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Best trigonometric approximation in homogeneous Banach spaces of
periodic functions is characterized by two moduli of smoothness, which
are equivalent to zero if the function is a trigonometric polynomial of a
given degree. The characterization is just similar to the one given by
the classical modulus of smoothness. The new moduli possess properties
similar to those of the classical one. One is based on the classical finite
differences but taken on a modification of the function and the other on
a modification of the finite differences but taken on the function itself.
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1. The Characterization of Best Trigonometric
Approximation

Let Lp(T), 1 ≤ p ≤ ∞, denote the space of functions with finite Lp-norm
on the circle T = R/2πZ, as we may actually consider C(T), the space of
continuous functions on T, in the place of L∞(T). Best trigonometric approxi-

mation of a function f ∈ B, where B is either Lp(T) or C(T), is given by

ET
n (f)B = inf

τ∈Tn

‖f − τ‖B ,

where Tn denotes the set of trigonometric polynomials of degree at most n.

∗The research was supported by grant No. 179/2010 of the National Science Fund to the
University of Sofia.
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The order of ET
n (f)B is estimated by the so-called classical moduli of

smoothness. To recall, the modulus of smoothness of order r ∈ N is defined
by

ωr(f, t)B = sup
0<h≤t

‖∆r
hf‖B ,

where the centred finite difference of order r ∈ N of f is given by

∆r
hf(x) =

r∑

k=0

(−1)k

(
r

k

)
f(x+ (r/2 − k)h). (1)

The following relation between ET
n (f)B and ωr(f, t)B is a classical result in

approximation theory (see for example [3, Ch. 7])

ET
n (f)B ≤ c ωr(f, n

−1)B , (2)

ωr(f, t)B ≤ c tr
∑

0≤k≤1/t

(k + 1)r−1ET
k (f)B , 0 < t ≤ t0. (3)

Above and in what follows we denote by c positive constants, which do not
depend on the functions in the relations, nor on n ∈ N or 0 < t ≤ t0.

Although (2) looks so nice, one is bothered by the fact that ET
n (f)B is zero

always when f is a trigonometric polynomial of degree n, whereas ωr(f, t)B is
zero only if f is a constant. To cope with this problem we have to modify the
modulus. First, in 1999 Babenko, Chernykh and Shevaldin [1] considered the
modulus

ω̃T
r (f, t)B = sup

0<h≤t
‖∆̃r,hf‖B ,

where the modified finite differences ∆̃r,h are defined by

∆̃r,hf(x) = ∆r−1,h · · ·∆1,h∆hf(x), (4)

with

∆j,hf(x) = f(x+ h) − 2 cos(jh) f(x) + f(x− h), j = 1, 2, . . .

This modulus has the property

ω̃T
r (f, t)B ≡ 0 ⇐⇒ f ∈ Tr−1.

Babenko, Chernykh and Shevaldin [1] proved (2) with ω̃T
r (f, t)B in the place

of the classical modulus of smoothness for the space B = L2(T). Later Sheval-
din [11] added the case B = C(T) for r = 2. Quite recently, in [8], (2) and
(3) with ω̃T

r (f, t)B were verified for B = Lp(T), 1 ≤ p ≤ ∞. More precisely, in
[8, Theorem 1.1] it was established that

ET
n (f)B ≤ c ω̃T

r (f, n−1)B , n ≥ r − 1, (5)
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ω̃T
r (f, t)B ≤ c t2r−1

∑

r−1≤k≤1/t

(k + 1)2r−2ET
k (f)B , 0 < t ≤

1

r
, (6)

for all B = Lp(T), 1 ≤ p ≤ ∞.
Meanwhile, the author introduced another modulus in [5]. It uses the

classical finite differences (1) but they are taken on a suitable continuous linear
transform of the function f . Namely, we set

Fr−1f(x) = f(x) +
r−1∑

j=1

ar−1,j

(2j − 1)!

∫ x

0

(x− t)2j−1f(t) dt,

where ar−1,j are given by the Stirling numbers of the first kind

ar−1,j =

2r−2j−1∑

m=1

(−1)r−j−ms(r,m) s(r, 2r − 2j −m).

Now, we define the modulus by

ωT
r (f, t)B = sup

0<h≤t
‖∆2r−1

h Fr−1f‖B .

