−1, because Bn,m(v−1) = B−1n,m(v), for real αk. So they are
functions of x. This can be seen directly too.

It is easy to verify that the function Tn,m can be represented in the form

Tn,m(x) =

n∑
k=0

Akx
k +

m∑
k=1

Bk

x− ak
.

In order to make the coefficient An equal to 1 we choose the constant Mn,m so
that

lim
x→∞

Tn,m(x)

xn
= 1 ⇔ lim

v→0

Tn,m(
1
2 (v + v−1)

)n = 1.

Consequently,

M0,m = 2(−1)m

m∏
k=1

αk

m∏
k=1

α2
k + 1

, Mn,m = (−1)m 2−n+1
m∏

k=1

αk, n > 0.

We call the rational functions Tn,m and Un,m, respectively, the Chebyshev
rational function (or simply the Chebyshev polynomial) of the first kind and
the Chebyshev polynomial of the second kind. We shall prove that Tn,m is the
extremal function in the problem (2).
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Lemma 1. For any x, x 6= ak, we have

T 2
n,m(x) + (1− x2)U2

n,m(x) = M2
n,m.

Proof. From equations (3) and (4) we find

fn,m =
Tn,m
Mn,m

+
(v − v−1)Un,m

2Mn,m
,

f−1n,m =
Tn,m
Mn,m

− (v − v−1)Un,m

2Mn,m
.

If we multiply these two equations and note that (v − v−1)2 = 4(x2 − 1), we
shall arrive at the wanted relation.

Theorem 1. The functions Tn,m(x) and
√

1− x2 Un,m(x) oscillate between
Mn,m and −Mn,m in the interval [−1, 1], taking the values ±Mn,m alternatively
in (n+m+ 1), and (n+m) points, respectively.

Proof. Lemma 1 implies that |Tn,m(x)| ≤ |Mn,m| and |(1− x2)Un,m(x)| ≤
|Mn,m| for x ∈ [−1, 1]. The function Tn,m(x) ( respectively,

√
1− x2 Un,m(x))

takes the values ±Mn,m if and only if fn,m(v) = ±1 (fn,m(v) = ±i, respec-
tively). Since fn,m(z) is analytic in the unit disk D := {z : |z| ≤ 1} and
has exactly n + m zeros in D, then the theorem follows from the Argument
Principle.

Theorem 2. The Chebyshev polynomial of the first kind Tn,m is the only
solution of problem (2).

Proof. The function Tn,m is of the type

Tn,m =
P (x)

Q(x)
= xn +A1x

n−1 + · · ·+An +

m∑
i=1

Bi

x− ai
.

If there exists another rational function of the same type, say,

T̃n,m =
P̃ (x)

Q(x)
= xn + Ã1x

n−1 + · · ·+ Ãn +

m∑
i=1

B̃i

x− ai

such that

‖P̃ /Q‖L∞
[−1,1]

≤ ‖P/Q‖L∞
[−1,1]

,

then by Theorem 1, the difference T − T̃ will have at least n + m zeros. But
P − P̃ is a polynomial of degree n+m− 1, which implies P ≡ P̃ , i.e., T ≡ T̃ .
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3. Differential Properties of the Chebyshev
Polynomials

The next lemma is an analog of the classical result that the Chebyshev
polynomial of the second kind is the derivative of that of the first kind.

Lemma 2. For x 6= ak, k = 1, . . . ,m, we have

T ′n,m(x) = Un,m(x)Rn,m(x). (5)

For x ∈ (−1, 1) we have(√
1− x2 Un,m(x)

)′
= −Tn,m(x)

Rn,m(x)√
1− x2

, (6)

and for |x| > 1, x 6= ak, k = 1, . . . ,m, we have(√
x2 − 1Un,m(x)

)′
= Tn,m(x)

Rn,m(x)√
x2 − 1

, (7)

where

Rn,m(x) = n+

m∑
k=1

sgn ak ·
√
a2k − 1

ak − x
.

Proof. Evidently

dTn,m(x)

dx
=
M

2
· d(f + f−1)

dv
· dv
dx

=
M

2

(
f − 1

f

)
f ′v
f
v′x, (8)

where

f = fn,m = vn
m∏

k=1

v − αk

1− αkv
.

