
CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2010:
In memory of Borislav Bojanov
(G. Nikolov and R. Uluchev, Eds.), pp. 9-20

Prof. Marin Drinov Academic Publishing House, Sofia, 2012

An Inequality of Duffin-Schaeffer Type

for Hermite Polynomials∗
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Let Hn be the n-th Hermite polynomial and am be the rightmost zero of
Hm, m ∈ N. Let πr

n be the set of all algebraic polynomials of degree not
exceeding n and having only real coefficients. We prove that if f ∈ πr

n

satisfies |f | ≤ |Hn| at the zeros of Hn+1, then for k = 1, . . . , n,

|f (k)(x + iy)| ≤ |H(k)
n (an+1 + iy)| for every (x, y) ∈ [−an+1, an+1]×R,

and the equality occurs if and only if f = ±Hn.
This result may be viewed as an analog of the famous extension of

the classical inequality of Markov, found by Duffin and Schaeffer.
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1. Introduction

We begin with a list of notations that we shall use throughout the paper.
By πn we denote the set of all algebraic polynomials of degree not exceeding n.
The subset of πn of polynomials with real coefficients will be denoted by πr

n.
The notation ‖ · ‖ stands for the uniform norm in [−1, 1], i.e.,

‖f‖ := sup{|f(x)| : x ∈ [−1, 1]}.

As usual, the n-th Chebyshev polynomial of the first kind is denoted by Tn(x),
where, for x ∈ [−1, 1], Tn(x) := cos n arccos x. The zeros and the points of
local extrema of Tn(x) are denoted by {ξν}

n
ν=1 and {ην}

n
ν=0, respectively. We

recall that ξν := cos (2ν−1)π
n

and ην := cos νπ
n

.
One of the most important polynomial inequalities is the Markov inequality.

∗The research on this paper was supported by the National Science Fund of the Bulgarian
Ministry of Education, Youth and Science under Grant DDVU-02/30.
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Theorem A (A. A. Markov, V. A. Markov). If f ∈ πn and ‖f‖ ≤ 1,
then for k = 1, . . . , n,

‖f (k)‖ ≤ ‖T (k)
n ‖ (= T (k)

n (1)).

The equality occurs if and only if f = γTn, where γ ∈ C and |γ| = 1.

Remark 1. The numerical value of ‖T
(k)
n ‖ is

‖T (k)
n ‖ = T (k)

n (1) =
n2(n2 − 1) · · · (n2 − (k − 1)2)

(2k − 1)!!
.

The case k = 1 of Theorem A was proved in 1889 by A. A. Markov [3], and
the general case was proved in 1892 by his younger brother V. A. Markov [4].

In 1941 Duffin and Schaeffer [5] found the following beautiful refinement of
Theorem A.

Theorem B (R. J. Duffin and A. C. Schaeffer). If f ∈ πn and

|f(ην)| ≤ 1 for ν = 0, . . . , n, (1)

then

‖f (k)‖ ≤ ‖T (k)
n ‖ for k = 1, . . . , n.

The equality occurs if and only if f = γTn, where γ ∈ C and |γ| = 1.

For polynomials with real coefficients Duffin and Schaeffer proved even
more:

Theorem C (R. J. Duffin and A. C. Schaeffer). If f ∈ πr
n satisfies

(1), then for k = 1, . . . , n,

|f (k)(x + iy)| ≤ |T (k)
n (1 + iy)| for every (x, y) ∈ [−1, 1] × R,

and the equality holds if and only if f = ±Tn.

The basic ingredients of the proof of Theorem C are the following two
propositions:

Statement 1. If f ∈ πn and |f(ην)| ≤ |Tn(ην)|, ν = 0, . . . , n, then

|f ′(ξν)| ≤ |T ′

n(ξν)| for ν = 1, . . . , n.