This modulus also has the property

ωT
r (f, t)B ≡ 0 ⇐⇒ f ∈ Tr−1

and in [5, Theorem 1.1] it was shown that it characterizes ET
n (f)B just as in

(5)–(6) for B = Lp(T), 1 ≤ p ≤ ∞. Let us explicitly point out that, though
generally Fr−1f is not 2π-periodic, ∆2r−1

h Fr−1f is.
The purpose of this note is to extend the characterization of best trigonomet-

ric approximation by the moduli ωT
r (f, t)B and ω̃T

r (f, t)B to any homogeneous
Banach space of periodic functions. Let us recall (see [9, Definition I.2.10]) that
a homogeneous Banach space (abbreviated HBS ) B on T is a linear subspace
of L1(T), having a norm ‖ · ‖B , under which it is a Banach space such that

(a) The translation is an isometry of B onto itself, i.e., if f ∈ B and t ∈ T,
then ft ∈ B and ‖ft‖B = ‖f‖B , where ft(x) = f(x− t);

(b) The translation is continuous on B, i.e., for all f ∈ B and t, t0 ∈ T there
holds limt→t0 ‖ft − ft0‖B = 0;

(c) B is continuously embedded in L1(T), i.e., there exists an absolute constant
α such that for all f ∈ B there holds ‖f‖L1(T) ≤ α‖f‖B .

Lp(T) for 1 ≤ p < ∞ and C(T) as well as the corresponding Lipschitz
(Hölder) spaces are HBS on T. Let us also recall that (2)–(3) have been
extended to abstract Banach spaces and, in particular, to any HBS on T (cf.
[4], [10, Ch. 9] and [12]).
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The concept of HBS’s was introduced by Shilov [13]. However, we can
observe a similar abstract approach in the definition of almost periodic functions
by Bochner and Neumann [2, Definition 1] (see also the references cited there
and [10, p. 200]).

The modulus ω̃T
r (f, t)B is well defined in the setting of an arbitrary HBS

on T. However, the operator Fr−1 in the definition of ωT
r (f, t)B has to be

modified a little to ensure that its image is again in B. For Lp(T) this was
done in [5] by adding an appropriate algebraic polynomial operator of degree
2r − 2 to Fr−1 to get that the image is again 2π-periodic. However, this
construction does not make it evident that the image is again in B in the case
of an arbitrary HBS. We can settle this general case if we succeed to modify
Fr−1 so that it becomes a convolution operator. Below we give the details.

Let B be a HBS on T, f ∈ B and K ∈ L1(T). Then the convolution between
K and f

K ∗ f(x) =
1

2π

∫

T

K(x− y)f(y) dy

is an element of B and

‖K ∗ f‖B ≤ ‖K‖L1(T) ‖f‖B (7)

(see [9, Problem I.2.13]).

We define the function a ∈ L1(T) by

a(x) =
1

2
|x|(2π − |x|), x ∈ [−π, π]. (8)

Let us denote by K∗s the convolution of K ∈ L1(T) with itself s times, s ∈ N.
We replace the operator Fr−1 in the definition of ωT

r (f, t)B with Fr−1 : B → B,
defined by

Fr−1f = f +

r−1∑

j=1

ar−1,j a∗j ∗ f (9)

and set

ωT
r (f, t)B = sup

0<h≤t
‖∆2r−1

h Fr−1f‖B .

Redefining ωT
r (f, t)B in this way does not give rise to any ambiguity because

Fr−1f and Fr−1f differ with an algebraic polynomial of degree 2r − 2 for any
f as it follows from [5, Proposition 4.9(a)] and Proposition 1 below.

The kernel a has very simple Fourier coefficients:

â(k) =





−
1

k2
, k ∈ Z\{0},

π2

3
, k = 0.

(10)
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As usual we set for f ∈ B

f̂(k) =
1

2π

∫

T

f(y)e−iky dy, k ∈ Z.

LetB be a HBS on T. Then, as is known, the set of trigonometric polynomials
in B is dense (see e. g. [9, Theorem I.2.12] or (14) below). We set

ET
n (f)B = inf

τ∈Tn∩B
‖f − τ‖B .

Our main result is the following characterization of ET
n (f)B by means of moduli

of smoothness that are invariant on the trigonometric polynomials of a given
degree.

