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Sharp Integral Inequalities

for Trigonometric Polynomials

Vitalii V. Arestov∗

Sharp inequalities for linear operators in the set of trigonometric polyno-
mials with respect to integral functionals

R
2π

0
ϕ(|f(x)|) dx over the class

of all functions ϕ defined, nonnegative, and nondecreasing on the semi-
axis [0,∞) are discussed.

1. Prehistory

1.1. Let P be the real number field R or the complex number field C

depending on the situation. Let C2π = C2π(P) be the space of continuous 2π-
periodic functions with values in the field P. The space C2π is a Banach space
with respect to the uniform norm

‖f‖C2π
= max{|f(t)| : t ∈ [0, 2π]}.

Let us denote by Fn(P) the set of trigonometric polynomials

fn(t) =
a0

2
+

n∑

k=1

(ak cos kt + bk sin kt) (1.1)

of order n ≥ 0 with coefficients from the field P. In the sequel, we also use the
exponential notation for polynomials (1.1):

fn(t) =

n∑

k=−n

ckeikt.

In the set Fn(C), the known Bernstein inequality is valid:

‖f ′

n‖C2π
≤ n‖fn‖C2π

, fn ∈ Fn(C). (1.2)
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All extremal polynomials in inequality (1.2) have the form aeint+be−int, where
a and b are arbitrary complex numbers. Bernstein obtained inequality (1.2)
for polynomials with real coefficients [15, Subsect. 10]. Moreover, in the
original variant [13] of paper [15], he proved this inequality with the constant n
for odd and even trigonometric polynomials and, as a consequence, with the
constant 2n in the class of all polynomials (1.1) from Fn(R). Bernstein’s
comments [16, Subsect. 3.4] to paper [15] contain the following phrase: “The
conclusion given here and showing that the general inequality is an elementary
consequence of the same inequality for the sum of sines, which was announced to
me by E. Landau soon after the appearance of dissertation [13], was published
for the first time in [14, §10]”. Note that paper [13] was published in 1912, and
monograph [14] was published in 1926.

In 1914, Riesz [33, 34] (see also, for example, [39, Vol. 2, Ch. 10]) obtained
inequality (1.2) with the best constant n (both on the set Fn(R) and on the
set Fn(C)) with the help of the known interpolation formula for a derivative
of a trigonometric polynomial. Namely, Riesz proved the following statement.

Theorem 1. For the derivative of an arbitrary trigonometric polynomial

fn ∈ Fn(C) of order n ≥ 1, the following formula holds:

f ′

n(t) =

2n∑

k=1

(−1)k−1αkfn(t + τk), t ∈ (−∞,∞), (1.3)

where

τk =
2k − 1

2n
π, αk =

1

n
(
2 sin

τk

2

)2 , 1 ≤ k ≤ 2n.

The coefficients in formula (1.3) satisfy the equality

2n∑

k=1

αk = n;

therefore, (1.3) implies (1.2) (with the constant n).
As a consequence of (1.2), the following sharp inequality holds for any

natural n and r:

‖f (r)
n ‖C2π

≤ nr‖fn‖C2π
, fn ∈ Fn(C). (1.4)

Later, inequalities (1.2) and (1.4) were generalized in different directions.
On the set Fn(C), let us consider the functional ‖f‖p for 0 ≤ p ≤ ∞, which is
defined by the following relations depending on p:

‖f‖p =
( 1

2π

2π∫

0

|f(t)|p dt
)1/p

, 0 < p < ∞,

‖f‖∞ = lim
p→+∞

‖f‖p = max{|f(t)| : t ∈ R} = ‖f‖C2π
,
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‖f‖0 = lim
p→+0

‖f‖p = exp
( 1

2π

2π∫

0

ln |f(t)| dt
)
.

In 1933, Zigmund, with the help of Riesz interpolation formula (1.3), proved
the following statement (see [39, Vol. 2, Ch. 10, Theorem (3.16)]).

