
CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2010:
In memory of Borislav Bojanov
(G. Nikolov and R. Uluchev, Eds.), pp. 69-79

Prof. Marin Drinov Academic Publishing House, Sofia, 2012

A Late Report on Interlacing

of Zeros of Polynomials∗

Dimitar K. Dimitrov

In this short paper I try to answer questions raised by my teacher
Borislav Bojanov which concern interlacing of zeros of real polynomials
and consider two specific topics. The first one concerns one of his favorite
results, a theorem due to Vladimir Markov which states that the deriva-
tives of two polynomials with real interlacing zeros posses zeros which
also interlace. The second is a problem about monotonicity of zeros of
classical orthogonal polynomials and Sturm’s comparison theorem for
solutions of Sturm-Liouville differential equations.
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1. Introduction and Markov’s Interlacing Property

Discussing mathematics with Professor Bojanov was a rare experience for
the author of this note. It was pleasure and fun where ideas, challenge and
jokes were composing an amalgama that I shall never forget and I shall miss.
As I miss its main ingredient: Bojanov himself, his personality, rigor and smile.
Though he had the ability of a theory builder, what he really adored was to be
a problem solver. He used to appreciate very much papers containing a piece,
a nice, clever and ingenious idea that one remembers forever. I remember
when he saw for the first time the Collected Papers of Szegő [18], edited by
Richerd Askey, while he was visiting our department in Brazil in 1997. He was
reading exhaustively Szegő’s papers and, some days before he left, Bojanov
told me why he thought Szegő was a great mathematician. The reason, in
Bojanov’s opinion, was that not only Gabor Szegő saw important problems
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and solved them long before others, but also because every single paper of the
great Hungarian master contained a piece, there was a nice little trick that
catches one’s thoughts, and even feelings, and that mixture made Szegő’s work
an art.

One of the favorite nice pieces Bojanov used to adore and comment frequently
was a result of Vladimir Markov [10]. In order to formulate it, we introduce the
notion of interlacing. In what follows we denote by πn the space of algebraic
polynomials of degree not exceeding n. Let p(x) and q(x) be real algebraic
polynomials with only real distinct zeros and p(x) = (x−x1)(x−x2) · · · (x−xn)
and either q(x) = qn(x) = (x − y1)(x − y2) · · · (x − yn) or q(x) = qn−1(x) =
(x− y1)(x− y2) · · · (x− yn−1). Sometimes the real algebraic polynomials with
real zeros are called hyperbolic ones. Also, the zeros of the first derivative of
a polynomial are called its critical points. We say the the zeros of p and q
interlace and write p ≺ q if

x1 < y1 < x2 < · · · < yn−1 < xn < yn

when q(x) = qn(x) or

x1 < y1 < x2 < · · · yn−1 < xn

when q(x) = qn−1(x).

Theorem A (Vladimir Markov). If p ≺ q then p′ ≺ q′.

It is clear that this nice result states that the operator of differentiation
preserves the property of interlacing of zeros of two polynomials. I was still
in the beginning of my studies as MSc student when Bojanov showed me this
result and made various comments on it. The first one was if one could find
a proof different from the original one which is reproduced in Rivlin’s book
on Chebyshev polynomials [15]. That proof uses the Lagrange interpolation
formula and somehow “hides” the nature, and even the beauty, of the statement.
I remember I came up with a proof for the case when the polynomials p and
q are both of degree n and proudly presented it to my teacher as I do now,
without the proud of twenty-five years ago. The idea is rather simple. One
thinks what would happen with the critical points if one “pushes a bit” only
one of the zeros of p to the right. It turns out that all zeros of p′(x) also go to
the right so that we formulate the following:

Lemma 1. If p(x) = (x − x1)(x − x2) · · · (x − xn) has distinct and real

zeros and p′(x) = n(x − ξ1)(x − ξ2) · · · (x − ξn−1), then all the critical points

ξ1, ξ2, . . . , ξn−1 of p are increasing functions of each of its zeros xk. More

precisely, if

pε(x) = (x − x1) · · · (x − xk−1)(x − xk − ε)(x − xk+1) · · · (x − xn),

where ε is a sufficiently small positive number, and

p′ε(x) = (x − ξ1(ε))(x − ξ2(ε)) · · · (x − ξn−1(ε)),
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then ξj < ξj(ε) for every j = 1, . . . , n − 1.
Similarly, if ε is a sufficiently small negative number, then ξj(ε) < ξj for

every j = 1, . . . , n − 1.