Theorem 1. Let B be a HBS on T and f ∈ B. Then

ET
n (f)B ≤ c ωT

r (f, n−1)B , n ≥ r − 1, (11)

and

ωT
r (f, t)B ≤ c t2r−1

∑

r−1≤k≤1/t

(k + 1)2r−2ET
k (f)B , 0 < t ≤

1

r
. (12)

The same relations hold with ω̃T
r (f, t)B in the place of ωT

r (f, t)B.

In the next section we shall give a proof of this theorem. There we consider
some relevant properties of a modified Riesz operator, which was introduced in
[5], and of Fr−1. In the third and final section we present the most important
properties of the moduli ωT

r (f, t)B and ω̃T
r (f, t)B .

2. Proof of the Characterization

The proof of the characterization of the error ET
n (f)B is comprised of two

intertwining parts. One is related to the characterization of ET
n (f)B by means

of appropriately defined K-functionals and the other to their equivalence to
the moduli.

Let B be a HBS on T and r, n ∈ N, r ≤ n. Let us denote by AC the set of
the absolutely continuous functions on T. We put for s ∈ N

Bs = {g ∈ B : g(ℓ) ∈ AC ∩B, ℓ = 0, . . . , s− 1, g(s) ∈ B}.

We shall use K-functionals of the following two types:

Ks(f, t)B = inf
g∈Bs

{
‖f − g‖B + ts‖g(s)‖B

}
,
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KT
r,ℓ(f, t)B = inf

g∈B2r+ℓ−1

{
‖f − g‖B + t2r−1+ℓ

∥∥D̃rg
(ℓ)

∥∥
B

}
,

where f ∈ B, t > 0, ℓ ∈ N0 and

D̃rg = Dr−1 · · ·D1 g
′, Djg = g′′ + j2g.

Note that
D̃rg = 0 ⇐⇒ g ∈ Tr−1. (13)

In [5, Sections 2 and 3] we introduced the following combination of modified
Riesz operators Lr−1,n : B → B ∩ Tn−1, defined by

Lr−1,nf = f −

r−1∏

j=0

(f −Rj,nf),

where

Rj,nf(x) =

n−1∑

k=1−n

(
1 −

k2 − j2

n2 − j2

)
f̂(k) eikx, x ∈ T,

and established that (see [5, Theorem 3.1])

‖f − Lr−1,nf‖B ∼ KT
r,1(f, n

−1)B , f ∈ B, n ∈ N. (14)

Here the relation ψ1(f, n) ∼ ψ2(f, n) means that there exists a positive constant
c such that

c−1ψ2(f, n) ≤ ψ1(f, n) ≤ c ψ2(f, n)

for all f and n under consideration.
Let us note that, in view of (13) and (14) we have

Lr−1,nf = f ⇐⇒ f ∈ Tr−1.

Further, let us observe that

Ks(f, t)B ∼ ωs(f, t)B , f ∈ B, t > 0. (15)

This can be established just as for Lp(T) (see e.g. [3, p. 177]), as we observe
that the classical modulus of smoothness preserves its properties in any HBS
on T and the combination of modified Steklov functions belongs to the HBS
B provided that f ∈ B because it is representable as a convolution between f
and a kernel in L1(T) (see [3, Chapter 6, (2.12)]).

Next, we shall extend [5, Theorem 4.12 and Remark 4.13] to any HBS on T.
That is we shall prove the following assertion.

Theorem 2. Let B be a HBS on T and ℓ ∈ N0. Then

KT
r,ℓ(f, t)B ∼ ω2r+ℓ−1(Fr−1f, t)B , f ∈ B, t > 0.
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The proof of this theorem is based on the method formulated in [6, Proposi-
tion 2.1] (or see [7, Theorem 3.1 and Remark 3.1]). It allows to substitute a K-
functional with a “complex” differential operator with an equivalent one with a
“simple” differential operator by modifying the function. For an easier reference
we state below this result particularly for the case under consideration. Before
that let us mention that due to the convolution structure of Fr−1, used here,
the proofs of its properties as well as those of ωT

r (f, t)B become much shorter
and simpler than the proofs given in [5].

Theorem 3. Let B be a Banach space of functions on T, r ∈ N and ℓ ∈ N0.

