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Surface Approximation

by Piece-Wise Harmonic Functions

Borislav Bojanov∗
and Chrisina Jayne

We describe here a new method for surface approximation on the basis of
given values at a regular grid. The resulting approximant is a continuous
piece-wise harmonic function.

1. Introduction

There exist various algorithms for surface approximation. Most of them use
polynomial spline functions. We present here another approach, which is based
on harmonic functions.

Suppose that G is a given domain in the plane and ϕ is a function defined
on the boundary Γ of G. It is well known that under certain restrictions on Γ
and ϕ, there exists a unique harmonic function u(x, y) on G which coincides
with ϕ(x) on Γ. This fact suggests the following quite natural and simple way
of approximation. Suppose that (xi, yj) is a regular grid in G and {Dm} are the
rectangular cells of the grid, with boundaries {Γm}, respectively. Let f(x, y)
be a function defined on G. Assume that the values of f are known or easily
available on the lines of the grid, i.e., on each Γm. Denote by um(x, y) the
harmonic continuation of f on Dm. In other words, um is the unique solution
of the Dirichlet problem

∣

∣

∣

∆u = 0 on Dm

u|Γm
= f,

(1)

where, as usual,

∆u :=
∂2u

∂x2
+
∂2u

∂y2

and u|Γ = f means that u(x, y) = f(x, y) for (x, y) ∈ Γ.
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Having um for each m, one can approximate f on G by the piece-wise
harmonic function S(x, y) defined as follows:

S(x, y) := um(x, y) for (x, y) ∈ Dm, all m.

Clearly S is a continuous function and possesses good approximation proper-
ties. There is however a serious reason which stops the people from using this
method of approximation in practice. It is the necessity of solving the partial
differential equation (1) for each m (the number of cells Dm may be very large
for fine grids).

We propose here a simple way of constructing S(x, y) which avoids the
solution of (1) in each cell Dm. The numerical experiments show that the
method is fast and it produces good approximations in some typical cases.

2. Description of the Algorithm

Let us first describe roughly the main idea and look at the precise details.
Suppose that the grid on G is defined by the points {xi, yj},

xi = x0 + ih, i = 0, . . . , N,

yj = y0 + jh, i = 0, . . . ,M.

Denote by Dij the elementary square cell with vertices

(xi, yj), (xi+1, yj), (xi+1, yj+1), (xi, yj+1).

Let Γij be the boundary of Dij . Suppose that the values of f(x, y) are
known on Γij for every (i, j). Introduce the boundary functions

ϕij(x, y) := f(x, y) for (x, y) ∈ Γij .

In order to construct the piece-wise harmonic approximation Sh(x, y) of
f(x, y) (as described in the previous section) we need the solutions of the
equations

∣

∣

∣

∆u = 0 on Dij

u|Γij
= ϕij .

(2)

For this purpose we transform Dij into the unit square D∗ with vertices
(0, 0), (1, 0), (1, 1), (0, 1). Then the boundary function ϕij(x, y) goes (under this
linear transformation) to a certain function ψ(x, y) on the boundary Γ∗ of D∗.
Let {ψ0, ψ1, . . . , ψr} be a bases of appropriate preassigned boundary functions
on Γ∗. Assume that we know somehow the solutions of the normalized problems

∣

∣

∣

∆u = 0 on D∗

u|Γ∗ = ψj
(3)
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for j = 0, . . . , r. Note that this is a small number of equations, which can be
solved previously (once forever) and the solutions uj , j = 0, . . . , r, stored. Let

us find an approximation ψ̃ ∈ span{ψ0, ψ1, . . . , ψr} to ψ. Suppose that

ψ̃ = c0ψ0 + c1ψ1 + · · · + crψr.

Then

ũ(x, y) :=
r

∑

j=0

cjuj(x, y)

is the solution of the Dirichlet problem corresponding to the boundary conditions
ψ̃ on Γ∗. Finally, by the reverse linear transformation (D∗ → Dij) we find from
ũ the wanted approximate solution of (2) and consequently, the approximation
Sh of f on G.