Theorem 2. For any function ϕ non-negative, non-decreasing, and convex

on the semi-axis [0,∞), the following inequality holds:

2π∫

0

ϕ(|f ′

n(t)|) dt ≤
2π∫

0

ϕ(n|fn(t)|) dt, fn ∈ Fn(R). (1.5)

Inequality (1.5) is sharp and turns into an equality for functions

fn(t) = A cos(nt + ξ), A, ξ ∈ R. (1.6)

If the function ϕ strictly increases on [0,∞), then the equality in (1.5) holds

only for polynomials (1.6).

As seen from the proof of this theorem in [39, Vol. 2, Ch. 10], in fact,
inequality (1.6) holds on the set Fn(C).

For p ≥ 1, the functions ϕ(u) = up, u ∈ [0,∞), satisfy the assumptions
of Zigmund’s Theorem 2. Therefore, Theorem 2 contains, in particular, the
Bernstein inequality

‖f ′

n‖Lp
≤ n‖fn‖Lp

, fn ∈ Fn(C), (1.7)

in the spaces Lp, p ≥ 1. As a consequence, the following sharp inequality holds
for any natural n and r for 1 ≤ p ≤ ∞:

‖f (r)
n ‖Lp

≤ nr‖fn‖Lp
, fn ∈ Fn(C). (1.8)

In 1975, Ivanov [23] and Storozhenko, Krotov, and Osval’d [37] built the
theory of approximation of 2π-periodic functions by trigonometric polynomials
in the spaces Lp, 0 < p < 1. In particular, they studied the Bernstein inequality
in Lp and proved that, for any p, 0 < p < 1, there exists a constant c(p) such
that, for n ≥ 1,

‖f ′

n‖Lp
≤ c(p)n ‖fn‖Lp

, fn ∈ Fn(R). (1.9)

The proof of this result in [23, 37] is based on specially chosen integral represen-
tations of trigonometric polynomials. In [29], to justify inequality (1.9), Osval’d
applied appropriate quadrature formulas. Papers [23, 37, 29] do not contain
explicit expressions for the value c(p) in (1.9). In paper [27] published in 1979,
Nevai proved inequality (1.9) with the constant

c(p) =

(
8

p

)1/p

, 0 < p < 1.
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In fact, it turned out that the best constant in inequality (1.9) is c(p) = 1;
i.e., inequality (1.7) is valid for all p, 0 ≤ p < ∞. This result was obtained by
the author in 1978–1981. Statements are given and a method of investigation is
described in [1]; complete proofs are given in paper [2]. The results of paper [2]
will be discussed more completely below.

In 1980, paper [26] by Mate and Nevai was published, where, in particular,
the following statement is proved with the help of refined methods of theory of
orthogonal polynomials.

Theorem 3. Let ϕ be a non-negative, non-decreasing, and convex function

defined on [0,∞); let 0 < p < 1. Then, on the set Fn(R) of trigonometric

polynomials fn of order n, the following inequality is valid:

2π∫

0

ϕ
(∣∣∣

f ′

n(t)

n

∣∣∣
p)

dt ≤
2π∫

0

ϕ(4e|fn(t)|p) dt.

This statement, in particular, implies that inequality (1.9) holds with a
constant c(p) satisfying the condition

c(p) ≤ (4e)1/p, 0 < p < 1.

Paper [26] was published later than [1]. However, [26] was submitted earlier
than [1] was published. It should be said that methods in [1, 2] are essentially
different from that in [26].

1.2. In [1, 2], we studied inequalities of type (1.5) for a wider class of
functions ϕ and a wider class of operators in the space of polynomials.

Let Φ+ be the set of functions ϕ non-decreasing, locally absolutely continuous
on (0,∞), and such that the function ϕ(ev) is convex downwards on (−∞,∞)
or, what comes to the same, the function uϕ′(u) does not decrease on (0,∞).
Functions ϕ non-decreasing and convex downwards on [0,∞) belong to this
class as well as the specific functions ln u, ln+ u = max{0, ln u} = ln max(1, u),
and up for all p > 0.