Statement 2. The Chebyshev polynomial Tn(x) possesses the property

|Tn(x + iy)| ≤ |Tn(1 + iy)| for every (x, y) ∈ [−1, 1] × R.
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2. The Main Result and Sketch of the Proof

Theorem C may be interpreted as a comparison theorem: the inequalities

|f(ην)| ≤ |Tn(ην)|, ν = 0, . . . , n, imply inequalities between |f (k)| and |T
(k)
n |

in a strip in the complex plane. Here, we prove an analogue of Theorem C,
where the role of the extremal polynomial Tn is played by Hn, the n-th Hermite
polynomial, and the check points {ην}

n
ν=0 are replaced by the zeros of Hn+1,

the (n + 1)-st Hermite polynomial. Let an+1 be the largest zero of Hn+1. Our
main result is

Theorem 1. If f ∈ πr
n and |f | ≤ |Hn| at the zeros of Hn+1, then for

k = 1, . . . , n,

|f (k)(x + iy)| ≤ |H(k)
n (an+1 + iy)| for every (x, y) ∈ [−an+1, an+1] × R. (2)

The equality in (2) occurs if and only if f = ±Hn.

To prove Theorem 1, we establish the following analogues of Statement 1
and Statement 2:

Statement 1′. If f ∈ πn and |f | ≤ |Hn| at the zeros of Hn+1, then

|f ′| ≤ |H ′

n| at the zeros of Hn. Moreover, the equality |f ′| = |H ′

n| holds at

either zero of Hn if and only if f = γHn, where γ ∈ C and |γ| = 1.

Statement 2′. The Hermite polynomial Hn(x) possesses the property

|Hn(x + iy)| ≤ |Hn(an+1 + iy)| for every (x, y) ∈ [−an+1, an+1] × R.

For the proof of Statement 1′ we use an observation of V. A. Markov, which
we formulate below. Let Q(x) be an algebraic polynomial of degree n with
distinct real zeros x1 < x2 < · · · < xn. Let {tν}

n
ν=0 separate {xν}

n
ν=1, i.e.,

t0 ≤ x1 ≤ t1 ≤ x2 ≤ · · · ≤ xn ≤ tn.

Set

w(u) =

n
∏

j=0

(u − tj), wν(u) =
w(u)

u − tν
, ν = 0, . . . , n.

With the above notation, the V. A. Markov result is

Theorem D (V. A. Markov). Let f ∈ πn and

|f(tν)| ≤ |Q(tν)| for ν = 0, . . . , n.

Then there exist a set In(w) formed by n non-overlapping intervals on R, such

that

|f ′(x)| ≤ |Q′(x)| for every x ∈ In(w). (3)
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A point x ∈ R belongs to In(w) if and only if

w′

0(x)w′

n(x) ≥ 0. (4)

Moreover, if the inequality (4) is strict, then also inequality (3) is strict unless

f = γQ, where γ ∈ C, |γ| = 1.

For the proof of Statement 2′ we exploit the following expansion formula,
due to Jensen [2]:

|f(x + iy)|2 =

n
∑

k=0

Lk(f ;x)y2k, (x, y) ∈ R
2, (5)

valid for every f ∈ πn which has only real zeros. Here, L0(f ;x) = f2(x), and

Lk(f ;x) =

2k
∑

j=0

(−1)k−j f (j)(x)

j!

f (2k−j)(x)

(2k − j)!
, k = 1, 2, . . . , n. (6)

Formula (5) extends to the functions from the Laguerre-Pólya class, in which
case the summation index k ranges from 0 to ∞. We recall that the Laguerre-
Pólya class consists of the entire functions that are uniform limits on compact
subsets of C of polynomials with only real zeros.

Let us also mention that if f(x) is even or odd function, then Lk(f ;x) are
even functions, k = 0, 1, . . . , n.

If f(z) = c(z − x1)(z − x2) · · · (z − xn) with x1, . . . , xn all real, then the
following alternative representation of Lk(f ;x) holds true:

Lk(f ;x) = f2(x) ·
∑ 1

(x − xi1)
2 · · · (x − xik

)2
, (7)

where the sum is extended over all k-combinations of {1, . . . , n}. It is seen from
(7) that Lk(f ;x) ≥ 0 for every x ∈ R. Moreover, if f has only simple zeros,
then Lk(f ;x) is strictly positive on the real line.

An important part of the proof of Statement 2′ is

Theorem 2. For k = 1, . . . , n, the function Lk(Hn; ·) is monotone decreas-

ing in (−∞, 0] and monotone increasing in [0,∞).