On the other hand,

f ′v = nvn−1
m∏

k=1

v − αk

1− αkv
+ vn

m∑
k=1

1− α2
k

(1− αkv)2

m∏
i=1,i6=k

v − αi

1− αiv

and

f ′v
f

=
n

v
+

m∑
k=1

1− α2
k

(1− αkv)(v − αk)
=
n

v
+

1

v

m∑
k=1

sgn ak ·
√
a2k − 1

ak − x
, (9)

because (1−α2
k)/2αk = sgn ak ·

√
α2
k − 1. Evidently, from x = 2−1(v+ v−1) we

get v′x/v = 2/(v − v−1). Then (9) yields

f ′v
f
v′x =

2

v − v−1

(
n+

m∑
k=1

sgn ak ·
√
a2k − 1

ak − x

)
,
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which together with (8) gives (5).
The proof of (6) and (7) is the same. We need just to note that√

1− x2 Un,m(x) =
v − v−1

2i
· Mn,m

2

(
fn,m(v)− f−1n,m(v)

)
and √

x2 − 1Un,m(x) =
v − v−1

2
· Mn,m

2

(
fn,m(v)− f−1n,m(v)

)
.

If x ∈ [−1, 1], which is the most interesting case, we have

Rn,m(x) = n+

m∑
k=1

√
a2k − 1

|ak − x|
. (10)

Lemma 3. For x ∈ [−1, 1] we have

0 < Rn,m(x) < max{Rn,m(1), Rn,m(−1)}.

Proof. The first inequality follows from (10). Let us suppose that
max{Rn,m(1), Rn,m(−1)} = Rn,m(1). Then, from

Rn,m(x) = n+
∑
ak>1

√
a2k − 1

ak − x
+
∑

ak<−1

√
a2k − 1

|ak|+ x

we find

Rn,m(1)−Rn,m(x)

= (1− x)

[∑
ak>1

(

√
a2k − 1

(ak − 1)(ak − x)
−
∑

ak<−1

√
a2k − 1

(|ak|+ 1)(|ak|+ x)

]

≥ 1− x
2

(
Rn,m(1)−Rn,m(−1)

)
≥ 0.

The case max{Rn,m(1), Rn,m(−1)} = Rn,m(−1) can be proved in a similar
manner.

The next theorem generalizes the known classical result.

Theorem 3. The following inequalities are true:

|T ′n,m(x)| ≤ |Mn,m|
Rn,m(x)√

1− x2
, x ∈ (−1, 1). (11)

For x ∈ [−1, 1] we have

|T ′n,m(x)| ≤ |T ′n,m(1)| = |Mn,m|R2
n,m(1), if Rn,m(1) ≥ Rn,m(−1), (12)

|T ′n,m(x)| ≤ |T ′n,m(−1)| = |Mn,m|R2
n,m(−1), if Rn,m(−1) ≥ Rn,m(1). (13)
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Proof. Let us observe that from Lemma 1 and equations (5) and (6) the
following Bernstein-Szegö type equalities in the interval [−1, 1] follow:

(1− x2)
(
T ′n,m(x)

)2
+ T 2

n,m(x)R2
n,m(x) = M2

n,mR
2
n,m(x), (14)

and for x ∈ (−1, 1)[(√
1− x2 Un,m(x)

)′]2
+ U2

n,m(x)R2
n,m(x) = M2

n,m

R2
n,m(x)

1− x2
. (15)

Then the inequality (11) follows from (14).
Let us prove (12). Since

|T ′n,m(x)| = |Un,m(x)|Rn,m(x)

and, in this case Rn,m(x) ≤ Rn,m(1), it suffices to show that

|Un,m(x)| ≤ |Mn,m|Rn,m(1), x ∈ [−1, 1], (16)

and

|Un,m(1)| = |Mn,m|Rn,m(1). (17)

From equation (6) it follows for x ∈ (−1, 1) that

−xUn,m(x) + (1− x2)U ′n,m(x) = −Tn,m(x)Rn,m(x).

Then, from |U ′n,m(1)| < ∞, if x → 1 we obtain (17), such that |Tn,m(1)| =
|Mn,m|. It remains to prove the inequality (16). From the last relations we see
that |Un,m(−1)| < |Un,m(1)|. Let us suppose that the point b, b ∈ (−1, 1) is a
point of local extremum of Un,m(x). Then U ′n,m(b) = 0, and (15) implies

U2
n,m(b) = M2

n,m

R2
n,m(b)

b2 + (1− b2)R2
n,m(b)

.