In fact, inequalities not for trigonometric polynomials on the torus but for
algebraic polynomials on the unit circle of the complex plane were studied
in [1, 2]. We used the known fact that the formula

fn(t) = e−i n tP2n(eit) (1.10)

establishes one-to-one correspondence between the set Fn(C) of trigonometric
polynomials of order n and the set P2n of algebraic polynomials of degree 2n.

Let Pn be the set of algebraic polynomials of degree n ≥ 0 with complex
coefficients. For the polynomials

Λn(z) =
n∑

k=0

λk

(
n

k

)
zk, Pn(z) =

n∑

k=0

ak

(
n

k

)
zk,
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the polynomial

(ΛnPn)(z) =
n∑

k=0

λkak

(
n

k

)
zk (1.11)

is called the Szegő composition of the polynomials Λn and Pn. Properties
of the Szegő composition can be found in [31, Sect. V], [24, Ch. IV], see
also papers [20, 19] and the references given therein. For a fixed Λn, Szegő
composition (1.11) is a linear operator in Pn. Namely such operators were
considered in papers [1, 2].

Let Ω+
n and Ω−

n be the sets of operators (1.11) generated by polynomials
Λn all of whose n zeros lie in the unit disk |z| ≤ 1 or in the domain |z| ≥ 1,
respectively. We set Ω0

n = Ω+
n

⋂
Ω−

n . Operators from Ω+
n , Ω−

n , and Ω+
n

⋂
Ω−

n

are characterized by the property that polynomials Pn all of whose n zeros lie
in the unit disk |z| ≤ 1, in the domain |z| ≥ 1, and on the unit circle |z| = 1,
respectively, are mapped according to formula (1.11) to polynomials with the
same location of zeros (see [31, Sect. V, Problems 151, 152, 116, 117] and the
references given in [2]).

One of the main results in [1, 2] is the following statement.

Theorem 4. For operators Λn ∈ Ωn = Ω+
n ∩ Ω−

n and functions ϕ ∈ Φ+,

the following inequality holds on the set Pn:

2π∫

0

ϕ(|(ΛnPn)(eit)|) dt ≤
2π∫

0

ϕ(cn|Pn(eit)|) dt, Pn ∈ Pn, (1.12)

cn = cn(Λn) = max{|λn|, |λ0|}. (1.13)

Inequality (1.12) is sharp; it turns into an equality for the polynomials

azn, b = const, azn + b (a, b ∈ C) (1.14)

if Λn belongs to the set Ω+
n , Ω−

n , and Ω+
n

⋂
Ω−

n , respectively.

Under certain restrictions on Λn and ϕ, there are no other extremal polyno-
mials in (1.12) except for (1.14) [2, Theorem 5].

As a specific case of results from paper [2], the following statement is valid.

Theorem 5. For functions ϕ ∈ Φ+, the following sharp inequality holds:

2π∫

0

ϕ(|f ′

n(t)|) dt ≤
2π∫

0

ϕ(n|fn(t)|) dt, fn ∈ Fn(C). (1.15)

Inequality (1.15) turns into an equality for the polynomials fn(t) = ae−int +
beint, a, b ∈ C. If uϕ′(u) strictly increases on (0,∞), then there are no other

extremal polynomials.
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The method of investigating sharp inequalities (1.12)–(1.13) in [1, 2] can be
characterized shortly and schematically by the following three stages.

1. Linear operators in the form of Szegő composition (1.11) are considered.
Known properties of the Szegő composition related to the location of zeros of
polynomials are used. There are no new properties of the Szegő composition
in papers [1, 2].

