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Locally Monotone Approximations

of Real Functions on Graphs

Roumen Anguelov and Inger Fabris-Rotelli

Locally monotone approximations appear naturally in signal processing
where the input is typically passed via filter for some useful separation,
e.g. noise from signal. Considering the local monotonicity as a concept
of smoothness some filters particularly aim at extracting signal with
prescribed local monotonicity. The LULU operators, well known in the
multi-resolution analysis of sequences, are filters of this type. In abstract
mathematical setting we consider the approximation of real functions
defined on a connected graph by a set of locally monotone functions on
the same domain. The LULU operators suitably extended to this general
setting have shape preserving properties important for the processing of
signals of arbitrary dimension. In addition to that, we prove that they
produce locally monotone approximations which are nearly optimal in
the sense that the error of the approximation in any ℓp norm, p ∈ [1,∞],
is bounded by a constant multiple of the error of any other approximation
by functions from the same set.

1. Introduction

The LULU operators are a kind of morphological filters extracting informa-
tion of interest from signals. They were initially defined on sequences, that is
one dimensional signals, [5], but later extended to multidimensional arrays, [1],
so that they are applicable to images and video sequences as well. The LULU
operators, although part of Mathematical Morphology, were developed to a
large extend within their own theory which focuses on structure preserving
properties like: consistent separation (e.g. noise from signal), total variation
and shape preservation, and consistent hierarchical decomposition. It was
shown in [2] that it is convenient to consider the LULU operators and respective
theory in the setting of functions defined on a graph G. In the processing of one-
dimensional signals G = Z, in image analysis G = Z

2, and in video sequences
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G = Z
3. Our basic assumption is that G is unoriented connected graph with

countable number of vertices and that the degree of the vertices is finite and
bounded. More precisely, there exists a constant α ∈ N such that d(v) ≤ α for
all v ∈ G. For any v ∈ G we denote by N (v) the set of all vertices in G which
share an edge with v. For example, on Z usually we have N (n) = {n−1, n+1},
while on Z

2 typically N ((n,m)) = {(n± 1,m), (n,m± 1)} under the so-called
4-connectivity or N ((n,m)) = {(n ± 1,m), (n,m ± 1), (n ± 1,m ± 1)} under
the so-called 8 connectivity. Obviously, card (N (v)) = d(v) ≤ α. Further we
should note that the graph connectivity defines a morphological connection
on the set of vertices. The concept of connection is introduced axiomatically
in Mathematical Morphology and plays a central role in the procedure used
in [1] for LULU operators on multidimensional arrays. For a graph G, the set
G of all connected subgraphs, is a morphological connection as it satisfies the
respective axioms, see e.g. [7]. Further, it satisfies the additional conditions set
in [1] so that the theory developed there is applicable. To avoid complicated
notations we denote by G the set of vertices of the graph and we consider on
it the connectivity as determined by G.

In practical situations, filters are typically applied to functions on a finite
domain, e.g. the pixels of an image in image analysis. In order to keep the
discussion as general as possible, we consider the domain infinite, but countable
as already mentioned. However, we assume that sum of the moduli of the
functional values is finite. More precisely, we consider the set

A(G) =
{

f : G → R : ‖f‖1 :=
∑

v∈G

|f(v)| < ∞
}

.

It is easy to see that A(G) is a linear space with respect to the usual point-
wise defined operations and that ‖ · ‖1 defines a norm on this space. In fact
this is exactly the space of the absolutely summable sequences ℓ1. In the
sequel we keep the notation A(G) since the definitions of the LULU operators
use the connectivity structure on G and involve neither the linear operations
nor the norm. Often filters are defined by requiring proximity in some sense
to the original input, e.g. see [8]. In contradistiction, the LULU operators
and, in fact, the morphological filters in general, are focused on shape and do
not use distance and proximity in their definition. Nevertheless, it turns out
that the LULU operators provide in some sense “near best” approximations
by functions of certain kind of local monotonicity. This result which is also
the main contribution of this paper extends an earlier result in [4] for LULU
operators on sequences.