Let A : B → B and B : B → B be linear operators, satisfying the conditions:

(a) ‖Af‖B ≤ c ‖f‖B for every f ∈ B;

(b) Ag ∈ B2r+ℓ−1 and
∥∥(Ag)(2r+ℓ−1)

∥∥
B
≤ c

∥∥D̃rg
(ℓ)

∥∥
B

for every g ∈ B2r+ℓ−1;

(c) ‖BF‖B ≤ c ‖F‖B for every F ∈ B;

(d) BG∈B2r+ℓ−1 and
∥∥D̃r(BG)(ℓ)

∥∥
B
≤c

∥∥G(2r+ℓ−1)
∥∥

B
for every G∈B2r+ℓ−1;

(e) f − BAf ∈ Tr−1 for every f ∈ B;

(f) F − ABF = const for every F ∈ A(B).

Then for all f ∈ B and t > 0 there holds

KT
r,ℓ(f, t)B ∼ K2r+ℓ−1(Af, t)B .

Below we shall verify that Fr−1, defined in (9), possesses the properties
of the operator A of the theorem above. We begin with the construction of
the corresponding operator B, which we call a quasi-inverse of A. We set for
F ∈ B, j ∈ N and x ∈ T

BjF (x) = F (x) + bj ∗ F (x),

where bj is a function on T such that

bj(x) = j(|x| − π) sin |jx|, x ∈ [−π, π].

Further, we put
Er−1 = Br−1 · · ·B1.

We shall show that the operators Fr−1 and Er−1 satisfy the hypotheses of
Theorem 3.

Proposition 1. Let B be a HBS on T, r ∈ N and ℓ ∈ N0. For g ∈ B2r+ℓ−1

we have Fr−1g ∈ B2r+ℓ−1 and

(Fr−1g)
(2r+ℓ−1) = D̃rg

(ℓ).
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Proof. It is clear that g ∈ B2r+ℓ−1 yields Fr−1g ∈ B2r+ℓ−1 as well. We set
for f ∈ B

Ajf = f + j2a ∗ f, j = 1, 2, . . . ,

where a is given in (8). The operator Fr−1 has been constructed as a composition
of the operators Aj for j = 1, 2, . . . , r − 1:

Fr−1 = Ar−1 · · ·A1. (16)

Indeed, denoting by δ the Dirac delta function, we have

Ar−1 · · ·A1 = (δ + (r − 1)2a) ∗ · · · ∗ (δ + a) ∗ f

= f +

r−1∑

j=1

( ∑

1≤ℓ1<···<ℓj≤r−1

(ℓ1 · · · ℓj)
2
)

a∗j ∗ f.

On the other hand, there holds

(Ajg)
′′ = Djg − j2ĝ(0), g ∈ B2. (17)

To verify this relation, we just calculate the Fourier coefficients of Ajg. We
have by (10) for k 6= 0

Âjg(k) = (1 + j2â(k)) ĝ(k) =
(
1 −

j2

k2

)
ĝ(k).

Consequently, we have for k 6= 0

(̂Ajg)′′(k) = −k2 Âjg(k) = (−k2 + j2)ĝ(k) = ĝ′′(k) + j2ĝ(k) = D̂jg(k),

and hence the Fourier coefficients of the left and right sides of (17) are equal
for k 6= 0. Also, it is clear that their Fourier coefficients at k = 0 are both
equal to 0. Therefore, in view of the uniqueness of the Fourier transform, we
get (17).

Now, combining (16) and (17), we get the assertion of the proposition. �

Proposition 2. Let B be a HBS on T and r ∈ N. Then we have

(i) f − Er−1Fr−1f ∈ Tr−1 for all f ∈ B;

(ii) F − Fr−1Er−1F = const for all F ∈ Fr−1(B).

Proof. We proceed similarly to the proof of the previous proposition. We
shall show that

Er−1Fr−1f = f + τr−1 ∗ f (18)

with

τr−1(x) = −1 − 2

r−1∑

j=1

cos jx. (19)
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To this end, we shall first establish that

BjAjf = f + ηj ∗ f, f ∈ B, j ∈ N, (20)

where
ηj(x) = −1 − 2 cos jx.

We calculate the Fourier coefficients of the kernel bj to be

b̂j(k) =





j2

k2 − j2
, k ∈ Z\{±j},

−
1

4
, k = ±j.

(21)

The definition of the operators Aj and Bj gives

BjAjf = f + (j2a + bj + j2a ∗ bj) ∗ f.