2. Inequality (1.12)–(1.13) is proved for the function ϕ(u) = lnu, u ∈
(0,∞), with the help of theory of subharmonic functions. In addition, the
following known statement is used (see, for example, [31, Sect. III, Problem 175],
[25, Ch. VI, §2]): If a function h is meromorphic in the disk |z| ≤ 1, analytic,
and nonzero at the center of the disk, then Jensen’s formula

1

2π

2π∫

0

ln |h(eit)| dt = ln |h(0)| +
r∑

ν=1

ln
1

|zν |
−

s∑

ν=1

ln
1

|ζν |
(1.16)

is valid, where z1, . . . , zr are the zeros and ζ1, . . . , ζs are the poles of the function
h in the disk |z| ≤ 1; here, a zero or a pole of multiplicity m is written m times.
For the polynomial

Pn(z) = A

n∏

k=1

(z − zk), A 6= 0,

of degree n ≥ 1 with a nonzero leading coefficient A, formula (1.16) can be
written in the following form:

1

2π

2π∫

0

ln |Pn(eit)| dt = ln
(
|A|

n∏

k=1

max(1, |zk|)
)
. (1.17)

3. Inequality (1.12)–(1.13) for the function ϕ(u) = lnu, u ∈ (0,∞), is
extended to arbitrary functions ϕ ∈ Φ+ in two steps. First, with the help
of Jensen’s formula (1.17), the inequality is extended to the function ϕ(u) =
ln+ u = ln max(1, u), u ∈ (0,∞). After that, a specific integral representation
of the function ϕ ∈ Φ+ in terms of the function ln+ u is constructed and the
inequality for the function ln+ u obtained at the previous step is applied.

Recently, Glazyrina [21] showed that the set of functions Φ+ in inequality
(1.12)–(1.13) is natural. More precisely, she showed that, if inequality (1.12)–
(1.13) holds for an operator Λn ∈ Ωn different from a rotation of the complex
plane and for a non-decreasing function ϕ smooth enough, then ϕ ∈ Φ+.
In particular, if inequality (1.15) holds on the set Fn(C) of trigonometric
polynomials of order n ≥ 1 (with complex coefficients) for a non-decreasing
function ϕ smooth enough on the semi-axis (0,∞), then the function ϕ belongs
to the set Φ+.

Investigations of [2] were continued in author’s papers [3, 4, 5, 6]. In
particular, the following statement is proved in [3].
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Theorem 6. For any function ϕ∈Φ+ and any n≥1, the Szegő composition

(1.11) of arbitrary polynomials Λn, Pn ∈ Pn satisfies the following inequality:

2π∫

0

ϕ(|(ΛnPn)(eit)|) dt ≤
2π∫

0

ϕ(‖Λn‖H0
|Pn(eit)|) dt; (1.18)

here,

‖Λn‖H0
= exp

( 1

2π

2π∫

0

ln |Λn(eit)| dt
)
. (1.19)

With the help of Jensen’s formula (1.17), it is not hard to verify that,
if a polynomial Λn belongs to the set Ωn = Ω+

n

⋃
Ω−

n (and only for such
polynomials), quantity (1.19) takes the following value:

‖Λn‖H0
= max{|λn|, |λ0|}.

Consequently, inequality (1.12)–(1.13) is contained in inequality (1.18).
In 1989, von Golitschek and Lorentz [22] considered an inequality of the

type (1.15) for the operator

Afn +
B

n
f ′

n (1.20)

formally more general than the differentiation operator f ′

n in the space of
trigonometric polynomials. The following statement is one of the main results
of their paper.

Theorem 7. For a function ϕ ∈ Φ+ and any real A and B, the following

sharp inequality holds:

2π∫

0

ϕ
(∣∣∣Afn(t) +

B

n
f ′

n(t)
∣∣∣
)

dt ≤
2π∫

0

ϕ
(√

A2+B2 |fn(t)|
)
dt, fn∈Fn(C). (1.21)

This result is not new, as it is contained in [2, Corollary 2]. Indeed, by
formula (1.10), for complex A and B, we have

Afn(t) +
B

n
f ′

n(t) = e−int i
(B

n
ζP ′

2n(ζ) − (B + iA)P2n(ζ)
)
, ζ = eit.