In the next section we define the LULU operators in the setting of A(G)
and consider their structure preserving properties. The theorems in that section
combine results from [5] and [1] and are given here without proofs. Section 3
presents the main theorems and their proofs. Some concluding remarks are
given at the end of the paper.
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2. The LULU Operators

Let us denote by Cn(v) the set of connected subgraphs containing the vertex
v and n other vertices, that is

Cn(v) = {C ∈ G : v ∈ C, card (C) = n + 1}.

Then for any n ∈ N the operators Ln, Un : A(G) → A(G) are defined as

Lnf(v) = max
C∈Cn(v)

min
w∈C

f(w), Unf(v) = min
C∈Cn(v)

max
w∈C

f(w).

The smoothing effect of the LULU operators can be described as removing
“peaks” and “pits” of sufficiently small support. This is made precise through
the definitions below.

Definition 1. Let C ∈ G. A vertex v /∈ C is called adjacent to C if
C ∪ {v} ∈ G. The set of all vertices adjacent to C is denoted by adj (C), that
is,

adj (C) = {v /∈ C : C ∪ {v} ∈ G}.

Definition 2. A set C ∈ G is called a local maximum set of f ∈ A(G) if

sup
w∈adj (C)

f(w) < inf
v∈C

f(v).

Similarly C is a local minimum set if

inf
w∈adj (C)

f(w) > sup
v∈C

f(v).

Definition 3. We say that f ∈ A(G) is locally n-monotone if every local
maximum or local minimum set of f is of size n + 1 or more. The set of all
functions in A(G) which are n-monotone is denoted by Mn.

The operator Ln removes local maximum sets (peaks) of size n or less while
Un removes local minimum sets (pits) of size n or less so that we have the
following theorem.

Theorem 1. For any n ∈ N and f ∈ A(G) we have that LnUnf ∈ Mn

and UnLnf ∈ Mn. Moreover, f ∈ Mn ⇐⇒ (Lnf = f, Unf = f).

The following structural properties are considered within the LULU theory,
see [1], [5].

Consistent Separation: A common requirement for a filter P , linear or
nonlinear, is its idempotence, i.e. P 2 = P . For example, a morphological filter
is by definition an increasing and idempotent operator. For linear operators
the idempotence of P implies the idempotence of the complementary operator
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id−P , where id denotes the identity operator. For nonlinear filters this impli-
cation generally does not hold so the idempotence of id − P , also called co-
idempotence, can be considered as an essential measure of consistency. It is
also equivalent to

P (id − P ) = 0, (id − P )P = 0. (1)

In the common interpretation of separation of f into a signal Pf and noise
(id−P )f , the equalities (1) essentially mean that the extracted noise contains
no signal and that the extracted signal contains no noise. In this sense the
separation is consistent.

Total Variation Preservation: The total variation TV (·) is well recognized
as a measure for the information in a signal. For a function f ∈ A(G) it is
defined as

TV (f) =
1

2

∑

v∈G

∑

w∈N (v)

|f(w) − f(v)|.

It is easy to see that it is a semi norm on A(G). Therefore any separation may
only increase the total variation. More precisely, for any operator P : A(G) →
A(G) we have

TV (f) ≤ TV (Pf) + TV ((id − P )f).

Hence it is natural to expect that a good separator P should not create new
variation, that is we have

TV (f) = TV (Pf) + TV ((id − P )f). (2)

An operator P satisfying property (2) is called total variation preserving.

Trend preservation: An operator P is neighbour trend preserving if for
any vertices v, u, such that {v, u} ∈ G, and any f ∈ A(G) we have

f(v) ≤ f(u) =⇒ Pf(v) ≤ Pf(u).

The operator P is fully trend preserving if both P and id − P are neighbour
trend preserving.

Theorem 2. The operators Ln, Un, n ∈ N and all their compositions are:

(i) idempotent and co-idempotent;

(ii) total variation preserving;

(iii) fully trend preserving.