Proof. The proof is based on the simple technique of counting the sign
changes. We consider only the case when ε > 0 and count the signs of the
“new” polynomial pε(x) at the critical points ξj of the “old” one. Since

pε(x) = p(x) − εp̃(x), where p̃(x) = p(x)/(x − xk),

p′(x) = (x − xk)p̃′(x) + p̃(x), and p′(ξj) = 0, then

p′ε(ξj) = −εp̃′(ξj) = ε
p̃(ξj)

(ξj − xk)
.

Recalling that ε > 0, we obtain

sign p′ε(ξj) = sign (ξj − xk) p̃(ξj) = sign p(ξj).

Therefore
sign p′ε(ξj) = (−1)n−j = sign p′(xj)

Since p′ε(x) has a unique zero in (xj , xj+1), which we denote by ξj(ε), and the
sign of this polynomial at ξj is still the same is in the left end point xj , it
changes sign after ξj . Thus, xj < ξj(ε). �

Since my enthusiasm was not shared completely by Professor Bojanov and I
saw only his curious smile when I showed him this simple argument, I realized he
knew this proof. Nevertheless, I needed to prove a similar fact about symmetric
polynomials some years later, when I wrote my first paper on monotonicity of
zeros of orthogonal polynomials [4] and I only modified slightly the above proof
(see [4, Lemma 1]).

It is worth mentioning that Shadrin [16] provided a proof of the lemma
with arguments identical with the above ones. Another proof of Lemma 1
was given by Nikolov [13]. Much earlier, in 1951, Videnskii [19] established
some sufficient conditions for interlacing of zeros of generalized polynomials,
and applied his result to establish some Markov-type inequalities with curved
majorants. Until 2007 or so, Bojanov was unaware about Videnskii’s result, it
was communicated to him by A. Shadrin. Professor Bojanov himself obtained
various results on V. Markov’s zero interlacing property for perfect splines
and splines in [1, 3] (see also Theorem 5.7 in [2]), which do not follow from
Videnskii’s sufficient conditions. Recently Milev and Naidenov [11, 12] derived
zero-interlacing properties of exponential polynomials and alike. I do thank
my colleague and friend Geno Nikolov for the information about all these
contributions.

Back to my discussions with Bojanov in the late eighties, I remember that
he emphasized another important question: which linear operators, except for
differentiation, preserve the interlacing property. Needles to say, he wanted to
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see another proof, deep enough to reveal the role of the differential operator
and which would allow the desired extensions. Some years later I realized the
tight connection between interlacing of zeros of real hyperbolic polynomials and
stability, which is given by the classical Hermite-Biehler theorem and which,
together with the Gauss-Lucas theorem, implies immediately Markov’s result.

It turns out Bojanov’s questions were deep and an answer, though still not
complete, can be given with the help of the very recent progress on operators
which preserve stability, due to Julius Borcea (who, sadly enough, passed away
at the very same day, April 8, 2009, as Professor Bojanov) and Peter Branden.

One of the versions of Hermite-Biehler’s (see, for instance [14]) theorem is
as follows:

Theorem B. Let p(x) and q(x) be real polynomials whose degrees are equal

or consecutive integers. Then the zeros of the polynomial

f(x) = p(x) + iq(x)

belong to one side of the real axes if and only if p and q are hyperbolic polynomials

whose zeros interlace.