Let us consider the operator

(DnPn)(z) =
2B

n
zP ′

n(z) − (B + iA)Pn(z) (1.22)

on the set Pn of algebraic polynomials of degree n. Operator (1.22) is Szegő’s
composition (1.11) constructed with the help of the polynomial

Dn(z) =
n∑

k=0

(2B

n
k − (B + iA)

)(
n

k

)
zk = (1 + z)n−1((B − iA)z − (B + iA)).
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Depending on the conditions

|B − iA| > |B + iA|, |B − iA| < |B + iA|, |B − iA| = |B + iA|,

operator (1.22) belongs to the set Ω+
n , Ω−

n or Ω0
n = Ω+

n

⋂
Ω−

n , respectively (see
[31, Sect. V, Problems 116, 117] for details). Therefore, Theorems 4, 5 and so
Corollary 2 from [2] are valid for operator (1.22). In this case, quantity (1.13)
has the value cn = max{|B−iA|, |B+iA|}. Let us suppose that the coefficients
A and B are real. Then, all zeros of the polynomial Dn lie on the unit circle;
i.e., Dn ∈ Ω+

n

⋂
Ω−

n . In this case, cn = |B − iA| = |B + iA| =
√

A2 + B2. For
the operator D2n on the set P2n of polynomials of degree 2n, inequality (1.12)–
(1.13) turns into inequality (1.21) from Theorem 7. To prove inequality (1.21),
authors of paper [22] follow the scheme of reasoning from paper [2]. It should
be said that paper [22] is shorter than [2]. There are at least two reasons for it.
(i) In [22] in comparison with [2], specific operator (1.20) (with real coefficients
A and B) is discussed. (ii) The required property of zeros of polynomials under
mapping of operator (1.20) is proved in [22, Lemma 1] directly with the help
of rather clear considerations without usage of an equivalent known [31, Sect.
V, Problems 116, 117] property of operator (1.22).

1.3. For some classical operators on the set of trigonometric polynomials,
the respective operator Λn of the Szegő composition does not belong to the set
Ωn = Ω+

n

⋃
Ω−

n . Theorem 4 cannot be applied to such operators. Certainly,
Theorem 6 can be applied; however, inequality (1.18) will be sharp, generally
speaking, only for the function ϕ(u) = lnu, u ∈ (0,∞). However, even in
the latter case, the problem of investigating the behavior of quantity (1.19)
remains open. Let us discuss two classical cases: the Szegő inequality for
derivatives of the adjoint trigonometric polynomial and the Stechkin–Nikol’skii
inequality between the norm of derivative of a polynomial and the norm of its
first difference.

In 1928, Szegő [38] proved that the sharp inequality

‖f ′

n cos α − f̃ ′

n sinα‖C ≤ n‖fn‖C , fn ∈ Fn(C), (1.23)

holds for any real α, where

f̃n(t) =

n∑

k=1

(−bk cos kt + ak sin kt)

is the polynomial adjoint with the polynomial fn. Inequality (1.23) was obtained
in [38] by using the following quadrature formula similar to Riesz formula (1.3).

Theorem 8. For any real α and any trigonometric polynomial fn ∈ Fn(C)
of order n ≥ 1, the following formula holds:

f ′

n(t) cos α − f̃ ′

n(t) sin α =
2n∑

k=1

βkfn(t + τk), t ∈ (−∞,∞), (1.24)
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where

τk = τk(α) =
2k − 1

2n
π +

α

n
, βk =

(−1)k−1 + sinα

4n
(

sin
τk

2

)2 .

The coefficients of formula (1.24) satisfy the equality
∑2n

k=1 |βk| = n; there-
fore, (1.24) implies inequality (1.23).

It should be said that, in fact, in [38], sharp inequalities of type (1.23) are
proved for essentially wider class of operators in comparison with the operator
f ′

n(t) cos α − f̃ ′

n(t) sin α. Bernstein [17] extended these results to a wider class
of operators (final in a certain sense). Recently, Parfenenkov [30] obtained an
appropriate quadrature formula.

In 1933, Zigmund [39, Vol. II, Ch. X, (3.25)], with the help of formula
(1.24), obtained the following statement.