Thus, in view of (10) and (21) we get for its Fourier transform

(B̂jAjf) (k) = (1 + j2â(k) + b̂j(k) + j2â(k)b̂j(k)) f̂(k)

=




f̂(k), k ∈ Z\{0,±j},

0, k = 0,±j.

The right-hand side is exactly the Fourier transform of f + ηj ∗ f ; hence (20)
follows.

Now, using (20) and the fact that Aj′ , Aj′′ , Bj′ and Bj′′ commute for all
naturals j′, j′′, we arrive at

Er−1Fr−1f = Br−1 · · ·B1Ar−1 · · ·A1f

= Br−1Ar−1 · · ·B1A1f

= (δ + ηr−1) ∗ · · · ∗ (δ + η1) ∗ f.

Applying the Fourier transform to both sides of the last relation, we get

( ̂Er−1Fr−1f) = (1 + η̂r−1) · · · (1 + η̂1)f̂ = (1 + τ̂r−1)f̂ ,

which verifies (18) and completes the proof of assertion (i).
Proceeding to (ii), we have for F = Fr−1f , f ∈ B, by means of (18) that

Fr−1Er−1F = Fr−1Er−1Fr−1f

= Fr−1(f + τr−1 ∗ f) = F + Fr−1(τr−1 ∗ f).

But τr−1 ∗ f ∈ B2r−1 ∩ Tr−1 and by Proposition 1 we get that

(Fr−1(τr−1 ∗ f))(2r−1) = D̃r(τr−1 ∗ f) = 0.

Consequently, Fr−1(τr−1 ∗ f) is an algebraic polynomial of degree not greater
than 2r − 2. On the other hand, Fr−1(τr−1 ∗ f) is in B and thus 2π-periodic.
Therefore it is a constant. Assertion (ii) is established. �
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Corollary 1. Let B be a HBS on T, r ∈ N and ℓ ∈ N0. For G ∈ B2r+ℓ−1

we have Er−1G ∈ B2r+ℓ−1 and

D̃r(Er−1G)(ℓ) = G(2r+ℓ−1) + τr−1 ∗G
(2r+ℓ−1).

where τr−1 is given in (19).

Proof. The formula follows directly from Proposition 1 and relation (18),
where we also take into account that Fr−1 and Er−1, being convolution operators,
commute. Indeed, we just have

D̃r(Er−1G)(ℓ) = (Fr−1(Er−1G))(2r+ℓ−1)

= (Er−1(Fr−1G))(2r+ℓ−1)

= (G+ τr−1 ∗G)(2r+ℓ−1)

= G(2r+ℓ−1) + τr−1 ∗G
(2r+ℓ−1).

�

Now we are ready to establish Theorem 2.

Proof of Theorem 2. In view of (15) it is enough to show that

KT
r,ℓ(f, t)B ∼ K2r+ℓ−1(Fr−1f, t)B , f ∈ B, t > 0.

To this end, we apply Theorem 3 with A = Fr−1 and B = Er−1. Conditions
(a) and (c) follow from (7), (b) from Proposition 1, (d) from Corollary 1, and
(e) and (f) are established in Proposition 2. �

We have all the ingredients we need to give a proof of the characterization
of best trigonometric approximation in any HBS of periodic functions.

Proof of Theorem 1. Relation (14) and Theorem 2 for ℓ = 0, 1 enable us
to follow verbatim the proof of [5, Theorem 1.1 in Section 5] in any HBS on T

and establish (11).
The weak converse inequality (12) is again verified as in [5], taking into

account that the classical Bernstein inequality for trigonometric polynomials
is valid in any HBS on T. Indeed, its proof in Lp(T), based on the Riesz
interpolation formula for trigonometric polynomials θn of degree at most n

θ′n(x) =
1

4n

2n−1∑

ℓ=0

(−1)ℓ

sin2 xℓ

2

θn(x+ xℓ), xℓ =
2ℓ+ 1

2n
π,

(see e.g. [14, Section 4.7.1 (3)]) is directly extendable to any normed space, in
which translation is an isometry (cf. also [4, p. 569, Corollary]).