Recall that the Gauss-Lucas theorem states that the critical points of a
complex polynomial belong to the convex hull of its zeros. The the Hermite-
Biehler and Gauss-Lucas theorems immediately yield Markov’s one. Moreover,
it is clear that one can characterize the operators which preserve the interlacing
of zeros of hyperbolic polynomials if finds all operators which preserve the
property that a polynomial possesses zeros only on one side of the real axis.
Since a simple rotation, that is, multiplication by ±i, takes the upper or the
lower half-planes to the left, one, we may consider the polynomials whose zeros
belong to the half-plane ℜz < 0. The real polynomials with this property are
called Hurwitz or stable ones. In what follows we recall the Routh-Hurwitz
criterion for stability. In order to this, and for other purposes, suppose that
P (x) = a0 + a1x + · · · anxn and Q(x) = b0 + b1x + · · · + bn−1x

n−1 + bnxn are
real algebraic polynomial with an > 0 and either bn = 0, bn−1 > 0 or bn > 0,
which means that P is always of degree n and Q is either of degree n− 1 or n,
and both polynomials posses positive leading coefficients. Then we form the
polynomial

G(x) = P (x2) + xQ(x2)

= a0 + b0x + a1x
2 + b1x

3 + · · · + bn−1x
2n−1 + anx2n + bnx2n+1.

It is either of degree 2n, when bn = 0, or 2n + 1 otherwise, and its leading
coefficient is also positive. Vice versa, given an algebraic polynomial G(x) with
positive leading coefficients, it can be represented in the above form and thus
define the polynomials P (x) and Q(x). Then the Hermite-Biehler theorem
and above mentioned rotation of the upper or lower half-planes to the left one
imply:
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Theorem C. Let the polynomials P (x) and Q(x) and G(x) be defined as

above. Then the zeros of the polynomial G belong to the left half plane ℜz < 0
if and only if P and Q are hyperbolic polynomials whose zeros are negative and

interlace.

This result appears as Theorem 13 on p. 228 in [5]. With the above
polynomial G, or equivalently with the P and Q, we associate its Hurwitz
matrix

H(G) = H(P,Q) =

















b0 b1 b2 · · · bn 0 · · · · · · 0
a0 a1 a2 · · · an 0 · · · · · · 0
0 b0 b1 b2 · · · bn 0 · · · 0
0 a0 a1 a2 · · · an 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · · · · · · · · · · · · · · · · bn

















.

The the Routh-Hurwitz theorem states:

Theorem D. Let the polynomial G(x) be defined as above. Then it is stable

if and only if all principal minors of H(G) are positive.

Thus, we obtain a simple criterion for interlacing of zeros of hyperbolic
polynomials provided all their zeros are negative.

Theorem 1. The zeros of P and Q are real, negative and interlace, if and

only if the principal minors of H(P,Q) are positive. Moreover, if Q ∈ πn−1,

then P ≺ Q and, if Q ∈ πn, then Q ≺ P .

In the general case, we may consider the Taylor expansion of the polynomials
at a sufficiently large real number, larger than the zeros of the two polynomials.

Recall that if A(x)=A0+A1x+· · ·+Anxn and B(x)=B0+B1x+· · ·+Bnxn,
then their Hadamrd product is defined by

(A ∗ B)(x) = A0B0 + A1B1x + · · · + AnBnxn.

Very interesting property of stable polynomials was established by Garloff and
Wagner [6]. They proved that if A and B are stable, then their Hadamard
product A∗B is also stable. Therefore, we can state the following consequence
of this interesting fact:

Theorem 2. Let p, q, P and Q be real hyperbolic polynomials with negative

zeros and p ≺ q and P ≺ Q. Then (p ∗ P ) ≺ (q ∗ Q).