Theorem 9. If a function ϕ is convex downwards and non-decreasing on

the semi-axis [0,∞), then the following sharp inequality holds for any real α:

2π∫

0

ϕ(|f ′

n(t) cos α − f̃ ′

n(t) sin α|) dt ≤
2π∫

0

ϕ(n|fn(t)|) dt, fn ∈ Fn(C). (1.25)

Inequality (1.25) is sharp and turns into an equality for the polynomials of the

form aeint + be−int, a, b ∈ C. In addition, if the function ϕ strictly increases

on [0,∞), then there are no other extremal polynomials.

Taking the function ϕ(u) = up, p ≥ 1, in (1.25), we obtain the inequality

‖f ′

n cos α − f̃ ′

n sin α‖Lp
≤ n‖fn‖Lp

, fn ∈ Fn(C), (1.26)

in the space Lp, 1 ≤ p < ∞. It follows from (1.23), (1.26), and (1.7) that,
for any natural n, r and 1 ≤ p ≤ ∞, along with inequality (1.8), the following
(sharp) inequality is also valid:

‖f̃ (r)
n ‖Lp

≤ nr‖fn‖Lp
, fn ∈ Fn(C). (1.27)

Inequality (1.8) is valid for all p, 0 ≤ p ≤ ∞. However, as shown in [6],
generally speaking, inequality (1.27) cannot be extended to the case 0≤p<1. If
r ≥ n ln 2n, then the corresponding operator of the Szegő composition belongs
to the class Ω0

2n = Ω+
2n

⋂
Ω−

2n; as a consequence, (for r ≥ n ln 2n) the following
sharp inequality holds for any function ϕ ∈ Φ+:

2π∫

0

ϕ(|f̃ (r)
n (t)|) dt ≤

2π∫

0

ϕ(nr|fn(t)|) dt, fn ∈ Fn(C).

In particular, inequality (1.27) is valid for all p ≥ 0. The author conjectures
that the necessary and sufficient condition for (1.27) to hold is r ≥ n − 1. For
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a fixed r, the best constant K0(n, r) in the analogous to (1.27) inequality for
the space L0

‖f̃ (r)
n ‖L0

≤ K0(n, r)‖fn‖L0
, fn ∈ Fn(C),

has the property K0(n, r) = 4εn , εn = n + o(n) as n → ∞. It is seen that the
growth of this constant with respect to n is essentially greater than that of the
nr in (1.27) for 1 ≤ p ≤ ∞.

In 1948, Stechkin [35] obtained a fine generalization of Bernstein’s inequal-
ity (1.4). Namely, he proved that the sharp inequality

‖f (r)
n ‖C2π

≤
( n

2 sin nh/2)

)r

‖∆r
hfn‖C2π

, fn ∈ Fn(R), (1.28)

between the uniform norms of the derivative of order r ≥ 1 of a polynomial
and its r-th difference

∆r
hfn(t) =

r∑

ν=0

(−1)k+ν

(
r

ν

)
fn(x + νt)

with step h holds in Fn(R) for 0 < h < 2π
n . However, already in 1914, Riesz

obtained [34, Sect. 4] a special case of this inequality for r = 1 and h = π/n.
Nikol’skii established [28] an inequality similar to (1.28) for entire functions of
exponential type σ for r ≥ 1 and h = π/σ in 1948. Storozhenko found [36]
the best constant in an inequality similar to (1.28) in the space L0 for r = 1.
It turned out that the behavior of this constant is different from that of the
respective constant in (1.28).

1.4. Sharp inequalities for trigonometric polynomials is a wide part of
function theory. The review of results given here is far from complete; it only
reflects author’s interests. Rather complete review can be found in monograph
[32] by Rahman and Schmeisser. For a review of the sharp inequalities for
algebraic polynomials on a segment the reader is referred to the paper of
Boyanov [18].