3. Proofs

Proof of Statement 1′. We apply Theorem D with Q = Hn and w = cHn+1.
If Hn(x) = 0, then from the identity (see [8, eqn. 5.5.10])

H ′

n+1(x) = (2n + 2)Hn(x) (8)
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we obtain

w′

0(x) · w′

n(x) = c2
( Hn+1(u)

u − an+1

)

′
∣

∣

∣

u=x
·
( Hn+1(u)

u + an+1

)

′
∣

∣

∣

u=x
= c2 H2

n+1(x)

(x2 − a2
n+1)

2
> 0.

So, according to Theorem D, |f ′(x)| ≤ |H ′

n(x)|, and the inequality is strict
unless f = γHn with γ ∈ C, |γ| = 1. �

Proof of Statement 2′. First, we recall the known fact that if an+1 is the
largest zero of the Hermite polynomial Hn+1(x), then

max{|Hn(x)| : x ∈ [−an+1, an+1]} = |Hn(±an+1)|. (9)

For the reader convenience, we provide a proof of (9). To this end, we make
use of (8) and the second order differential equation satisfied by y = Hn+1,

y′′ − 2xy′ + (2n + 2)y = 0, (10)

(see e.g., [8, eqn. 5.5.2]). By (8), the auxiliary function

f(x) =
1

(2n + 2)2
[

y′(x)2 + (2n + 2)y(x)2
]

satisfies H2
n(x) ≤ f(x) for every x ∈ R, and equality holds if and only if

Hn+1(x) = 0. On using (10), we see that f ′ is representable in the form

f ′(x) =
1

(n + 1)2
x
[

y′(x)
]2

,

whence f(x) is monotone decreasing on (−∞, 0) and monotone increasing on
(0,∞). Therefore, for every x ∈ [−an+1, an+1] we have

H2
n(x) ≤ f(x) ≤ f(±an+1) = H2

n(±an+1),

which proves (9).

Applying (5) with f = Hn, we obtain for every (x, y) ∈ [−an+1, an+1] × R

|Hn(an+1 + iy)|2 − |Hn(x + iy)|2 =

n
∑

k=0

[Lk(Hn; an+1) − Lk(Hn;x)]y2k ≥ 0,

since all the quantities Lk(Hn; an+1)−Lk(Hn;x), 0 ≤ k ≤ n, are non-negative.
For 1 ≤ k ≤ n this follows from Theorem 2, while for k = 0 the claim follows
from (9), since L0(Hn; an+1)−L0(Hn;x) = H2

n(an+1)−H2
n(x) > 0. The proof

of Statement 2′ is complete. �

Proof of Theorem 2. We use induction with respect to k. For the case
k = 1, from L1(f ;x) = [f ′(x)]2 − f(x)f ′′(x) we obtain

L′

1(f ;x) = f ′(x)f ′′(x) − f(x)f ′′′(x) = [f ′′(x)]2
( f(x)

f ′′(x)

)

′

.
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Hence, it suffices to show that for y = Hn

sign
( y(x)

y′′(x)

)

′

= sign x. (11)

From y′′ − 2xy′ + 2ny = 0 (this is (10) with n + 1 replaced by n) we obtain

2n
y

y′′
= 2x

y′

y′′
− 1 ⇒

( y

y′′

)

′

=
1

n

(

x
y′

y′′

)

′

,

therefore (11) is equivalent to

sign
(xy′(x)

y′′(x)

)

′

= sign x. (12)

Let {xν}
n−1
ν=1 be the zeros of y′(x). They are located symmetrically with

respect to the origin, i.e., {xν}
n−1
ν=1 ≡ {−xν}

n−1
ν=1 . Therefore,

y′′(x)

xy′(x)
=

1

2x

n−1
∑

ν=1

( 1

x − xν

+
1

x + xν

)

=
n−1
∑

ν=1

1

x2 − x2
ν

.

Differentiation of the last expression yields

sign
(xy′(x)

y′′(x)

)

′

= sign
[(

n−1
∑

ν=1

1

x2 − x2
ν

)

−2

·

n−1
∑

ν=1

2x

(x2 − x2
ν)2

]

= sign x,

which proves (12). Thus, the case k = 1 is settled.
Now assume that the assertion is verified for Lk(Hn;x). The induction step

k 7→ k + 1 is performed with the help of the following

Identity 1.