An example of the application of the LULU operators is given in Fig. 1. The
figures on the right are the graphs of the luminosity functions of the images
on the left. A noisy input is given in Fig. 1(a). It is well known that random
noise creates impulses with small support. The operator L30U30 is applied to
remove such random noise and the smoothed image is presented in Fig. 1(b).
The LULU operators can be also used for extracting features of given size.
The keys of the calculator are extracted in Fig. 1(c) by using the composition
(id − L3368U3368)L624U624.
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3. Locally Monotone Approximations

The rationale for locally monotone approximations is given in [3] for one-
dimensional signals, but it also applies to higher dimensions as well as the
general setting of functions on a graph considered here. It can be described
shortly as follows. Suppose it is known that the expected signal has particular
kind of local monotonicity, e.g. it belongs to Mn for some n ∈ N. If the input
f is not in Mn then clearly it is contaminated with noise. Then we take the
best approximation of f in Mn as signal. We should remark that the concepts
of signal and noise are relative. Signal generally refers to required information
or feature that needs to be separated from the input. For example, if from
the input on Fig. 1(a) we require the keys of the calculator as they have been
extracted on Fig. 1(c), then everything else is considered noise, e.g. including
the labels on the keys which are indeed removed.

(a)

(b)

(c)

Figure 1. An illustrative example: (a) input; (b) noise removed; (c) features
of interest (keys) extracted.
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In the stated formulation the problem of signal extraction is an approximation
problem. The issue of proximity can be considered in any of the norms ‖ · ‖p,
p ∈ [1,∞]. It is easy to see that Mn is a closed subset of A(G) in any one
of these norms. Therefore, a best approximation exists. Further analysis of
this problem is difficult. On the one hand, uniqueness can not be guaranteed
since Mn is not a convex. On the other hand, constructive algorithms for
the best approximation are not available. While future work may resolve
this issue we need to note that the best approximation takes into account
only proximity and does not necessarily preserve any other essential and/or
useful properties of the input. For example the best approximation does not
necessarily have the properties mentioned in Theorem 2. Our main result
given in Theorem 3 shows that while the LULU operators do not necessarily
produce the best approximation, the error of the approximation is bounded by
a constant multiple of the error of the best approximation and in this sense
it is near best. The involved constant naturally depends on n and on the
connectivity of the graph.

We introduce a metric on G in the usual way. Let u, v ∈ G. Since G is
connected there exists a path connecting u and v. The shortest path is the one
with fewest edges. We denote by ρ(u, v) the number of edges in the shortest
path connecting u and v. Then

B(v, n) = {u ∈ G : ρ(u, v) ≤ n}

can be considered as the ball centered at v with radius n. Let

Kn = sup
v∈G

card (B(v, n)).

It is easy to see that Kn < ∞, e.g. we have Kn ≤ αn.

Theorem 3. Let P be either Ln ◦ Un or Un ◦ Ln. For any f ∈ A(G) and
any h ∈ Mn we have

‖Pf − f‖p ≤
(

1 + (Kn)1/p
)

‖h − f‖p, p ∈ [1,∞),

‖Pf − f‖∞ ≤ 2‖h − f‖∞.

The idea of the proof of the inequalities in Theorem 3 comes from the
Lebesgue inequality. For a linear, idempotent and bounded operator P on a
normed space X for every f ∈ X and h ∈ P (X) we have

‖Pf − f‖ ≤ (1 + ‖P‖) ‖f − h‖. (3)

The LULU operators are not linear so that the inequality (3) is not directly
applicable. We proceed by establishing the Lipschitz property for these operators.

Theorem 4. For any f, g ∈ A(G) we have

‖Lnf − Lng‖p ≤ K1/p
n ‖f − g‖p,

‖Unf − Ung‖p ≤ K1/p
n ‖f − g‖p.