2. Sharp Inequalities for Trigonometric Polynomials

with Respect to Integral Functionals

2.1. On the set Fn(R) of real trigonometric polynomials (1.1) of order at
most n ≥ 1, we define the functional

µ(fn) = mes {t ∈ [0, 2π] : |fn(t)| ≥ 1},

whose value is the Lebesgue measure of points on the torus T at which the
absolute value of a polynomial fn is greater than or equal to 1. For a linear
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operator Fn on the set of polynomials Fn(R), we denote by Bn(Fn) the least
possible constant in the inequality

µ(Fnfn) ≤ Bn(Fn)µ(fn), fn ∈ Fn(R). (2.1)

Babenko [12] studied such inequalities in 1992 and obtained two-sided esti-
mates for the constant Bn(Fn) for a rather wide class of operators, in particular,
for the operator Gn which assigns to polynomial (1.1) its leading harmonic

Gn(fn)(t) = an cos nt + bn sin nt

and for the differentiation operator

Dnfn =
1

n
f ′

n. (2.2)

If Fn 6≡ 0, then
Bn(Fn) ≥ 1. (2.3)

Indeed, let us suppose that a polynomial fn ∈ Fn(R) satisfies Fnfn 6≡ 0. Let
us consider the family of polynomials {ufn, u > 0}. We have

µ(ufn) = mes
{

t ∈ T : |fn(t)| ≥ 1

u

}
→ 2π, u → ∞.

The value µ(Fn(ufn)) = µ(uFn(fn)) has the same property. Substituting
functions {ufn, u > 0} into (2.1), we obtain inequality (2.3).

Note also that, if the norm of the operator Fn in the space C2π is grater
than 1: ‖Fn‖C2π→C2π

> 1, then Bn(Fn) = ∞. Indeed, under the assumption
made, there exists a polynomial fn ∈ Fn(R) such that ‖fn‖C2π

< 1 and
‖Fnfn‖C2π

> 1. It follows that Bn(Fn) = ∞.

2.2. Let Φ be the set of functions ϕ defined, non-negative, and non-
decreasing on the semi-axis [0,∞). For a linear operator Fn on Fn(R) and
for a function ϕ ∈ Φ, we denote by An(Fn, ϕ) the least possible constant in the
inequality

2π∫

0

ϕ(|(Fnfn)(t)|) dt ≤ An(Fn, ϕ)

2π∫

0

ϕ(|fn(t)|) dt, fn ∈ Fn(R). (2.4)

The investigation of the value An(Fn, ϕ) for a specific function ϕ ∈ Φ seems to
be an unsolvable problem. Let us consider the quantity

An(Fn) = sup{An(Fn, ϕ) : ϕ ∈ Φ}. (2.5)

The class Φ contains, in particular, the function ϕ∗ defined by the relations

ϕ∗(u) =

{
0, u ∈ [0, 1),

1, u ∈ [1,∞).
(2.6)
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For this function,
2π∫

0

ϕ∗(|fn(x)|) dx = µ(fn).

Therefore, An(Fn, ϕ∗) = Bn(Fn); hence, the least constant in (2.1) and value
(2.5) are related by the inequality

Bn(Fn) ≤ An(Fn). (2.7)

In fact, these values coincide. More precisely, the following statement [9] is
valid.

Lemma 1. For any n ≥ 1 and any linear operator Fn, the equality holds

in Fn(R):
An(Fn) = Bn(Fn). (2.8)

2.3. In the set Fn(R) of trigonometric polynomials of order n, let us
consider the linear operator Gn which assigns to a polynomial (1.1) its leading
harmonic:

Gn(fn)(t) = an cos nt + bn sinnt.