2n(k + 1)L′

k+1(Hn;x) = 2(k + 1)xLk+1(H
′

n;x) + L′

k(H ′

n;x).

Both summands on the right-hand side of Identity 1 have the sign of
x. Indeed, since H ′

n = 2nHn−1 has only real and simple zeros, we have
Lk+1(H

′

n;x) > 0 and sign L′

k(H ′

n;x) = sign x, by the induction hypothesis.
It follows from Identity 1 that sign L′

k+1(Hn;x) = sign x, which accomplishes
the induction step from k to k + 1. Theorem 2 is proved. �

The proof of Identity 1 goes through a number of steps. We begin with a
technical lemma.

Lemma 1. The following identities hold true:

(i)

2k−1
∑

j=0

(−1)k−j f (j)(x)

j!

f (2k−1−j)(x)

(2k − 1 − j)!
= 0;
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(ii)

2k
∑

j=0

(−1)k−j(k − j)
f (j)(x)

j!

f (2k−j)(x)

(2k − j)!
= 0;

(iii)

2k
∑

j=0

(−1)k−j f (j+1)(x)

j!

f (2k−j)(x)

(2k − j)!
=

2k
∑

j=0

(−1)k−j f (j)(x)

j!

f (2k+1−j)(x)

(2k − j)!

=
1

2
L′

k(f ;x);

(iv)

2k
∑

j=0

(−1)k−j f (j+2)(x)

j!

f (2k−j)(x)

(2k − j)!
=

2k
∑

j=0

(−1)k−j f (j)(x)

j!

f (2k+2−j)(x)

(2k − j)!

=
1

2
L′′

k(f ;x) − Lk(f ′;x).

Proof of Lemma 1. Changing the summation index j to 2k − 1 − j in the
sum on the left-hand side of (i), we obtain the same sum but with opposite
sign, hence the sum is equal to zero. Identity (ii) is verified in the same way
by replacement of j by 2k − j.

We proceed with the proof of (iii). Since

L′

k(f ;x) =

2k
∑

j=0

(−1)k−j

j!(2k − j)!
[f (j+1)(x)f (2k−j)(x) + f (j)(x)f (2k+1−j)(x)],

it suffices to prove only the first identity in (iii). On using (i), we obtain

2k
∑

j=0

(−1)k−j f (j+1)(x)

j!

f (2k−j)(x)

(2k − j)!
=

2k+1
∑

j=0

(−1)k+1−jj
f (j)(x)

j!

f (2k+1−j)(x)

(2k + 1 − j)!

=

2k+1
∑

j=0

(−1)k−j(2k+1−j)
f (j)(x)

j!

f (2k+1−j)(x)

(2k + 1 − j)!

=

2k
∑

j=0

(−1)k−j f (j)(x)

j!

f (2k+1−j)(x)

(2k − j)!
.

Now we prove (iv). We have

L′′

k(f ;x)=

2k
∑

j=0

(−1)k−j

j! (2k−j)!
[f (j+2)(x)f (2k−j)(x)+f (j)(x)f (2k+2−j)(x)]+2Lk(f ′;x).
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On using (ii), we prove the first identity in (iv) as follows:

2k
∑

j=0

(−1)k−j f (j+2)(x)

j!

f (2k−j)(x)

(2k − j)!
=

2k+2
∑

j=0

(−1)k+2−jj(j − 1)

j! (2k + 2 − j)!
f (j)(x)f (2k+2−j)(x)

=

2k+2
∑

j=0

(−1)k−j [(2k+1−j)(2k+2−j)−(2k+1)(2k+2−2j)]

j!(2k+2−j)!
f (j)(x)f (2k+2−j)(x)

=
2k
∑

j=0

(−1)k−j f (j)(x)

j!

f (2k+2−j)(x)

(2k − j)!
.

Now the second identity in (iv) easily holds. Lemma 1 is proved. �

We shall need also another identity, which is true for arbitrary smooth
function f :

Identity 2.

L′′

k(f ;x) = 4Lk(f ′;x) − (2k + 1)(2k + 2)Lk+1(f ;x).