2. Monotonicity of Zeros Satisfying a Sturm-Liouville

Differential Equation

As I have already mentioned above, I became interested in zeros of orthogonal
polynomials after I finished my graduate studies. In 1992 I asked Prof. Mourad
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Ismail for help concerning zeros of a specific family of orthogonal polynomials
which arises in the L2 Markov inequality when he kindly sent me a bunch of
papers. There, in [8], I found a very interesting conjecture on monotonicity
of positive zeros of ultraspherical polynomials. Bojanov was not an expert in
this topic but I remember his initial interest on the problem and the many
discussions we had on this theme after I really got interested and begun contri-
buting on it. It is widely known that the zeros of the orthogonal polynomials
are all real, distinct and are located in the convex hull of the support of the
measure with respect to which they are orthogonal. These zeros are the nodes
of the corresponding Gaussian quadrature formula and this is one of the main
reason for the interest in their behaviour and location. The most famous and
well known orthogonal polynomial and those of Jacobi, P

(α,β)
n (x), Gegenbauer,

C
(λ)
n (x), Laguerre, L

(α)
n (x), and Hermite, Hn(x). Very interesting questions

are related to the behaviour of the zeros of P
(α,β)
n (x), C

(λ)
n (x) and L

(α)
n (x)

when they are considered as functions of the parameters α, β and λ. There
is an additional challenge here because the zeros of the classical orthogonal
polynomials obey a very interesting electrostatic interpretation. We recall

it for the zeros xnk(α, β) of the Jacobi polynomial P
(α,β)
n (x). Consider an

electrostatic field generated by two fixed charges at −1 and +1 with forces
(β + 1)/2 and (α + 1)/2, respectively, where α, β > −1, so that these charges
are positive, and n free unit charges located in (−1, 1). Suppose that they
repel each other according to the logarithmic potential law which means that
the force is reciprocal to the distance between the charges. Equivalently, we
may interpret this situation as if the charges are distributed along infinite wires
perpendicular to the real axis. Then the energy of this electrostatic field attains
its minimum at a unique location of the free charges, when they coincide with

the zeros xnk(α, β) of P
(α,β)
n (x). It is clear from this electrostatic interpretation

of xnk(α, β) that they are increasing functions of β and decreasing functions
of α. Formally this fact was established by Andrei Markov [9] who proved a
nice simple criteria for monotonicity of zeros of orthogonal polynomials using
the fact that the zeros of the orthogonal polynomials coincide with the nodes
of the Gaussian quadrature formula (see also [17]).

Once we discussed with Professor Bojanov the classical Sturm comparison
theorem on zeros of solutions of Sturm-Liouville differential equation and its
eventual application to results on interlacing and monotonicity of zeros of
orthogonal polynomials.

Theorem E (Sturm’s comparison theorem). Let y(x) and Y (x) be

solutions of the differential equations

y′′(x) + f(x)y(x) = 0 (1)

and

Y ′′(x) + F (x)Y (x) = 0, (2)

where f, F ∈ C(a, b) and f(x) ≤ F (x) in (a, b). Let x1 and x2, with a < ζ1 <
ζ2 < b be two consecutive zeros of y(x). Then the function Y (x) has at least



D. K. Dimitrov 75

one variation of sign in the interval (ζ1, ζ2) provided f(x) 6≡ F (x) there. The

statement holds also:

• for ζ1 = a if

y(a + 0) = 0 and lim
x→a+0

{y′(x)Y (x) − y(x)Y ′(x)} = 0; (3)

• for ζ2 = b if

y(b − 0) = 0 and lim
x→b−0

{y′(x)Y (x) − y(x)Y ′(x)} = 0. (4)

We refer to the preliminary chapter of Szegő’s book [17] or to Chapter 8 of
Hille’s book [7].