From this relation, if R2
n,m(b) ≥ 1, we have

b2 + (1− b2)R2
n,m(b) ≥ b2 + (1− b2) = 1

and

U2
n,m(b) ≤M2

n,mR
2
n,m(b) ≤M2

n,mR
2
n,m(1).

If R2
n,m(b) < 1, then b2 + (1− b2)R2

n,m(b) ≥ R2
n,m(b), and

U2
n,m(b) ≤M2

n,m ≤M2
n,mR

2
n,m(1),

such that R2
n,m(1) > 1. This completes the proof.



Spas Tashev 431

4. Recursion Formulas

The next Lemma is completely analogous to the classical case for n ≥ 2.

Lemma 4. For n ≥ 2, the recursion formula

Tn,m(x) =
Mn,m

Mn−1,m
2xTn−1,m(x)− Mn,m

Mn−2,m
Tn−2,m(x) (18)

is true. For n = 1 we have

T1,m(x) =
M1,m

M0,m

[
xT0,m(x) + (x2 − 1)U0,m(x)

]
, (19)

U1,m(x) =
M1,m

M0,m
[T0,m(x) + xU0,m(x)] . (20)

If n ≥ 2, since Mn,m/Mn−1,m = 1/2 and Mn,m/Mn−2,m = 1/4, we have

Tn,m(x) = xTn−1,m(x)− 1

4
Tn−2,m(x).

Proof. The proof of (18) follows from the relations

4x

Mn−1,m
Tn−1,m(x) =

[
vn−1Bm(v) + v−n+1B−1m (v)

]
(v + v−1)

=
[
vnBm(v) + v−nB−1m (v)

]
+
[
vn−2Bm(v) + v−n+2B−1m (v)

]
=

2Tn,m
Mn,m

+
2Tn−2,m
Mn−2,m

.

The proof of the equation (19) follows from the relations:

4xT0,m(x)

M0,m
= vBm(v) + v−1B−1m (v) + vB−1m (v) + v−1Bm(v),

and

4(x2 − 1)U0,m(x)

M0,m
= vBm(v) + v−1B−1m (v)− vB−1m (v)− v−1Bm(v).

The proof of (20) follows from (19) after differentiation, via (5) and (6), and
the relation R1,m(x) = 1 +R0,m(x).

Lemma 5. For x ∈ [−1, 1] and m ≥ 1 the recursion formulas

Tn,m =
Mn,m

Mn,m−1

(
amx− 1

am − x
Tn,m−1 +

√
a2m − 1 (x2 − 1)

|am − x|
Un,m−1

)
(21)

and

Un,m =
Mn,m

Mn,m−1

(
amx− 1

am − x
Un,m−1 +

√
a2m − 1

|am − x|
Tn,m−1

)
(22)

are true.
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Proof. Since Bm(v) = Bm−1(v)
v − αm

1− αmv
, we have

2Tn,m−1
Mn,m−1

(
v − αm

1− αmv
+

1− αmv

v − αm

)
=

[
vnBm−1(v) +

1

vnBm−1(v)

] [
v − αm

1− αmv
+

1− αmv

v − αm

]
= vnBm(v) + v−nB−1m (v) + v−nB−1m−1(v)

v − αm

1− αmv
+ vnBm−1(v)

1− αmv

v − αm
.

Similarly, we have

(v − v−1)Un,m−1

Mn,m−1

(
v − αm

1− αmv
− 1− αmv

v − αm

)
= vnBm(v) + v−nB−1m (v)− v−nB−1m−1(v)

v − αm

1− αmv
− vnBm−1(v)

1− αmv

v − αm
.

Now, if we add the last two equalities and observe that

v − αm

1− αmv
+

1− αmv

v − αm
= 2

amx− 1

am − x
,

and (
v − 1

v

)(
v − αm

1− αmv
− 1− αmv

v − αm

)
= 4

sgn am ·
√
a2m − 1 (x2 − 1)

am − x
,

we obtain (21). The proof of (22) follows from (21) after differentiation, via
(5) and (6) and the relation

Rn,m(x) = Rn,m−1(x) +

√
a2m − 1

|am − x|
, x ∈ [−1, 1].
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