R. Anguelov and I. Fabris-Rotelli 27

Proof. Let v ∈ G. Without loss of generality we assume Lnf(v) ≥ Lng(v).
From the definition of Ln

Lnf(v) = max
C∈Cn(v)

min
w∈C

f(w) = min
w∈Cv

f(w)

for some Cv ∈ Cn(v). Hence Lng(v) ≥ minw∈Cv
f(w). We also have

Lng(v) = max
C∈Cn(v)

min
w∈C

g(w) ≥ min
w∈Cv

g(w) = g(uv),

for some uv ∈ Cv. Thus

|Lnf(v) − Lng(v)| = Lnf(v) − Lng(v) ≤ min
w∈Cv

f(w) − g(uv) ≤ f(uv) − g(uv)

Using that uv ∈ Cv ∈ Cn(v) it is easy to see that ρ(v, uv) ≤ n. Therefore

|Lnf(v) − Lng(v)|p ≤ |f(uv) − g(uv)|
p ≤

∑

w∈B(v,n)

|f(w) − g(w)|p. (4)

Using the inequality (4) for every v ∈ G we obtain

‖Lnf − Lng‖p
p =

∑

v∈G

|Lnf(v) − Lng(v)|p

≤
∑

v∈G

∑

w∈B(v,n)

|f(w) − g(w)|p ≤ Kn

∑

w∈G

|f(w) − g(w)|p,

which proves the Lipschitz property of Ln. The Lipschitz property of Un is
proved similarly. �

It is easy to obtain from Theorem 4 that the compositions LnUn and UnLn

are also Lipschitz with a constant K2/p for p ∈ [1,∞). However, we actually
need a Lipschitz inequality when one of the functions is in Mn. In this case
the respective constant is smaller as shown in the next theorem.

Theorem 5. For all f ∈ A(G) and g ∈ Mn we have

‖LnUnf − g‖p ≤ K1/p
n ‖f − g‖p , ‖UnLnf − g‖p ≤ K1/p

n ‖f − g‖p .

Proof. Let v ∈ G. If LnUnf(v) < g(v) using that Un ≥ id we obtain

|LnUnf(v) − g(v)| = g(v) − LnUnf(v) ≤ g(v) − Lnf(v) = |Lnf(v) − Lng(v)|.

Then it follows from inequality (4) derived in the proof of Theorem 4 that

|LnUnf(v) − g(v)|p ≤ |Lnf(v) − Lng(v)|p ≤
∑

w∈B(v,n)

|f(w) − g(w)|p. (5)
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If LnUnf(v) ≥ g(v) then similarly using that Ln ≤ id the inequality for Un

which is analogical to (4) we have

|LnUnf(v) − g(v)|p ≤ |Unf(v) − Ung(v)|p ≤
∑

w∈B(v,n)

|f(w) − g(w)|. (6)

The combined application of (5) and (6) for every v ∈ G yields

‖LnUnf − g‖p
p =

∑

v∈G

|LnUnf(v) − g(v)|p ≤
∑

v∈G

∑

w∈B(v,n)

|f(w) − g(w)|p

≤ Kn

∑

w∈G

|f(w) − g(w)|p = Kn‖f − g‖p
p

which prove the inequality for LnUn. The inequality for UnLn is proved in a
similar manner. �

Remark 1. Letting p → ∞ we obtain from Theorems 4 and 5 that the
operators Ln, Un and their compositions all satisfy the Lipschitz property with
a constant 1 with respect to the supremum norm.

Proof of Theorem 3. Let p ∈ [1,∞). Using Theorem 5 we obtain

‖Pf − f‖p ≤ ‖Pf − h‖p + ‖h − f‖p

≤ K1/p
n ‖f − h‖p + ‖h − f‖p

= (1 + K1/p) ‖h − f‖.

For p = ∞ it follows from Remark 1 that

‖Pf − f‖∞ ≤ ‖Pf − h‖∞ + ‖h − f‖∞

= ‖Pf − Ph‖∞ + ‖h − f‖∞

≤ 2‖h − f‖∞,

which completes the proof. �

4. Conclusion

The idea of using monotonicity as a concept of smoothness within the
Approximation Theory originates in the works of Sendov and Popov, e.g. [6]. In
this paper we consider the situation when a signal or a feature with smoothness
defined in terms of its local monotonicity needs to be extracted from a given
input. We show that the LULU operators typically considered for their structure
preserving properties also provide near best locally monotone approximations.
The general setting of functions defined on a graph includes as particular cases
both sequences as in [5] and multidimensional arrays as in [1].
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