Proof of Identity 2. By appropriate changes of the summation indices we
obtain

4Lk(f ′;x) − L′′

k(f ;x)

=

2k
∑

j=0

(−1)k−j

j!(2k−j)!
[2f (j+1)(x)f (2k+1−j)(x)−f (j+2)(x)f (2k−j)(x)−f (j)(x)f (2k+2−j)(x)]

=2
2k+2
∑

j=0

(−1)k+1−jj(2k + 2 − j)

j! (2k + 2 − j)!
f (j)(x)f (2k+2−j)(x)

−

2k+2
∑

j=0

(−1)k+2−jj(j − 1)

j! (2k + 2 − j)!
f (j)(x)f (2k+2−j)(x)

−

2k+2
∑

j=0

(−1)k−j(2k + 1 − j)(2k + 2 − j)

j! (2k + 2 − j)!
f (j)(x)f (2k+2−j)(x)

=
2k+2
∑

j=0

(−1)k+1−jj(2k + 2 − j + j − 1)

j! (2k + 2 − j)!
f (j)(x)f (2k+2−j)(x)

+

2k+2
∑

j=0

(−1)k+1−j(2k + 2 − j)(j + 2k + 1 − j)

j! (2k + 2 − j)!
f (j)(x)f (2k+2−j)(x)

=(2k + 1)(2k + 2)

2k+2
∑

j=0

(−1)k+1−j

j! (2k + 2 − j)!
f (j)(x)f (2k+2−j)(x)

=(2k + 1)(2k + 2)Lk+1(f ;x).
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The proof of Identity 2 is complete. �

Identity 3. With y = Hn, there holds

Lk(y′′;x) − xL′

k(y′;x) + 2(n + k)Lk(y′;x) − 2n(k + 1)(2k + 1)Lk+1(y;x) = 0.

Proof of Identity 3. Differentiating j times the identity y′′−2xy′+2ny = 0,
we obtain y(j+2) − 2xy(j+1) + 2(n − j)y(j) = 0. Then, using Lemma 1 (iii), we
get

0 =
2k
∑

j=0

(−1)k−j
[

y(j+2) − 2xy(j+1) + 2(n − j)y(j)]
y(2k+2−j)

j! (2k − j)!

]

= Lk(y′′;x) − xL′

k(y′;x) + 2

2k
∑

j=0

(−1)k−j

j! (2k − j)!
(n − j)y(j)y(2k+2−j).

(13)

According to Lemma 1 (iv),

n

2k
∑

j=0

(−1)k−j

j! (2k − j)!
y(j)y(2k+2−j) = n[

1

2
L′′

k(y;x) − Lk(y′;x)].

Also, from Lemma 1 (ii) we obtain

2k
∑

j=0

(−1)k−j

j! (2k − j)!
jy(j)y(2k+2−j) =

2k
∑

j=1

(−1)k−j

(j − 1)! (2k − j)!
y(j)y(2k+2−j)

=

2k−1
∑

j=0

(−1)k−1−j

j! (2k − 1 − j)!
y(j+1)y(2k+1−j)

= −

2k
∑

j=0

(−1)k−j

j! (2k − j)!
[k + (k − j)]y(j+1)y(2k+1−j)

= −kLk(y′;x).

Replacement in the last sum in (13) yields

2k
∑

j=0

(−1)k−j

j! (2k − j)!
(n − j)y(j)y(2k+2−j) = n[

1

2
L′′

k(y;x) − Lk(y′;x)] + kLk(y′;x),

whence

0 = Lk(y′′;x) − xL′

k(y′;x) + nL′′

k(y;x) + 2(k − n)Lk(y′;x).

Finally, replacing L′′

k(y;x) by 4Lk(y′;x) − 2(k + 1)(2k + 1)Lk+1(y;x), in view
of Identity 2, we obtain Identity 3. �
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Identity 4. With y = Hn there holds

L′

k−1(y
′′;x) − 4xLk−1(y

′′;x) + 2(n − 1)L′

k−1(y
′;x) = 0.

Proof of Identity 4. (j+1)-fold differentiation of identity y′′−2xy′+2ny = 0
yields y(j+3) − 2xy(j+2) + 2(n − j − 1)y(j+1) = 0. Then, using Lemma 1 (iii),
we obtain

0 =
2k−2
∑

j=0

(−1)k−1−j [y(j+3) − 2xy(j+2) + 2(n − j − 1)y(j+1)]
y(2k−j)

j! (2k − 2 − j)!