This theorem is widely used for obtaining sharp limit for the zeros of the
above families of orthogonal polynomials which are called the classical families
of orthogonal polynomials. Indeed, the Jacobi, Gegenbauer, Laguerre and
Hermite polynomials are solutions of such differential equations. Chapter 6
of Szegő classical reading [17] contains various such results. Nevertheless,
there was no proof in the literature on the monotonicity of zeros of classical
orthogonal polynomials using Sturm’s theorem and Bojanov said it was sur-
prising. Some year later I discussed seriously the same question with my
colleague and friend Panos Siafarikas who also passed away too early. I remem-
ber I had already thought about this matter and that Panos was sceptical
about such an application because if one considers Y (x) − y(x) in the case
corresponding to the classical orthogonal polynomials, with two different values
of the parameter, the difference usually changes sign in the interval of orthogo-
nality. I was sure that this phenomenon was not only necessary but also
sufficient for establishing monotonicity and shared my belief with Siafarikas
but I never took this idea seriously till very recently when I worked with my
colleague and friend Ranga on zeros of certain para-orthogonal polynomials
whose zeros are located in the unit circumference of the complex plane. It
turns out that Sturm’s theorem is very helpful for establishing monotonicity of
zeros of polynomial functions which are solutions of Sturm-Liouville differential
equation. Here is the theorem we need:

Theorem 3. Let f, F ∈ C(a, b) and y(x) and Y (x) be solutions of the

differential equations (1) and (2), satisfy (3) and (4), and both have n distinct

zeros in (a, b). Let the zeros of y(x) in (a, b) be x1 < x2 < · · · < xn and those of

Y (x) be X1 < X2 < · · · < Xn. If there exists η ∈ (a, b), such that f(η) = F (η)
and

• F (x) − f(x) < 0 for x ∈ (a, η) and F (x) − f(x) > 0 for x ∈ (η, b), then

xk < Xk for every k = 1, . . . , n;

• F (x) − f(x) > 0 for x ∈ (a, η) and F (x) − f(x) < 0 for x ∈ (η, b), then

xk > Xk for every k = 1, . . . , n.
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Before we prove this theorem, it is worth mentioning its simplicity. It says
that we may draw conclusion about monotonicity of zeros of solution of Sturm-
Liouville differential equations provided the difference F (x)−f(x) changes sign
in (a, b). Besides, it is not possible that the difference F (x) − f(x) maintains
the sign in (a, b) if both y and Y have exactly n distinct zeros in (a, b). Indeed,
if it was so, say F (x) − f(x) > 0 in (a, b), and if we set x0 = a and xn+1 = b,
then by Sturm’s Comparison Theorem E, the solution Y (x) of (2) would have
changed sign in every interval (xk, xk+1), k = 0, 1, . . . , n, which would produce
at least n + 1 distinct zeros of Y (x) in (a, b), a contradiction.

Proof of Theorem 3. We prove only the statement in the case when F (x)−
f(x) < 0 for x ∈ (a, η) and F (x)−f(x) > 0 for x ∈ (η, b) because the arguments
in the other case are identical.

Let y(x) have m zeros on (a, η) and n − m zeros in [η, b), that is

a < x1 < x2 < . . . < xm < η ≤ xm+1 < . . . < xn < b.

The reader will realize that the conclusion in the cases m = 0 and m = n are
immediate from the arguments provided below, so that we consider the general
situation 1 < m < n.

First we shall prove that Xk > xk for k = 1, . . . ,m. Assume the contrary,
that there is a j with 1 ≤ j ≤ m, such that Xj < xj . Since F (x) < f(x) for
x ∈ (a, xj), then by Theorem E, the function y(x) would change sign at least
once in all the intervals (a,X1), . . . (Xj−1,Xj). This means that xj < Xj , a
contradiction.