It is well-known that the norm of the operator Gn on the set Fn(R) in the space
C2π is equal to 1 or, what comes to the same, the harmonic an cos nt+ bn sinnt
is not approximated by smaller harmonics in C2π. The same fact is valid in
the spaces Lp

2π, 0 ≤ p < ∞ (see [2] and the references given therein).
In fact, a more general fact is valid. We recall that Φ+ denotes the set of

functions ϕ defined, non-decreasing, locally absolutely continuous on (0,∞),
and such that the function uϕ′(u), u ∈ (0,∞), is also non-decreasing. As a
consequence of more general results from [2], for any function ϕ ∈ Φ+, the
following inequality is valid:

2π∫

0

ϕ(|an cos nt + bn sinnt|) dt ≤
2π∫

0

ϕ(|fn(t)|) dt, fn ∈ Fn(R). (2.9)

This result also means that, for any function ϕ ∈ Φ+, the harmonic of order
n ≥ 1 is not approximated by smaller harmonics with respect to the functional

2π∫

0

ϕ(|fn(t)|) dt. (2.10)

Let us consider the problem on the set Φ of functions ϕ defined, non-
negative, and non-decreasing on the semi-axis [0,∞). For a function ϕ ∈ Φ,
we denote by An(ϕ) = An(Gn, ϕ) the least constant in the inequality

2π∫

0

ϕ(|an cos nt + bn sin nt|) dt ≤ An(ϕ)

2π∫

0

ϕ(|fn(t)|) dt, fn ∈ Fn(R).
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The polynomials fn(t) = a cos nt + b sin nt provide the estimate An(ϕ) ≥ 1.
Inequality (2.9) means that, if ϕ ∈ Φ+, then An(ϕ) = 1. There are functions
ϕ ∈ Φ such that An(ϕ) > 1; by Babenko’s result (2.13), function (2.6) possesses
this property.

We are interested in the value

A∗

n = sup{An(ϕ) : ϕ ∈ Φ}. (2.11)

By Lemma 1, value (2.11) coincides with the best constant βn = Bn(Gn)
in the inequality

µ(an cos nt + bn sin nt) ≤ βn µ(fn), fn ∈ Fn(R). (2.12)

Babenko [12] proved that the following inequalities are valid for any n ≥ 1:

√
2n ≤ βn ≤ n

√
2. (2.13)

Sharp value of βn and so of A∗

n are given in [10, 11]. The following statement
is valid.

Theorem 10. For any n ≥ 1, the best constant βn in inequality (2.12)
satisfies

βn =
√

2n. (2.14)

Statements (2.14) and (2.8) imply the equality

A∗

n =
√

2n.

The last result can be formulated as follows.

Theorem 11. For any function ϕ ∈ Φ and any n ≥ 1, the following

inequality holds in the set Fn(R):

2π∫

0

ϕ(|fn(t)|) dt ≥ 1√
2n

2π∫

0

ϕ(|an cos nt + bn sinnt|) dt, fn ∈ Fn(R). (2.15)

Inequality (2.15) is unimprovable over the set of all functions ϕ ∈ Φ for any

n ≥ 1.

This result means that, for functions ϕ ∈ Φ, the leading harmonic an cos nt+
bn sin nt already can be approximated by smaller harmonics with respect to
functional (2.10) but at most at

√
2n times in comparison with the value of

functional (2.10) for the leading harmonic.
The problems for algebraic polynomials on a segment similar to problems

considered in this section were discussed in the author’s paper [7].

2.4. For differential operator (2.2), inequalities (2.4) are called Bernstein’s
inequalities. As was mentioned above, it is proved in [2] that An(Dn, ϕ) = 1
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for any function ϕ ∈ Φ+. By now, there is no function ϕ ∈ Φ not belonging
to the class Φ+ such that an exact value or at least good estimates for the
constant An(Dn, ϕ) are known. Certainly, the largest constant An(Dn) =
sup{An(Dn, ϕ) : ϕ ∈ Φ} is of interest. For operator (2.2), Babenko [12]
obtained the estimates

2

π
ln(2n + 1) ≤ Bn(Dn) ≤ 2n.

In view of this result and Lemma 1, one can only assert that the following
estimates are valid:

2

π
ln(2n + 1) ≤ An(Dn) ≤ 2n.

By now, the value of the quantities Bn(Dn) = An(Dn) is unknown. Even the
values of corresponding quantities for the differential operators of higher orders
are unknown.

Writing this note, we have essentially used the author’s paper [9] in which
Lemma 1 is proved. The results were partially talked about in the author’s
report at CTF-2010 [8].
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