Next we use this idea to construct explicitly a piece-wise harmonic approxi-
mation Sh of f on the bases of the values {fij} of f at the grid points (xi, yj).
We call this method of construction Algorithm 1. First, we compute the
approximations {fx

ij , f
y
ij} of the derivatives ∂f/∂x, ∂f/∂y at (xi, yj), using

the formulas (see for example [3])

fx
0j =

−3f0,j + 4f1,j − f2,j

2h
, fx

Nj =
3fN,j − 4fN−1,j + fN−2,j

2h
,

fx
ij =

fi+1,j − fi−1,j

2h
,

for 0 < i < N and j = 0, . . . , N . Similarly we compute fy
ij .

Then using cubic Hermite interpolation we define the functions ϕij on the
boundary Γij of Dij . Precisely, for xi ≤ x ≤ xi+1 and y = yj the function
ϕij(x, y) coincides with the cubic polynomial p(x) satisfying the interpolation
conditions

p(xi) = fij , p(xi+1) = fi+1,j , p′(xi) = fx
ij , p′(xi+1) = fx

i+1,j .

The definition of ϕij on the other edges of Dij is similar.
It is clear that the function ϕij can be presented as a sum of 12 terms,

separated in four groups, each group corresponding to one of the vertices of
Dij . For example, the group corresponding to the vertex (xi, yj) will be

fijλ(x, y) + fx
ijµ(x, y) + fy

ijν(x, y),

where λ, µ and ν are cubic polynomials on the edges of Dij such that

λ(xi, yj) = 1,
∂

∂x
µ(xi, yj) = 1,

∂

∂y
ν(xi, yj) = 1

and all other not specified values of λ, µ, ν and their first partial derivatives
are equal to 0 at the vertices of Dij . Then the solution uij of the Dirichlet
problem (2) is a linear combination, with coefficients fkl, f

x
kl, f

y
kl, (k, l) ∈
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Figure 1. u∗(x, y)
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Figure 2. v∗(x, y)

{(i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)}, respectively, of 12 specific functions
(solutions of Dirichlet problem with specific boundary conditions like λ, µ, ν).
Because of the symmetry all these 12 functions can be obtained by symmetry
and rotation from the solutions u(x, y) and v(x, y) of the following two problems

∣

∣

∣

∆u = 0 on Dij

u|Γij
= λ,

and
∣

∣

∣

∆v = 0 on Dij

v|Γij
= µ.

Further, these two solutions can be obtained by a linear transformation from
the corresponding solutions u∗ and v∗ on the unit square D∗. Thus all we need
is to solve previously the Dirichlet problem on D∗ with boundary condition
λ∗(x, y) and µ∗(x, y), where

λ∗(x, y) =











2x3 − 3x2 + 1, for 0 ≤ x ≤ 1, y = 0,

2y3 − 3y2 + 1, for 0 ≤ y ≤ 1, x = 0,

0, if x = 1 or y = 1,

µ∗(x, y) =

{

x(x− 1)2, for 0 ≤ x ≤ 1, y = 0,

0, if x = 0 or 1, y = 1

(see u∗ and v∗ on Figure 1 and Figure 2, respectively).
These two particular problems can be solved numerically with a high accuracy

using some standard numerical method. The values of u∗ and v∗ at some finite
number of points Ωn := {(k/n, i/n), k = 0, . . . , n, i = 0, . . . , n} can be stored
in the memory. In the examples below we have n = 5.

Note that the surface Sh resulting from Algorithm 1 is continuous on G. In
addition, it follows from the construction that ∂

∂x
Sh and ∂

∂y
Sh are continuous

at the grid points (xi, yj). Let us sketch below a modification of Algorithm 1
(we call it Algorithm 2), which produces a surface Sh having first and second
derivatives continuous at the grid points.

Algorithm 2. Given {fij}, compute the first derivatives {sij , i = 1, . . . , N−
1} of the cubic natural spline Pj(x) with knots at {xij , i = 1, . . . , N−1}, which
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interpolates the values {fij , i = 0, . . . , N}. As shown in [2], for every fixed j,
the quantities {sij , i = 1, . . . , N − 1} satisfy the linear system of equations

si−1,j + 4si,j + si+1,j = 3(fi+1,j − fi−1,j)/h, i = 1, . . . , N − 1.