=
1

2
L′

k−1(y
′′;x) − 2xLk−1(y

′′;x) + (n − 1)L′

k−1(y
′;x)

− 2
2k−2
∑

j=0

(−1)k−1−jj
y(j+1)y(2k−j)

j! (2k − 2 − j)!
.

The last sum is shown to vanish with the help of Lemma 1 (i):

2k−2
∑

j=0

(−1)k−1−jj
y(j+1)y(2k−j)

j! (2k − 2 − j)!
=

2k−2
∑

j=1

(−1)k−1−j y(j+1)y(2k−j)

(j − 1)! (2k − 2 − j)!

= −

2k−3
∑

j=0

(−1)k−1−j y(j+2)y(2k−1−j)

j! (2k − 3 − j)!
= 0.

Identity 4 is proved. �

Proof of Identity 1. We differentiate Identity 3 to obtain

L′

k(y′′;x)−L′

k(y′;x)−xL′′

k(y′;x)+2(n+k)L′

k(y′;x)−2n(k+1)(2k+1)L′

k+1(y;x)=0.

Identity 4 with k + 1 instead of k reads as

L′

k(y′′;x) − 4xLk(y′′;x) + 2(n − 1)L′

k(y′;x) = 0.

Subtracting pairwise these equalities, we obtain

(2k + 1)L′

k(y′;x) + 4xLk(y′′;x)−xL′′

k(y′;x)− 2n(k + 1)(2k + 1)L′

k+1(y;x) = 0.

According to Identity 2, we have

L′′

k(y′;x) = 4Lk(y′′;x) − 2(k + 1)(2k + 1)Lk+1(y
′;x).

and the replacement implies

(2k+1)L′

k(y′;x)+2x(k+1)(2k+1)Lk+1(y
′;x)−2n(k+1)(2k+1)L′

k+1(y;x) = 0.

The proof of Identity 1 is complete. �
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The proof of Theorem 1 is based on the following result from [5]:

Theorem E (R. J. Duffin and A. C. Schaeffer). Let g(z) be an algebraic

polynomial of degree n with n distinct real zeros smaller than real number b and

let |g(x + iy) ≤ |g(b + iy)|, (x, y) ∈ [a, b] × R. Let f ∈ πr
n and |f ′(x)| ≤ |g′(x)|

at the zeros of g. Then we have that for k = 1, . . . , n,

|f (k)(x + iy)| ≤ |g(k)(b + iy)|, (x, y) ∈ [a, b] × R.

Proof of Theorem 1. The proof is simply application of Theorem E with
g = Hn and a = −an+1, b = an+1. Notice that the assumptions of Theorem E
are fulfilled due to Statements 1′ and 2′ which were already proven. �

Remark 2. Arguing as in [5], one can prove that under the assumptions
of Theorem 1 except for the condition f ∈ πr

n replaced by f ∈ πn, there holds

‖f (k)‖C[−an+1,an+1] ≤ ‖H(k)
n ‖C[−an+1,an+1] (14)

for k = 1, . . . , n. Moreover, the equality sign occurs in (14) if and only if
f = γHn, where γ ∈ C and |γ| = 1.

Remark 3. Under the assumptions f ∈ πn and |f | ≤ |Hn| at the zeros of
Hn+1, the following counterpart to (14) was proved in [7]:

∫

∞

−∞

e−x2

|f (k)(x)|2 dx ≤

∫

∞

−∞

e−x2

|H(k)
n (x)|2 dx (15)

for k = 1, . . . , n. Equality in (15) holds if and only if f = γHn, where γ ∈ C

and |γ| = 1.

Remark 4. Another counterpart to Theorem 1 is provided by a remarkable
result of Bernstein [1]. Namely, under the assumptions of Theorem 1, outside
the disk D = {z ∈ C : |z| ≤ an+1} we have pointwise inequalities between the
derivatives of f and Hn, i.e., for k = 1, . . . , n,

|f (k)(z)| ≤ |H(k)
n (z)| for every z = x + iy, x2 + y2 ≥ a2

n+1.

For an extension of Theorem C with Tn replaced by ultraspherical polynomial

P
(λ)
n , λ > 0, the reader is refereed to [6].
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