Thus the inequalities in the theorem are verified for ωT
r (f, t)B . In view of the

equivalence between this modulus and the K-functional KT
r (f, t)B , to complete

the proof of the theorem for the other trigonometric modulus ω̃T
r (f, t)B , it is

sufficient to establish that it is also equivalent to KT
r (f, t)B . But this can

be done just as in the proof of [8, Theorem 4.2] because all is expressed via
convolutions. �
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3. Properties of ωT

r
(f, t)B and ω̃T

r
(f, t)B

Both moduli retain the properties of the classical modulus ωs(f, t)B . Let
B be a HBS on T. There hold:

1. ωT
r (f + g, t)B ≤ ωT

r (f, t)B + ωT
r (g, t)B ;

2. ωT
r (cf, t)B = |c|ωT

r (f, t)B , c is a constant;

3. ωT
r (f, t)B ≤ ωT

r (f, t′)B , t ≤ t′;

4. ωT
r (f, λt)B ≤ (λ+ 1)2r−1ωT

r (f, t)B ;

5. ωT
r (f, t)B → 0 as t→ 0;

6. ωT
1 (f, t)B ≤ 2‖f‖B and ωT

1 (f, t)B ≤ t‖f ′‖B , f ∈ B1 (ωT
1 (f, t)B coincides

with the ordinary modulus of continuity);

7. ωT
r (f, t)B ≤ (4 + (r − 1)2t2)ωT

r−1(f, t)B , r ≥ 2;

8. ωT
r (f, t)B ≤ t2ωT

r−1(Dr−1f, t)B , f ∈ B2, r ≥ 2;

9. Marchaud inequality

ωT
r (f, t)B ≤ c t2r−1

(∫ t0

t

ωT
r+1(f, u)B

u2r
du+ ‖f‖B

)
, 0 < t ≤ t0.

The other modulus ω̃T
r (f, t)B possesses identical properties except for Proper-

ty 7, which adopts the stronger form

7′. ω̃T
r (f, t)B ≤ 4 ω̃T

r−1(f, t)B , r ≥ 2.

All the properties of ω̃T
r (f, t)B are established just as in the case B = Lp(T)

considered in [8].
Properties 1–6 of ωT

r (f, t)B follow directly from the corresponding properties
of the classical modulus ωs(f, t)B . Property 9 follows from Theorem 1 by means
of a standard argument (e.g. [3, p. 210]).

To establish Property 7 we first note that

Fr−1f = Ar−1Fr−2f = Fr−2f + (r − 1)2a ∗ Fr−2f. (22)

Moreover, a ∗ f ∈ B2 for any f ∈ B and

(a ∗ f)′′(x) = f(x) − f̂(0). (23)

(Relation (23) gives another proof of (17).) To verify (23), we observe that

(a ∗ f)′′(x) = (a′ ∗ f)′(x)

=
1

2π

d

dx

(
−

∫ 0

−π

(π + y)f(x− y) dy +

∫ π

0

(π − y)f(x− y) dy
)
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=
1

2π

d

dx

(
−

∫ x+π

x

(π + x− y)f(y) dy +

∫ x

x−π

(π − x+ y)f(y) dy
)

= f(x) −
1

2π

∫ x+π

x−π

f(y) dy

= f(x) − f̂(0).

Now, using the properties of the classical modulus of smoothness, (22) and (23)
with f replaced with Fr−2f , we arrive at the inequality in Property 7:

ωT
r (f, t)B = ω2r−1(Fr−1f, t)B

≤ ω2r−1(Fr−2f, t)B + (r − 1)2ω2r−1(a ∗ Fr−2f, t)B

≤ 4ω2r−3(Fr−2f, t)B + (r − 1)2t2ω2r−3((a ∗ Fr−2f)′′, t)B

= 4ω2r−3(Fr−2f, t)B + (r − 1)2t2ω2r−3(Fr−2f, t)B

= (4 + (r − 1)2t2)ωT
r−1(f, t)B .

It remains to verify Property 8. Since

Fr−1f = Ar−1Fr−2f,

relation (17) implies that

(Fr−1f)′′ = Dr−1(Fr−2f) − (r − 1)2 F̂r−2f(0)

= Fr−2(Dr−1f) − (r − 1)2 F̂r−2f(0).

Consequently, by the corresponding property of the classical modulus, we derive

ωT
r (f, t)B = ω2r−1(Fr−1f, t)B ≤ t2ω2r−3((Fr−1f)′′, t)B

= t2ω2r−3(Fr−2(Dr−1f), t)B = t2ωT
r−1(f, t)B .

The proof of the properties of the moduli is completed. �
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