Having fi,j and si,j define the boundary functions ϕij(x, y) on xi,j <
x < xi+1,j , y = yj as the unique cubic polynomial p which satisfies the
interpolation conditions

p(xi) = fij , p(xi+1) = fi+1,j , p′(xi) = sij , p′(xi+1) = si+1,j

and proceed further as in Algorithm 1.

3. Error Estimation

We give here an estimation of the error

Rh(x, y) := f(x, y) − Sh(x, y)

under certain restrictions on f , provided the solutions u∗ and v∗ of the basic
Dirichlet problems are known exactly or with a high accuracy.

Denote, as usual, by ‖f‖ the uniform norm of f on Ḡ.

Theorem 1. Suppose that f ∈ C2(Ḡ) and Sh(x, y) is the piece-wise har-

monic approximation given by Algorithm 1. Then there is a constant C such

that

‖f − Sh‖ ≤ Ch2.

Proof. Let ǫij(x, y) be the error function in the Hermite -like interpolation
of f on Γij . Precisely,

ǫij(x, y) := f(x, y) − ϕi,j(x, y) on Γi,j .

First we shall give an estimation of |ǫi,j |. In order to do this consider ǫij on
any fixed side of Γi,j , say on {xi ≤ x ≤ xi+1, y = yj}. Note that ϕi,j coincides
on this side with the cubic polynomial p(f ;x) which interpolates the data
fij , fi+1,j , f

x
i,j , f

x
i+1,j . Thus p(f ;x) is a linear operator of f which annihilates

the polynomials of first degree. Then, by the Peano kernel theorem,

|ǫij | = |f(x, yj) − p(f ;x)| =

∣

∣

∣

∣

∫ xN

x0

p((x− t)+;x)
∂2

∂x2
f(x, yj) dt

∣

∣

∣

∣

.

Assume now that 0 < i < N (In case i = 0 or i = N the reasoning is similar
and we shall omit it). Since (x− t)+ = x− t for x > t and it vanishes for x < t,
it is clear that p((x− t)+;x) = 0 for t outside I := (xi−1,j , xi+1,j). Set

M := max
(x,y)∈Ḡ

|∆f |.
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Therefore

|ǫij | ≤M

∫

I

|p((x− t)+;x)| dt ≤ 3Mhmax
x∈I

|p((x− t)+;x)|

It is not difficult to see that p((x − t)+;x) is a monotone function of x in
[xi+1,j , xi+1,j ]. Therefore

|p((x− t)+;x)| ≤ |xi+1,j − t| ≤ 2h

if t ∈ I. So,
|ǫi,j | ≤ 6Mh2. (4)

Next part of the proof is standard. Consider the difference Rh(x, y) on Γij .
ClearlyRh is a solution of the Dirichlet’ problem

∣

∣

∣

∆Rh = ∆f on Dij

Rh|Γij
= ǫij .

It is well-known from the theory of harmonic functions (see [1]) that for
each (x, y) ∈ Dij ∪ Γij .

|Rh(x, y)| ≤ max
Γij

|ǫij | + h2 max
Dij

|∆f |.

Now we apply the estimation (4) and complete the proof. �

The same estimate holds also in case of Algorithm 2. The proof is similar.

4. Numerical Experiments

We applied Algorithm 1 for numerical reconstruction of the surface f(x, y)
in the following two cases.

Example 1. f(x, y) = 1 − x2 − y2.

The domain G is the square [−5, 5] × [−5, 5], and h = 1. The solutions
u∗(x, y) and v∗(x, y) of the Dirichlet problem on the unit squareD∗ are evaluated
with a high precision at 100 points. Figure 3 illustrates the approximation
surface Sh(x, y) while the graph of the function f(x, y) is given on Figure 4. �

Example 2. f(x, y) =
cos(x2 + y2)

3 + x2 + y2
.

Similarly to the Example 1 the domain G is the square [−5, 5] × [−5, 5],
and h = 1. The solutions u∗(x, y) and v∗(x, y) of the Dirichlet problem on the
unit square D∗ are evaluated with a high precision at 100 points. Figure 5
illustrates the approximation surface Sh(x, y) while the graph of the function
f(x, y) is given on Figure 6. �
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Figure 3. Sh(x, y)
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Figure 4. f(x, y)
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Figure 5. Sh(x, y)
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Figure 6. f(x, y)
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