The fact that Xk > xk for k = m+1, . . . , n is also a consequence of Sturm’s
theorem. Since f(x) < F (x) for x ∈ (xm+1, b), Y (x) changes sign at least
once in (xn, b), at least twice in (xn−1, b), and so on, at least n − m times in
(xm+1, b). Hence, Xn > xn, Xn−1 > xn−1, and so on, until Xm+1 > xm+1. �

Now we may consider a family of Sturm-Liouvile differential equations which
depends on a parameter τ ,

y′′(x; τ) + f(x; τ) y(x; τ) = 0, (5)

where the differentiation is with respect to the variable x and τ ∈ (c, d).
Suppose that f ∈ C[(a, b) × (c, d)], the solutions y(x; τ) depend continuously
on τ and, for every τ ∈ (c, d), y(x; τ) satisfies

lim
x→a+0

y(x, τ) = 0 and lim
x→b−0

y(x, τ) = 0, (6)

and possesses n distinct zeros xk(τ) ∈ (a, b),

a < x1(τ) < · · · < xn(τ) < b,

which also depend continuously on τ . Suppose further that, for some τ1, τ2 ∈
(c, d),

lim
x→a+0

{y′(x, τ1)y(x; τ2) − y(x; τ1)y
′(x; τ2)} = 0 (7)
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and
lim

x→b−0
{y′(x, τ1)y(x; τ2) − y(x; τ1)y

′(x; τ2)} = 0. (8)

Then we may formulate the following useful consequence of Theorem 3:

Theorem 4. Let the solutions y(x; τ) of (5) obey the properties described

above. If, for some τ1, τ2 ∈ (c, d) there is η ∈ (a, b), such that f(η; τ1) = f(η; τ2)
and

• f(x; τ2) − f(x; τ1) < 0 for x ∈ (a, η) and f(x; τ2) − f(x; τ1) > 0 for

x ∈ (η, b), then xk(τ1) < xk(τ2) for every k = 1, . . . , n;

• f(x; τ2) − f(x; τ1) > 0 for x ∈ (a, η) and f(x; τ2) − f(x; τ1) < 0 for

x ∈ (η, b), then xk(τ1) > xk(τ2) for every k = 1, . . . , n.

It is worth mentioning that in the applications we should use either τ2 =
τ1+ε or τ2 = τ1−ε, with sufficiently small positive ε. In this situation, because
of the continuous dependence of the zeros with respect to the parameter τ , we
shall have not only monotonicity, but also interlacing of the zeros of y(x; τ) and
y(x; τ ± ε). As an application of these results, we establish the monotonicity
of the zeros of the Jacobi polynomials in the case when α, β > 0. It is known
that

y(x;α, β) = (1 − x)(α+1)/2 (1 + x)(β+1)/2 P (α,β)
n (x)

is a solution of the differential equation

y′′(x;α, β) + f(x;α, β) y(x;α, β) = 0,

where

f(x;α, β) =
1 − α2

4(1 − x)2
+

1 − β2

4(1 + x)2
+

n(n + α + β + 1) + (α + 1)(β + 1)/2

1 − x2
.

Fix β > 0 and let us apply the theorem with τ = α which varies in (0,∞).
Obviously y(x;α, β) obeys the requirements (6), (7) and (8). Let τ1 = α and
τ2 = α + ε. Then

f(x;α + ε, β) − f(x;α, β) =
ε {2n + 1 − α + β − ε − (2n + 1 + α + β + ε)x}

(1 − x)2(1 + x)
.

Hence, if ε > 0, then f(η;α + ε, β) = f(η;α, β), where

η =
2n + 1 − α + β − ε

2n + 1 + α + β + ε
∈ (−1, 1),

and

f(x;α + ε, β) − f(x;α, β) > 0 for x ∈ (−1, η),

f(x;α + ε, β) − f(x;α, β) < 0 for x ∈ (η, 1).
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Therefore, the zeros xnk(α, β) of the Jacobi polynomial of degree n are decreasing
functions of α for α ∈ (0,∞). Observe that they are degreasing functions
of α in the entire range α ∈ (−1,∞) but our theorem can not be applied
for α < 0 because in this case we can not guarantee that (6), (7) and (8)
hold. Nevertheless, I wish Professor Bojanov knew these little pieces and Panos
Siafarikas knew the above Theorems 3 and 4.
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152

[10] V. Markov, On functions least deviated from zero in a given interval, St.
Petersburg, 1892 [in Russian]; German transl.: Über Polynome die in einen
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